Modeling File System Organizations
in a Local Area Network Environment!

Domenico Ferrari
Tzong-yu Paul Lee

Computer Science Division
Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory
University of California, Berkeley

This paper presents a modeling methodology for the design of file system
organizations in a local area network environment. We first propose 2
characterization for the workload of typical business transaction sys-
tems, and then use this measurable characterization to derive input
parameters for the file distribution graph models and the queuing net-
work models that represent two completely different file system organi-
zations, i.e., a file server-based file system and a distributed file system.
Total system throughput and mean system response time are the indices
used in comparing these two design approaches. An example of this
comparison is given. It is shown that this methodology and these models
are useful tools for the evaluation of certain design tradeofls.

Key words: Distributed File Systems; File Distribution; Queuing Network
Models; Workload Characterization.

1. Introduction

Technological progress in microelectronics and data communications has
made it economically feasible in recent years to build distributed computer sys-
tems connected by a computer communication network [Sch78]. The behavior
of such systems can be considerably more complex than that of single-machine
systems; hence, the need for design methodologies and tools is even more evi-
dent than in the latter case. We are particularly interested in the design of file
systems for local-area-network based distributed systems [StuBo]. This paper
focuses on a design methodology that evaluates two approaches to file system
organization, i.e., a file server-based system [Mit82] and a distributed file system
[GoiB3]. A file server-based system has one or more dedicated machines that
perform flle system functions for the other hosts on the network. On the other
band, a distributed file system does not have this separate type of server : flle

tem functions, storage and access, are distributed over ail the hosts con-
nected to the network

The communication network in the distributed systems our study is con-
cerned with is assumed to be a high-speed local area network [Cla78]; since all
host systems are homogeneous, any user process can be executed on any host
system. The workload parameters used in our models were derived from the

1The research reported here has been supported in part by the State of California and the NCR
Corporation under MICRO Grant No. 1-532436-19900.



R

[P I L

measurement of small business transaction-oriented systems. These systems
tend to have relatively stable workloads in terms of both the behavior of each
type of transaction and the number of flles shared among transaction processes.

In Section 2, we propose 2 characterization for the workload of a typical
business transaction system. Performance indices of interest are also dis-
cussed. Using this characterization, in Section 3 we distribute shared files over
several given hosts in order to minimize remote disk accesses. With this distri-
bution of files, the probabilities of remote file accesses can be calculated for
each transaction type and used as inputs to queuing network models. In Section
4, details of the queuing models for the two organizations are presented : one
with a dedicated file server and the other with a distributed flle system. A sim-

-ple but comprehensive example is given in Section 5 to show how these models

can be used to evaluate design tradeoffs. In particular, the example shows that
a moderate increase in CPU speed may be more cost eflective than the addition
of another host to a distributed system. This tradeoff can be carefully evaluated
using the simple methodology presented here before a major procurement or
upgrading decision is made. Avenues for future research are mentioned in the
last section.

2. Workload Characterization and Performance Indices

2 1. Workload Characterization

The workload of a business transaction system can be characterized by the
number of transaction types, the resource demands by each transaction type,
and the relative throughputs of these transaction types during some typical
interval of operation. Each transaction type uses a few temporary (private) files
while sharing some permanent files with other transaction types. 1t is this col-
lection of shared files that are of concern to us in this study.

The resource demands of a transaction of each type can be further charac-
terized by the following quantities :
1) the number of user interactions (or commands);
2) the total CPU time demand;
3) the number of physical disk accesses to each shared file;
4) the number of display outputs.

Note that a display output is the transfer of a character string by a transac-
tion process from an 1/0 channel, usually an asynchronous communication line,
to a user terminal display device. There are generally a number of display out-
puts during an interaction.

These data can be collected by a suitable hardware monitor and/or by
appropriate system software instrumentation. The values of the characterizing
parameters for each transaction type generally remain invariant with respect to
changes in the underlying structure of the distributed system; in other terms,
they are usually the same for a system with a flle server as for a system with a

distributed file organization.

Some of this workload information is used in the next section to determine
the distribution of shared flles over the hosts. Input parameters to the queuing
network models are also estimated from some of the quantities in this charac-
terization.

2 2. Performance Indices

There are two specific types of performance indices of interest in this
study. One is the overall system throughputs for the various transaction types.
the other is the average response time to user commands for each transaction



e

type. These two indices can be employed to compare designs of different file
system organizations. The two indices may be assigned as performance require-
ments to be satisfied by the design. The designer must properly configure the
system to meet these requirements while keeping its cost at a minimum.

Other performance indices such as the utilizations of critical resources may
be useful for bottleneck detection and capacity planning.

3. Distributing Shared Files Over Hosts

Although distributing shared files over hosts is a problern which arises only
in the design of a distributed flle system, a similar problem is met in the design
of a file server system if the distribution of files over several disk drives is con-

. sidered. Before discussing the distribution of files, we need to investigate the

problem of allocating transaction types to hosts.

3.1. Allocation of Transaction Types to Hosts

Since files have not been assigned to hosts yet, in this phase of the design
we assume that they are stored in a single place on the network (e.g., in a file
server). Hence, the only load that can be meaningfully balanced at this point is
the CPU load. Balancing the 1/0 load is the objective of the next phase.

Given the number of hosts that the distributed system to be designed will
consist of, transaction types are assigned to hosts according to their expected
CPU demands per unit time, properly weighted by their relative throughputs.
The CPU demand rate is obtained by dividing the total CPU demand by the
uniprogramming execution time of one transaction. The uniprogramming exe-
cution time of a transaction is given by the sum of its total CPU time and total
1/0 time, and is used here instead of the multiprogramming execution time
since this is unknown. The objective of this assignment is to balance the CruU
loads among the various hosts as much as possible. The criterion we use is the
minimization of the sum of squared CPU demands for each host. Specifically, if
the CPU demand rate for transaction type i is d;, and there are m transaction
types to be allocated ton hosts, the objective function we choose to minimize is

2(?:@)&

J=11i=1

where the decision variable zy; is 1 if transaction type i is allocated to host 3.
and O otherwise. A simple heuristic can be used to solve this generally NP-
complete problem [Cha75].

Note that we generally try not to assign the same transaction type to more
than one host since transactions of the same type exhibit the same file access
pattern. This approach will ensure better locality of accesses to (single-copy)
shared flles.

9.2. A Graph-theoretic Model of File Distribution

As shown in Figure 1, we construct a (bipartite) graph model with two types
of nodes: a node on the left side represents a transaction type and a node on the
right side represents a shared file. The edge between a transaction type node
and a shared file node is weighted by the rate of file (disk) accesses from the
transaction type in question to the corresponding shared file. The rate of flle
accesses is obtained by dividing the number of file accesses by the uniprogram-
ming execution time of the average transaction of that type.

Now, we can use the assignment of transaction types to hosts determined in
the previous phase to coalesce some of the transaction type nodes and their
associated edges. For example, if transaction types 1 and 4 are assigned to the



[ R N A A

same host, we combine nodes 1 and 4 in the graph in Figure 1. The weights of
the edges from this new node to the shared file nodes are computed by summing
the individual weights in the original graph model. This is shown in Figure 2. We
need to retain the original graph model in order to be able to calculate remote
file access probabilities on a per transaction type basis later.

Formally, let us assume that the number of hosts is m, the number of
shared files is k, and the weight of the edge from node i toj is cy. The objective
of the assignment of shared files to the n hosts is to cluster the hosts-files graph
so that each cluster includes one and only one host, and the sum of all inter-
cluster edge costs, ie., the total rate of remote file sccesses, is minimum.
Mathematically, we can formulate this as a standard integer programming prob-

lem [Sal75). The decision variable Zy is 1 if file j is assigned to host i, and 0 oth-

‘erwise. Notice that the sum of both inter and intra-cluster edge costs is a con-
stant for a given graph. It is easier in this case to formulate the problem in
terms of the sum of intra-cluster edge costs. The objective function to be max-

imized is then
I

t=1j=1

This problem can be solved by a simple polynomial-time algorithm [Lee83].
However, if there are capacity constraints on some hosts, then we can apply a
standard (binary) integer programming solution technique [Sal75). The capa-
city constraints can be represented as follows :

tzus,-sa forall i,
i=1

where s; is the size of file j and L; is the capacity of host 1.

After clustering the shared flles, we can use the original model (see Figure
1) to compute the probabilities of local and remote file access {one for each
remote host) for each transaction type.

4. Queuing Network Models of Distributed File System Organizations

In the third phase of our design methodology, we construct a queuing net-
work model of the distributed system. This model offers a relatively fast and
inexpensive way of verifying whether the given performance requirements can
be satisfied by the system. We illustrate how simple queuing models of the two
basic file system organizations can be constructed, and how they can be used to
compare the performances of these organizations. Our models will be product-
form queuing networks [Bas75). that can be analyzed quite rapidly and inexpen-
sively by any of the several solution packages now available commercially. The
hosts and the local area network will be first modeled separately, then
integrated into the distributed system model We assume that in our system
each CPU is multiprogrammed, and has one disk drive and several terminals
connected to it. It is also assumed that the local area network uses a multiac-
cess protocol.

4.1. A Model for a Host

The host model includes a number of active user terminals which initiate
interactions by entering commands or data. Each interaction typically requires
some CPU bursts, a few disk accesses, and some display outputs before ending
by returning to the user at the terminal. Figure 3 illustrates the model of a
host. The CPU is modeled as a PS (processor sharing) server, which approxi-
mates a time-sharing processor. The disk drive is modeled as a FCFS (first come



e e e e W

first served) server, and both the display output and the user terminals are
modeled as infinite servers (IS) .

A typical process will use the CPU, do a disk access or a display output, use
the CPU again, then the 1/0 subsystem again, and so on, until it returns, after its
last visit to the CPU, to the user terminal. We generally assume that the number
of active terminals is fixed, and that each host can process more than one tran-
saction type. All transactions of a given type have statistically identical
behaviors, and constitute a single chain in the model. Each terminal, in our
model, keeps entering transactions of the same type, but a host can have termi-
nals corresponding to various transaction types.

As far as directories for the distributed file system are concerned, we

assume that each host has a complete directory of all permanent (shared) files,

and that, because of the stability of these files, directory updates are so infre-
quent that the network traffic and the overhead caused by them have negligible
eflects on performance.

4.2. A Model for the File Server

The file server is just a specialized host which has no user terminals, hence,
no display outputs. In reality, a file server can achieve economies of scale by
using high-density disk packs and high-speed disk channels, and distributing the
cost of this equipment over all hosts. Eowever, these considerations are beyond
the scope of the models described here, which are intended to provide first-
order predictions of performance. Figure 4 illustrates the model of a file server.

4.3. A Model for the Local Area Network

The backbone of the distributed system we are considering is the local area
network. This component does not necessarily behave as a FCFS server; how-
ever, this approximation will generally be appropriate when the network is not
heavily loaded. If we make this assumption, the local area network can simply
be modeled as a FCFS server with arrivals from all hosts and departures towards
them.

4.4 Distributed System Models

Models for the distributed systems being studied can be obtained by simply
integrating a number of host models with a local area network model, and possi-
bly with a file server model if required. Slight modifications of the host model
are needed, however. Specifically, in a file server-based model, there is no local
disk drive within each host. All disk drives are grouped together under the con-
trol of the file server’'s CPU. Therefore, a disk 1/0 operation would go through
the network node to the CPU of the file server to access file server's disk drive,
and back through the network node again. Disk 1/0's from all hosts are essen-
tially "remote” accesses, and they must compete for flle access among them-
selves. Remote disk accesses in the distributed file system model are similarly
routed. A remote disk access will go through the network node to the remote
bost's CPU first, then to the remote disk. then to the remote CPU again before
coming back to the local CPU through the network node. A remote access must
compete with processes running on the remote host for both the remote CPU
and the remote disk drive. Note that processes will always return to their
"home" host because of their belonging to the chain that corresponds to their
transaction type, and of the assignment of each transaction type to a single
host. Note also that, if a method were used in the first phase (see Section 3.1)
which assigned transactions of the same type to more than one host, that type
would have to be subdivided into subtypes, each consisting of the transactions of



Pe®d o .

that type assigned to a particular host, and a distinct chain should be used to
model each subtype in the third phase in order to ensure the return of each pro-
cess to its home host after a remote access. Models for these two types of dis-
tributed systems are shown in Figures 5 and 6, respectively.

5. ASimple Example and Its Analysis

5.1. A Simple Example

A simple example has been chosen to illustrate the use of the queuing net-
work models introduced in Section 4. We make the following assumptions about
the models. All hosts have the same number of active terminals, and all termi-
nals are used to input the same transaction type. In the model of a distributed
file system, the probability of remote disk access by a process is the same at all
hosts; furthermore, if the disk access is remote, all other hosts are equally
likely to be accessed.

The characterization of the transaction type we have chosenis as follows :
1) the number of user interactions in a transaction is 47,
2) the total CPU time demand is 16.7 seconds;
3) the number of physical disk accesses for all shared files is 179;
4) the number of display outputs is 217.

We assume that each interaction of a transaction uses on the average the
same amounts of resources. The CPU bursts and the branching probabilities to
disk, terminal, or display server are calculated by assuming geometric distribu-
tions of the number of visits to the CPU. Other important parameters are the
user think time, the disk service time, the network service time, the display out-
put service time, and the file server's CPU service time. They were chosen to be
1 second, 32.07 milliseconds, 0.17 millisecond, 14 milliseconds, end 5 mil-
liseconds, respectively.

Most of the above assumptions were made to reduce the number of model
parameters that could be varied. Three control variables were considered in
this experiment, for both the file server-based model and the distributed file
system model. The total number of terminals ranged from 1 to 386, the number
of hosts in the distributed system was either two or three, and the probability of
remote disk access were either 0.05 or 0.30. Only numbers of terminals that are
integral multiples of the number of hosts were actually used in the experiment.

The experiment was carried out by using the RESQZ queuing network
analysis package [SauB2). We show the response time versus the total number
of terminals in Figure 7, and the total system (transaction) throughput versus
the number of terminals in Figure 8.

5.2. Analysis of the Results

With our approximate models and under all of the assumptions we made,
the distributed file system is better than the file server-based system when the
systemn is less congested, i.e., when the number of terminals is low. The con-
verse is true when the system is sufficiently congested. However, the
differences between the two organizations in our experiment were not substan-
tial, as shown in Figures 7 and B. The cross-over point depends on the probabil-
ity of remote disk access. The lower this probability, the higher the congestion
a distributed flle system can tolerate without losing in the comparison with 2 file
server-based one. Both response time and throughput exhibit this phenomenon.

Results of this type are very useful in configuration design as well as in
choosing a proper flle system organization for a given workload. We can use
these curves to select a minimum configuration that meets the throughput



D 13
. ses s

requirement and also the response time requirement by choosing a suitable
number of hosts. For an existing distributed system, we can also easily check
whether adding a few user terminals can increase the throughput enough to
meet new demands while still keeping the response time below a reasonable
limit.

In the particular system we experimented with, the bottlenecks were the
host CPUs Another experiment was carried out by hypothetically improving
CPU speed by twenty percent in a file server-based system. The results of this
proposed system are presented in Figures 9 and 10. It is interesting to observe
that a 20% improvement of CPU speed may allow the system designer to solve
the performance problem at hand simply by upgrading the CPUs without adding

.2 new host. The tradeof! really depends on the relative costs of CPU upgrading
and of the addition of a new host.

8. Conclusions and Future Research

A metihodology has been presented for the initial design of a distributed
systemn based on a local area network. The methodology can be used also to

. study alternative organizations and design tradeoffs. In particular, it has been

applied to compare two file system organizations. The file server organization
bhas the advantages of being conceptually simple and being able to achieve
economies of scale. The distributed file system organization has the advantage
of being robust against partial system failure. Our queuing network models
attempt to compare the performances of these two different organizations quan-
titatively. As shown by our simple example, the tradeoff depends on the charac-
teristics of the workload, i.e., on the locality of file accesses, and the utilizations
of critical system resources.

Depending on the workload of a given systern, a hybrid of these two file sys-
tem organizations can be considered if there is a clear separation between
heavily shared and lightly shared files. In this case, it may be better to put all
the heavily shared flles in a file server and distribute the rest of them over
hosts.

We have not represented in our models the overhead due to the synchroni-
zation of accesses to shared files. The performance impact of serialization
delays is being studied [Ha¢B83]. It is intuitive to expect that the performance
degradation will depend heavily on the granularity of locks, the amount of shar-
ing, and the possible presence of bottlenecks elsewhere in the system. Models
that reflect the replication of shared files for fast access are good candidates for
future research in this area. The problem of consistency among replicated files
needs to be examined with care.

We have used workload data collected in 2 single-machine system to model
future distributed systems. Although the components of our distributed system
models are validated and widely used in modeling computer systems, we will not
be able to validate the distributed system model as a whole until systems of
such type are constructed in practice. An earlier attempt of this sort can be
found in [Gol83]. Even though the methodology we have outlined is typically per-
tormed off-line, we believe that it can be automated enough to become part of
the distributed system so that periodic reallocation of shared flles can be car-
ried out to reflect major shifts in user behavior. Similarly, reallocation of user
terminals or transaction processes can be employed to balance the load among
various hosts in order to achieve better total system throughput and better
response time.

Acknowledgement



o b

EYY I RKEE)

We would like to thank Mark Hill for his kind suggestions on the preparation of
illustrations.

References

[Bas75]
F. Baskett, K M. Chandy, R. R. Muntz, and F. G. Palacios, "Open, Closed, and
Mixed Networks of Queues with Different Classes of Customers,” Journal of
ACM, 22, 2, April 1975, pp. 248-260.

[Cha75]

R A K Chandra and C. K. Wong, "Worst-Case Analysis of a Placement Algo-
rithm Related to Storage Allocation,” SIAM J. Computing, 4, 3, September
1975, pp. 249-263.

[Cla78]
D. D. Clark, K. T. Pogran, and D. P. Reed, "An Introduction to Local Area Net-
work," Proc. IEEE, 66, 11, November 13978, pp-1497-15117.

[Gol83]
A. Goldberg, G. Popek, and S. Lavenberg, "A Validated Distributed System
Performance Model,” Performance '83, edited by A. K Agrawala and S. K.
Tripathi, North-Holland, 1983, pp. 251-268.

[Hae83] ,

A. Haé, "On the Modeling of Queueing Networks with Serialization Delays,"
Computer Science Division Report, University of California at Berkeley, in
preparation, 1883.

[LeeB3]
T. P. Lee, "Configuration Design of Distributed Systems,” Computer Science
Division Report, University of California at Berkeley, in preparation, 1983.
[MitB2]
J. Mitchell and J. Dion, "A Comparison of Two Network-Based File Servers,”
Comm. of ACM, 25, 4, April 1982, pp. 233-245.

[Sal75]
H. M. Salkin, "Integer Programming,” Addison-Wesley, Reading. Mass., 1975.

[SauB2]
C. H. Sauer, E. A MacNair, and J. F. Kurose, "The Research Queueing Pack-
pge, Version 2 : CMS Users Guide,” IBM Research Report RA 139 (#41127),
April 1882.

[Sch78]
A L. Scherr, "Distributed Data Processing," IBM System Journal, 17, 4, 1978,
pp. 324-343.
[Stuso]

H. Sturgis, J. Mitchell, and J. Israel, "Issues in the Design and Use of 2 Distri-
buted File System,” Operating Systems Review, 14, 3, July 1980, pp. 55-69.






A 4

TTHO—

h I
Disk A 4
Display : E
YTerminal

Pigure 3 A Queuing Model for o Host

3




Disk

ol

Terminsl

A 4

IO

Disk v

———O'{IE—_‘

Terminal

A 4

M"LO_&

WLAI&I‘;HMNMN'WM

\ 4

v

A 4

N“IAI*IJINCWWNMM



a0

[ %]

4.0

5

30

X

18

a8

o.22

o.20

a1

.18

014

| $%

ai1o

a0

] ] i ¥ 1 1
o2 file server with 2 hosts .
€2.05: distribuled with 2 bosis S
(remole sccess prob =0.08) r =
€2.30: distributed with 2 bosls A
(remote sccess prob.z0.30) 4
™~ -
‘o2
* €3 file sarver with 3 hests
IS €3.05: distributed wilh 3 bosls
(W] (remote access prod.=0.0%) -
oy €330 distributed with J hosts
08 gy08 (remote sccess prob.=0.30)
1 i 1 1 | |
[ 12 ! ) 0 »
Pigurs 7. Response Time (sec) Versus Number of Termioals
Througbput in transsctions/sec
H i i | ] 1
-
o
-
o file server with £ hosts
$2.06: distributed with 2 bosts
(retmote sccess prob.=0.05) —d
4230 distributed wnth B boels
(remols scosss prob.=0.30)

a2 fUe server with J hests
€305 @stnibulsd with 3 hosts

(remote eccess prob.=0.05) -
€130 distributed wilh J bosts
(remots wscess prob.=0.30)
1 | 1 1 ]
[} 12 18 M = »

lemm'muhhriw



80

43

40

33

30

t X

0

as

oo

a0

o1s

T

i 1 1 i

o2 flle merver with 2 bosis
&3 file server with 3 hosts
o2CPL20: e with 20% CPU improvement

1 ! ] 1

i 18 L ] 0

figure 0. Rasponse Time (wec) Versus Number of Terminals

Throughput in transactions/sec

4 1 1 i

o file server with 2 bests
o3 fiis server with 3 bewts
oBCPUZD: cf with 20X CPU imprevement

i ] | A

T 18 L E
mxawtv-nmmdm






