Scheduling a Single Machine to Minimize the Number
of Late Jobs

E. L. Lawler

Computer Science Division
University of California at Berkeley

ABSTRACT

Suppose n jobs, each with a specified release date, due date
and processing time, are to be scheduled for processing by a single
machine, with the objective of minimizing the number of jobs that
are not completed by their due dates. Three results, in the form of
two algorithms and one NP-completeness proof, are presented. Our
first result is to show that if release dates and due dates are "com-
patible,” 1. e. similarly ordered, an optimal scheduie can ve found
in O(n log n) time by a procedure that is a natural generalization
of that of Moore for the case in which all release dates are egual.
This result improves on an 0(n?) solution to this problem by Kise,
Ibaraki and Mine. For our second result, no particuar relationsiip
is assumed between the release dates and the due dates and the
schedule is allowed to be preemptive. We show that a schedule
minimizing the weighted number of late jobs can be found in
0(n3 w3) time where W is the sum of the integer weights assignec
to the jobs. If the jobs are unweighted, then in effect W =n and
the time bound reduces to 0(n?%), thereby yielding a polynomiai-
bounded algorithm for a problem for which no such solution pro-
cedure was previously known. For our thiréd resuil, we suppose
that all release dates are equal and that each job has a deadline in
addition to its due date. We show that it is an NP-hard problem to
minimize the nurnber of late jobs (with respect to due dates) while
observing all deadlines. This result resolves an cpen guestion sug-
gested by a result of J. Sidney.

Keywords and phrases: scheduling, single macbtine, release dates,
due dates, deadlines, preemption, dynamic prograrmming, pseudo-
polynomial algorithm, polynomial algorithm, NP-completeness.

This research was supported by NSF Grant MCS78-200534, ad ministered by the
Eectronics Research Laboratary, the University of Califorria at 3erxe.ey.

1. INTxODICTION

There are n jobs, J = L.2....7m, each with a specified release date 7;, due
date d; and processing time pj. to be scheduled for processing by a single
machine that can work on at most one job at a time. The processing of job j
cannot begin before its release date 7. If preemption is not permitted, job j
must be processed continuously for time p;. If preemption is permitted, the
processing of job j may be interrupted at any time and resumed at a later time,
provided that the total amount of time that j is processed is equal to p;. If job Jj
is completed at or before its due date, it is said to be on time; otherwise it is
late.

In addition to the values r;,d; and p;. aninteger weight w; may be specified
for each job. Inthis case, our objective 1s to minirize the sum of the weights of
the late jobs. Otherwise, our objective is simply to minimize the number of late
jobs. (The unweighted case is of course equivalent tow; = 1 for all 7.)

We summarize below previous results which have been obtained for varia-
tions of this general problem. In each case, we indicate parenthetically the
designation of the problem in the notation of [8]. :

() (1T U;) Jobs unweighted, all release dates equal. (Without loss of gen-
erality let r; = O for 2l ;.) Moore [8] showed that this problem can be
solved in O{n log n) iime. Sidney [9] showed that Moore's algorithm
can be extended to the case in which a specified subset of the jobs are
requirec to be on time. Lawler [4] showed that Moore's algorithm can
be extended to the weighted case, provided weights and processing
times are agreeable, i. e. the jobs can be indexed so that
P1<P2<...<Pn and w, = wz =... = Wy,

(#) (l;rj Iz U;) Jobs unweighted, unequal release dates. This problem is
NP-complete in the strong sense, i.e. with respectl to unary encoding
of data. However, Kise, Ibaraki ancd Mine [2] showed that this problem
can be solved in 0{(n?) time, provided release dates and due dates are
compatible, i. e. the jobs can be indexed so that r, <7, <.. <7, and

. d,€dpys...€d,.

(#i) (1iTw; U;) Jobs weighted, release dates equal. This problem is NP-
complete (in the ordinary sense), since there is an immediate reduc-
tion from the (0, 1)-knapsack probiem. FHowever, Lawler and Moore [3]
showed that this problern can be solved within the pseudopolynomial
time bound of O(n#), where W is the sum of the job weights, by an
extension of the well-known dynamic programming computation for
knapsack problems. Moreover, there is no difficulty in generalizing
this result to the cese in wiaich releese dates and due aqaies are
unequal but compatible, in the same sense as [2].

There is no advantage to preemption if all release dates are equal or, more
generslly, if release dates and due dates are compatible. That is, there exists an
optimal nonpreemptive schedule as good as any preemptive one. Eence there is
no point in considering the possibility of preemption in (i) and (iii) above. How-
ever, the possibility of preemption does make a very significant difference if
release dates are not compatible with due dates.

Our first result is to show that the special case of 1:7'1-12 U dealt with by
Kise, et al can be sclved in O(n log n) time by an algorithm that is 2 natural gen-
eralization of that of Moore. This algorithm can be easily modified to deal with
the generalization of Sidney, wut it dces not appear te be extendi le to the case
of agreeabie weights.

-3-

Our second result is to show that thereis a pseudopolynomial algorithm for
the case of weighted jobs and arbitrary release dates, if preemption is permitted
(1lpmtn, r;{Tw; U;). The time bound of this algorithm is 0(n3 #®), which means
that it is truly polynomial bounded, 0(n?®), if jobs are unweighted. It is possible
that this algorithm can be medified to accommodate the constraints of Sidney’s
generalization, but we do not attempt to do this here.

There is a natural further generalization of the constraints of Sidney, as fol-
lows. In addition to a due date d; for each job j. a deadline @ is specified, with
d < dg A job may be completed later than its due date d; (it is then simply
v{ate”} but under no circumstances may it fail to meet its deadline (the
schedule is then infeasible). Sidney's case is then simply that in which either
d; = d; or d; + . Our third result is to show that with the addition of deadlines,
the problem becomes NP-hard in the ordinary sense. It is not known whether
this problem is NP-hard in the strong sense or whether it admits of a pseudopo-
lynomial algorithm.

For the purpose of comparison, we mention some results concerning the
scheduling of parallel machines with the objective of minimizing the number of
late jobs. For two identical parallel machines, the nonpreemptive scheduling
problem is NP-complete in the ordinary sense, even if all release dates are
equal. (Thisis palz U;, in the notation of [6].) For an arbitrary number of m of
identical parallel machines (where m is specified as part of the problem
instance) the problem (PlT U;) is NP-complete in the strong sense. These
results are obtained by simple transformation from PARTITION and 3-PARTITION
respectively. If preemption is permitted and the number of identical parallel
machines is arbitrary, the problem (Plp'm,t'n\E UJ-) is NP-complete in the ordi-
nary sense, as can be shown by transformation from PARTITION [7]. However, if
there is a fixed number m of "uniform” machines (i. e. machines of different
speeds) and the jobs are weighted, the problem (denoted gmlpmtn's w; U;) can
be solved in pseudopolynornial time (0(n? W2) if m = 2 and O(n®™~° we)if m = 3)
[5]. 1f the jobs are unweigihted, these pseudopolynomial time bounds become
polynomial (0(n*) and 0(n3m-1)) respectively).

o COMPATIBLE RELEASE DATES AND DUE DATES

Let us consider the problem of minimizing the (unweighted) number of late
jobs in the case in which release dates and due dates are compatible. We
assurne release dates are nonnegative and that the jobs are indexed so that
r,<rp;<.<T, and dsdz<..<dj. (If the jobs are not so indexed, this can be
done in 0(n log n) time by sorting.)

Call a subset SCN = {1,2,....n] feasible if there exists a schedule for S in
which all jobs are on time. It is simple to determine whether or not a given sub-
set S is feasible by invoking the EDD (earliest due date) scheduling rule:
Schedule the jobs in order of their indices, with each job being performed as
early as possible (subject to its release date and the completion of the previous
job). S is feasible if and only if all jobs in S are on time when scheduled in this
way.

Observe that if a job is late, it makes no difference how long its processing
is postponed. Hence an optimal schedule can be assumed to consist of a feasible
subset of jobs S that are processed in EDD order, followed by the complemen-
tary set of jobs N—S that are processed in any order. Our problem thus
reduces to that of finding a maximum feasible set SCN.

Let CY) (k) denote the earliest completion time for any feasible subset ol
size k contained in {1,2.....j}. (If no feasible subset of size k exists, let
CY) (k) = + =.) We define

0 ifk=0
0) /1) =
ct \k)"{ « otherwise

For j = 1,2....,n we have the recurrence relations

.'Cm(k) ‘ if mazir;. C (k-1)} + Pj+1 > Lin1 @1)

cori k) = {miniC'(’)(k). maz {r;,, COk-1) + pj1} otherwise

Equations (2.1) are easily justified and should require no explanation. These
equations can be solved, for all J and k, in O(n?) time. A maximum feasible sub-
set of N contains k ° jobs, where k* is the largest value of k such that C™) (k) is
finite. :

Note that recurrence relations (2.1) are easily modified to solve the prob-
lem for weighted jobs in O(nW¥) time. Let CY) (w) denote the earliest possible
completion time for a subset of weight w, and replace
ci*d(k), cU)(k), €9 (k-1) by CU*) (), €9 (w), CU)(w —w;4y) in (2.1). The
resulting equations are effectively a generalization of those in 63]

Now let us consider how to reduce the bound on the running time from
0(n?) to O(n log n). For given j, let k’ denote the smallest value of k such that

i)(k) > r; and k" denote the largest value of k£ such that cU) (k) is finite.

Lemmal Foralj, 0<j=sn,

cY (k' +1) - CV (k)= CY (k) -y
Ci (k +1) = CU) (k)= cU (k) - cU) (k -1), fork' <k <k"

Proof: By induction. The lemma is true for j = 1. So assume it is true for 7.
Let [be the smallest value of k such that

cUl{k) > maz ier,CU)(k -1)] >DPjs:-

It then follows from (2.1) that

. cY) (k) for k <1
cU*V (k) ={mu fr;01.C9) (k=1)} + pjay, for k=1 (22)

It is then easy to establish that the lemma is true for j + 1.

Lemma2 Forallj, 0<j=<mn,there exists a tower of feasible subsets

2 = S¥(0) c SW(1) c...c SV (k") c§1.2.....3 3,

-5-

where SU) (k) contains k jobs, and SYY (k) is completed at time cYl (k) when
scheduled by the EDD rule. Moreover, if
SO (k) — SU)(k —1) = fi(k)}, for 1=k <k", then _

COM k') — 15 < Pige)
) (k) — CY)(k =1) = pyx). fork' <k <k

Proof: By induction, similar to that in the proof of Lemma 1. From (2.2),

SsU (k) for k <1

G+1) =)
Su* (k)"{sb)(}c—-l)u{j-*-l; fork =1

It is then easy to establish that the tower exists for j + 1.
_ As Dbefore, for given j, let k' denote the smallest value of k such that
) (k) > r; and k"' denote the largest value of k such that €U (k) is finite. Let
S0 = 5W (k') - S (k' =1).

and suppose that py has been reduced in value to CU (k") —7;. We shall now
show how to construct 5U+D from SU).

Let SW = §i(k"), i(k'+1),...,i(k")}, where

Pige) < Pifer+1) = o0 S PG
Note that

COV (k) =75 + Py + -+ Pugy for k' <k <Kk"
So if there isan ', k'=<1' <k" such that

Dige) -+ Pig-1) S Tie1~ T <Pik) +...+ By
then we reduce p;(;) to

D) = Puey T TP T (rje1 =75
and we shall have

CY (k) = Tjuy + Prgy +-- + Pugey fOr b'< k <k’

-8-

Accordingly, we remove jobs from SY) in nondecreasing order of procesing times
until either SY) is emptied or until job i(l') is identified. The processing time of
job i(l') is reduced as necessary. (Jobs i(k"),....i{l'—1) will be contained in the
maximum feasible set we shall construct, and we store them away in a set we
designate S'.)

For notational convenience, let p(S) = Z;es pi ., for any set SCN. If now

74 + PSPV +1)) = dju,
we are done; SU+D = SWU{j +1]. Otherwise, we remove from SUYus + 1) ajob

with maximum processing time to obtain SU*.
Consider a small example with seven jobs:

ilrm o d p
170 4 3
2 2 4 2
e o o
4!5 9 1
5!6 i2 3
6 7 12 2
7!8 13 1

The algorithm proceeds as follows.
Jteration 1: SM={1], 5 =@.
Jteration 2 Since 7,-7,=2,p; Is reduced from 3 to 1. Since
ra+p(SMU2})>dy and pp=maz fp, i€ SM U2}, we have S®={1] and
S'=4a.
Jteration 3 Since p, = 1<r3—7 = 2, We remove job 1 from S® and place it in
S'. We now have S® =9, 85 ={1]. Since rs +p(5®ui3]) =< ds, we have
5@ = §3}.
Jteration 4 Since r,~rg=1<p3=4, Wwe reduce pg to 3. Since
ro+p(S®ui4})=d, we now have SW = 3,4}, 5" = {1}.
Jteration 5 Since rg—7,=1=p,=min ,;';i € S©®)}, we remove job 4 from s,
giving S® = {3}, §' = {1. 4. Now r5+p(S@®U{5}) = ds, 50 we have S®) = §3,51.
Iteration 6 Since 7¢—T5 = 1<p3 =min zp.;f'i € S®]}, we reduce pg from 3 to 2.
(We could equally well reduce ps.) Now rg+p(SGIU{B])>ds and
ps = maz {p;li €S U 6], so we throw job 5 away yielding S® = {3,6}. S’ = {1.4.
Iteration 7 Since r;—Tg= 1<p? =2, we reduce p; to 1. We now have
v+ p(S® U{7}) <dy so we have ST/ = {3,8,7}, with 5" = {1,4].

It thus follows that a maximum feasible subset for our example is
SMyS' =§1,3,4,6,7}. Afeasible schedule for this set is indicated in Figure 1.

-7-

An Algol-like program for the algorithm is given below. Notational conven-
tions are as follows: The superscript is dropped from sU). The variable p
denotes p(S(J)). We assume 7, = 0. We let "arg min Qphlh €S{" denote the

index i such that p; = min {pnlh €S]3.

begin

S:=0;

S5:=0.

p:=0

forj:=1lton

dorT:=7; —Tj-1
whilep >0 andr >0
doi:=arg min {pnlh € S}

if r = p; then
S:=5-{i};
S:=S'uli:
P:=p —Pi:
TI=T—D;
else
Pii=pi—T
p:=p-—T,
r:=0
fi
od
S:=5Suijl
P:=p +pj

if r; +p >d; then
i: =arg maz tprn!h €S
S:=8-{i};
P:EP D
fi
od
end

Note that initial sorting of jobs by release dates and due dates can be car-
ried out in O{n log n) time. The maximum or minimum of S must be found no
more than O(n) times. It is a straightforward matter to devise a data structure
which supports the operations MIN, MAX, INSERT, and DELETE with at most
0(log n) time per operatior. Accordingly, the overall running time is bounded
by O(n log n).

Note that if release dates are equal (and can be assumed to be zero), the
while loop is inoperative and the procedure reduces to that of Moore [4, B].

Finally as in Sidney [9], suppose that a certain subset of jobs T C N are
required to be completed on time. This constraint can be dealt with as follows.
Assume T is a feasible set. (If not, no feasible schedule exists). Then replace "if
Ty +p>d; then..."” with the while loop below: :

.
°

while T +p >dj

do 'i:=m'gm.a.x{ph'h.ES—T§;
S:=S -l
pi=p-pi

od

Justification is left for the reader.

3. PREEMPTIVE SCHEDULING WITH ARBITRARY RELEASE DATES

We now consider the problem of minimizing the weighted number of jobs,
when preemption is permitted. We assume no particular relationship between
release dales and due dates, but assume the jobs have been numbered in order
of due dates, d; <d,< .. <d,. Let W = Y = w;.

J

Our task is to find a feasible set S ¢ N for which the sum of the weights of
the jobs is maximized. As in the previous section, it is simple to determine
whether or not a subset S is feasible. The EDD rule is applied preemptively: At
each successive point in time, process the available job with least index. (A job
is "available" at time ¢ if t 2 r; and its processing has not yet been completed.)
The resulting schedule naturally decomposes into blocks, where a block < S is
defined as a minimal set of jobs without idle time from T(B) = min;ep {r;} until
t(B) = r(B) + p(B). such that each job j £ B is either completed not later than
r(B) or not released before ¢t (F). For this notion of block, see also [1].

Let ¢U¥w,r) denote the earliest possible completion time for a feasible
subset B £{1,2,....5 such that

(i) LkepWe =W
(@) r(B)=r
(#) B is scheduled as a block by the EDD rule.

Let PUY(w,r.t), where r is a release date and ¢ is either a release date or +e,
denote the minimurn total processing time for a feasible subset Sciiz,...j}
such that

(’i) 2 W =W
k€S
(@) r(S)=r
(#i) alljobs in S are completed by time ¢t when scheduled by the EDD rule.
Let
T ifw=0
C{w,r)={r,+p;, Hw=w,7=7
+ = otherwise
and
0 ifw=0

PN (w,r.t) ={p, fw=zw,rsr,txr +p;
+ oo otherwise

nl

-9-

Now suppose we are given C‘U;)(w.r) and PU)(w,r,t) for all w,r,t. How do we
compute CY*V(w,7) and PU+(ay 7, t)?

First consider the computation of cU+V(w,r). Let B cil2,...j+1] bea
block of weight w such that 7(B8) =7 and ¢(B) = CY*Y(w,r). We distinguish
three cases:

Casel: j + 1£B, in which case cU+Nw,r) = CO(w.r).

Cose2: j+1€B,.7r=7Tjy and job j + 1 is processed continuously after a
(possibly empty) subblock Bg € §1,2,...,j}, as shown in the upper part of Figure
2. (The shaded portions of the figure indicate processing of job j + 1.) The
weight of Bg is w —wj4; and By finishes at time CYNw —wjuy, 7) 270 (with
strict inequality if w — wWy4 > 0), else B isnot an optimal block. In this case,

CON(aw,r) = CONw —wje,7) + Pja1 < djny

Case3: j+1€B,r =<7, and job j + 1 is processed after a (possibly
empty) subblock Bg with preernptions for subblocks B, .Bz....B;, where s > 1
and B;c{1.2....7},1 =0.1,..s, as shown in the lower part of Figure 2. Let
w'€w - wj,; be the weight of By, W' s w —w' — Wiy be the weight of B,, and
let B, begin at time 7. Then B finishes at time C‘é)S (w',) = 14 (with strict
inequality if w' > 0) and B; finishes at time CY) (w", r"), else B is not an optimal
block. Subblocks B;.....Hs- have total weight w —w' —w" — Wy and total pro-
cessing time PO (w -w =w' = Wi, T r"), where r' is the earliest release
date not earlier than cY) (w',r), else B is not an optimal block. Moreover, it
must be the case that

-V (wr) = PO (r —w' - W' - Wy, 7)) <Pj+1.

else B is not a block. It follows that in this case

CU+Y (w,r) = CUN(w'r) + PO {(w —w' —w" - Wiy, TNT)
+ (CO(w" ') —1") + Pjs1 = djn,

These observations can be summarized as follows: 1f 7 > 7)), then

cU+V (w,r) = ¢ (w,r).

fr=<ri,

cY+) (w,r) = min {CcY(w,r), Ca Csl. (3.1)

where

CY) (w —wje1.T) + Pysns ifrj4 < O (w —wjs1.7) < 4541 —Pin
Cz= + o, otherwise

-10-
and
Cs = min $C9 (w'r) + PO (w —w' —w" —wj,, 7)) + cUl(w',7') =71"] + Dj+1.

where the minimization is taken over all combinations of w',w'" and 7' such that

(1) w+w +twj,=w

(i) CY)(w',r) =744, with strict equality ifw'>0,

(i) CcY(w,r)<r", and

(w) 7 -pjn< cW) (w',r) + PU (w —w' - — Wi, 7T
. 51‘" —pJ"‘l - C(j)(‘w".'l‘") + dj+l,

and where 7' is the earliest date not earlier than CU)(w',r). If there are no such
w',w" and 7' then g = + =

Now consider the computation of PUN (w,r.t), given
i+ (w,r), P9 (w,r,t), for all w,r and £. We first note that if r > 7, or if
t <7, then Py (w,r.t) = PU)(w,r.t). This follows from the fact that if
j + 1€ S, then the processing of j + 1 will not occur between 7 and t. Moreover,
% w=0 we of course have PY*(wr.t)= P (w,r.t) =0. So suppose
w>0,r=s7 <t An optimal set S must contain a final block B. Letr’' <t be
the time the processing of this block begins and let w’' be its weight. This block
is completed at time CU+D(w'r’)<t, and has total processing time
Cli*d) (w',r') — 7', else S is not optimal. Moreover, the blocks preceding B must
have total weight w — w' and total processing time PU*V (w —w',r,7'), else S is
not optimal. It follows that

PUD (w,r) = min (PUHD) (w —w'r.r) + U+ (w'r), (3.2)

where the minimization is taken over all r'<t, w=w such that
CU+V (w',r)<t. If the computation is carried out for increasing values of ¢ in
an outer loop and increasing values of 7 in an inner loop, previously computed
values of PU+D are available for the right hand side of (3.2).

The solution to the scheduling problem is given by the largest value of w '
such that P(™ (w,r, + =) is finite, where 7 = min {7, Ta.....Tn}. (In the accepted
tradition of dynamic programming, we content ourselves with the computation
of the value of an optimal solution, leaving it as an exercise for the reader to
note that it is possible to actually construct an optimal solution by these tech-
niques.)

Finally, we consider the computational complexity of this procedure. There
are o(n?w) equations (3.1) to solve, since
j=12..mn-1L0sw<W 1€ {71 Tar..nTn}). Each egquation requires 0(n#?)
operations, since 0 < w<W 0sw sW. rejr, To...Tp}, in the computation
of Cg. Hence 0(n? #?) time is required for equations (3.1). There are o(n3w)
equations (3.2) to solve, since
j=12.n -1 0=sw= W, r€ir, Ta..Tnls £EIr Ton.. . T UL+ . Each
equation requires O(n#) operations, since rEir, T Tn), OSwW S W, Hence
0(n*#? time is required for equations (3.2). Noting that # =n, we conclude
that the dynamic programming computation requires O(n3#3 time and o(n3w 2
space. In the unweighted case, witn # = n, this reduces to 0(n®) time and o{n*
space.

-11-

4. NP-COMPLETENESS OF DEADLINE PROBLEM
We shall now show that the following problem is NP-complete.

SCHEDULING WITH DUE DATES AND DEADLINES

nstance: (i) n triples of positive integers (pj .d; .d;) specifying jobs,
where d; is the due date, d; is the deadline, and p; is the processing time of job
4, for j = 1,2,..,n. (ii) a positive integer k < n.

Question: Can the jobs be scheduled for processing by a single machine so

that all jobs are completed by their deadlines and at least k of the jobs are on
time, i.e. completed by their due dates?

Note that SCHEDULING is clearly in NP. We can determine whether or not
there exists a feasible schedule in which a specified subset S of jobs is on time
by applying the EDD rule: Schedule the jobs in order of the values §;, where
6;=d;ifj €5 and §; = d; otherwise. There exists a feasible schedule in which
each job in S is on time, if and only if each job j is completed by time §; in this
schedule.

We shall exhibit a polynomial transformation from PARTITION: Given t posi-
tive integers a,, @z,....0;, where Zcz,; = 2b, does there exist a subset S such
that Zﬂs a; = b? For a given instance of PARTITION, we shall create an instance
of SCEEDULING withn = 4t jobs and k = 2¢f.

As a preliminary, consider an instance of SCHEDULING with 4t jobs, which
we give the indices j =1,1 + £, i+ 2t,1i+ 3t, for i = 1,2.....t. For these jobs we
specify processing times, due dates, and deadlines as indicated in the table
below:

J P d; d;

i 2i-1 |21 g+

i+t || 27! 2t -1 P,y + 271 4 201

I
|
|
!
i+2t || gt+i-l ot+ _1q ! P+ ot +i-1

i43t | 2tvic1 | ptvioy | P 42Tt 4200

The deadlines are defined in terms of F;-,, where by definition

P‘_-] - 2 (2!+k—l + 21:—1) + ‘i‘ (2t+k—1 + zk-l)
k=1

k=1

=2t (2t —1)+ 28 -1+ 2 (2271 -1+ 2i-l 1

Notice that for a given value of 1 there are two "short” jobs 1,1 + ¢t and twe
"long” jobs i + 2t,1 + 3t. We make the following observations:

(1) There is no feasible schedule in which both i and i + ¢ are on time, since

p{“"p\'-ﬂ=2i-1+2i_1=21:>2i—1=di=di+t.

-12-

(2) Similarly, there is no feasible schedule in which both 1 + 2f and i + 3t are
on time. ‘
(3) Consequently, there is no feasible schedule with more than 2¢ on time jobs.
(4) There is no feasible schedule with 2¢ on time jobs in which both i+t and
i + 3t are on time. (If there were such a schedule in which both i + ¢ and
4 + 3t were on time, then (i) either i or © + 2¢ would fail to meet its dead-
line or (i) some other job would fail to meet its deadline.)
We are now ready to present the transformation from PARTITION to
SCHEDULING. For each number a;, create four jobs, as indicated in the table
below.

j | p; d; | d;
i 2IM + o (-1)M + b (Pio, +2VY)M -
i+t || H (-1)M + b (P #2071+ 2%)M - b
i+2t || 2N @ -1)M+b | (P ¥ Rt+-1)M - b
i+3t || 21 H —2q \ (-1 M +0b ‘ (P, + 2L+ 22V)M —-b

Important ezception: For i =¢, let dipps = digsy = (2% —1)M —b. (l.e.
mninus b instead of plus b.)

In the table above, M represents a suitably large number. (It will turn out
that we can let M = 3b.) Multiplying values p; .d; .dj by M does not affect the
validity of observations (1) - (4) above. What we must be concerned with is the
effect of perturbing the multiplied values by + a; , — 2a;,+ b and - b.

We assert that if there exists a feasible solution to PARTITION then there
exists a feasible solution to the corresponding instance of SCHEDULING in which
2t jobs are on time. Suppose S is such that ZiES a; = b. Then construct a
schedule in which jobs i, 1 + 3t are on time ifi € S and i + t, 1 + 2t are on time
if iz S. Note that the sum of the processing times for the t jobs wherei, 1 €5,
and i + t, where i£S, is (& -1)4 +b. Moreover these jobs can all be com-
pleted on time by scheduling them in due date order at the first of the schedule.
The sum of the processing times for the t jobs i + 3t, where i € S, and i + 2¢t,
where i£S, is 2! (28 —1)} -2b. These jobs can all be completed on time by
scheduling them in due date order, after the first ¢ on time jobs. The sum of the

processing times for the first 2t jobs is then
(2t -1)M +b +2 (22 -1)if —2b = (2% -1)M - b,

which is precisely the due date divot =i+ specified by our exception for the
case i = . The remaining & jobs can all be scheduled, in deadline order, to

meet their deadlines.

Now suppose there is a feasible schedule with 2t on time jobs. We have
already observed in (4) that, because of the structure of the deadlines, jobs
i + t and i + 3t cannot both be on timne, for any i. We now assert that, because
of the perturbation of the due dates by g, and —2a;, jobs i and i + 2t cannot
both be on time. Let S; denote the set of indices 1 such that i + kt is on time,

-13-

for k£ = 0,1,2,3. Note that
|5o US: =15, USs!=t.

which implies that

A)
Y b,
i€5,

and that

z a.,;—22 a<-b,

iESQ iESa

from which

Z g, =b
€S,

follows. But there is no pairi +¢,1 + 3¢ on time, since we have ruled this out in
(4). Soif there is any pairi, i + 2t on time, then we must have

Y a; <b,

€5,

a contradiction. 1t follows that the only on time pairs are either 1,1 + 3t or
i+t,1+2t,sothat Sg=3Ss and we must then have

Za.i=b.

i€5g

This shows that if thereis a feasible schedule with 2¢ on time jobs, then there is
a feasible solution to the instance of PARTITION.

(1]

(2]

(3]

[4]

(5]

(6]

(7]

8]

(8]

- 14 -

References

K R Baker, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, "Preemptive
scheduling of a single machine to minimize maximum cost subject to
release dates and precedence constraints,” Oper. Kes., to appear.

H. Kise, T. Ibaraki, H. Mine, "A solvable case of the one-machine schedul-
ing problem with ready and due times," Oper. Res., 26 (1978) 121-126.

E. L Lawler, J. M. Moore, "A functional eguation and its application to
resource allocation and seguencing problems,” Management Sci., 18
(1969) 77-84.

E. L. Lawler, ""Sequencing to minimize the weighted number of tardy jobs,”
RAIRO Rech. Oper., 10.5 Suppl. (1876) 27-33.

E. L. Lawler, "Preemptive scheduling of uniform parallel machines to
minimize the number of late jobs,” Report 105/79, Mathematisch Cen-
trum, Amsterdam, May 1979. :

E. L Lawler, J. K Lenstra, A. H. G. Rinnooy Kan, "Recent developments in
deterministic sequencing and scheduling: a2 survey,” in Deterministic and
Stochastic Scheduling, M. A. H. Dempster et al. (eds.), D. Reidel Publ. Co.,
1982, pp. 35-73.

E. L. Lawler, "Recent results in machine scheduling theory," Proc. XI
International Symposium on Mathematical Programming, to appear.

J. M. Moore, "An n job, one machine sequencing algorithm for minimizing
the number of late jobs,” Management Sci., 15 (1968) 102-108.

1. B. Sidney, "An extension of Moore's due date algorithm,"” in Theory of
Scheduling and its Applications, S. E. Elmaghraby (ed.), Lecture Notes in
Economics and Mathematical Systems 86, Springer, Berlin, 1973, pp. 393~
398.

