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ABSTRACT

We describe an interval arithmetic algorithm for solving a spe-
cial class of simultaneous linear equations. This class includes but
is not limited to systems Az =5 where Aand b have integer entries.
The algorithm uses fixed point arithmetic, and has two properties
which distinguish it from earlier algorithms: given the absolute
accuracy ¢ desired, the algorithm uses only as much precision as
pneeded to achieve it, and the algorithm can adjust its own parame-

ters to minimize computation time.

Wir beschreiben einen Intervalalgorithmus, der eine gewisse Klasse
von linearen Gleichungssystemen 13st. Diese Klasse enthilt u. a.
Systeme Az==, bei denen A und b ganzzahlige Komponenten
haben. Dieser Algorithmus verwendet Festpunktarithmetik und
unterscheidet sich von friheren Algorithmen wie folgt. Erstens: Bei
Vorgabe der gewdnschten absoluten Genauigkeit ¢ des Ergebnisses,
bendtigt der Algorithmus nur so viel Zwischengenauigkeit wie
notwendig, um die Fehlerschranke ¢ zu erreichen. Zweitens kann
der Algorithmus selbststeuernd seine eigenen Parameter dynam-

isch 3ndern, um die Rechenzeit zu minimieren.

AMS classification: 65G10 (primary), 65F05 (secondary)
Keywords: systems of linear equations, interval arithmetic, fixed

point arithmetic
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1. Introduction

In this paper we describe an interval arithmetic algorithm for solving a spe-
cial class of systems of simultaneous linear equations. This class includes but is
not limited to systems Ax=b where A and b have integer entries. (Capital italic
letters denote matrices and lower case bold letters denote vectors.) The algo-
rithm uses fixed point arithmetic where the precision may be chosen by the pro-
gram. Our algorithm has two properties which distinguish it from previous

interval linear system solvers:

(1) Given the absolute accuracy ¢ desired in the solution, the algorithm uses

only as much precision as needed to achieve it.

(2) The algorithm can adjust its own parameters to minimize computation
time.

Our research was motivated by ongoing work in Petri nets [1] at the
Gesellschaft fir Mathematik und Datenverarbeitung?®. Several decision problems
in Petri nets can be reduced to deciding if a particular linear system Ax=d with
integer A and b has a nonnegative integer solution vector [2]. By solving Ax=d
with absolute accuracy e¢<li, Wwe produce an interval vector x such that
A 'b=x €x and the width of each component interval z, is less than 1. Thus at
most one vector x; of integer entries can lie within z, and by testing to see if x;

is nonnegative and satisfies Ax=b, we may answer our decision problem.

By properly scaling we may convert the Hilbert matrix H,, =1/ (i+j- 1) to a
matrix of integer entries. The Hilbert matrix is well known to be very ill-
conditioned for inversion |3}, and so provides a good test case for our algorithm.
We will present numerical results later in Section 5. Needless to say, any prob-
lem Ax=b where A and bhave rational entries can be scaled so they have integer

entries.
Our assumptions and limitations in this paper are as follows:

(1) Our wunderlying arithmetic delivers results of the operations

add/subtract and multiply to within an absolute precision chosen by

the program (the program will choose the precision once at the begin-

ning of the computation and not change it). Thus addition/subtraction

may be performed without rounding error if the precision of the result
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is no smaller than the precision of the operands. Fixed point arith-
metic has these properties, and for our pumerical tests we used a vari-
able precision fixed point format (see section 5). This requirement
implies that we can compute inner products to a given absolute accu-
racy.

(2) We consider only problems Ax=b where we can find an approximate

(nonsingular) inverse matrix B of A with the following properties:

2.1 The matrix R =I[- BA and the vector e =Bb are exactly

representable (i.e. without roundoff) in our number system.

2.2 ||R||o=max ), |R,| = max-row-sum norm <1.
Yoy

Condition 2.1 holds if A and b have integer entries because if we round
B to fit in our fixed point number system (and if integers are exactly
representable) then we may then compute BA, [-BA, and Bb without
error by assumption (1). Condition 2.2 is needed to guarantee that
|R | is a contraction, that is |R|"—0 as n —ca Acondition similar to 2.2
is required for convergence by virtually all interval arithmetic algo-

rithms, as we will discuss below.

We do not care how B is computed. It may, for example, be computed using
standard floating point library routines and then rounded to fit in our fixed point

format.
The benefits of these assumptions are the following:

(1) The condition number of the problem ( || A|l o |l A7*|| o) does not deter-
mine the limiting accuracy of the algorithm. The condition pnumber will
determine if we can find an approximate inverse B so that R =I-BA
has norm less than 1, but as long as we can find such a B, we can com-
pute A-'b to as much absolute accuracy ¢ as desired (limited, of
course, by the accuracy available in the underlying arithmetic). This is
in contrast to other interval arithmetic algorithms using a fixed, prob-
lem independent amount of precision in which the accuracy achievable

degrades as the condition number grows |5, 6].
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(2) We may decide abead of time (that is after computing B, R, and ¢ but
before starting the algorithm proper) exactly how much precision we
need to use to achieve the desired accuracy €. In fact, there are some
parameters in the algorithm which may be chosen to minimize the pre-
cision needed as a function of || R|] »and €. By tuning the algorithm to
the problem this way we can save time and possibly memory il a vari-

able width fixed point format is used.

Let us put this algorithm into historical perspective. Almost all interval
linear system solvers, including ours, convert the original problem Ax=d into an

iteration of the form
X1 =Rx,. +c (1)

for some matrix R and vector e. In our case we obtain (1) by multiplying Ax=b

by B on both sides and adding Rx to both sides to obtain the equivalent system
x=Rx+c¢ (2)

(equivalent, that is, 28 long as B is nonsingular). Anecessary and sufficient con-
dition in exact arithmetic for the intervals x, defined in (1) to converge to the
solution x of (2) for any X is that |R | be a contraction, that is that every eigen-
value of |R| be less than 1 in absolute value. In practice we use the sufficient
condition that some norm of |R| be less than 1 (in our case we use the max-
row-sum norm for reasons that will be clear later), and indeed all iterative linear
equation solvers make such an assumption explicitly or implicitly, even il the

form of (1) used is slightly different {7].

A general linear system solver does not assume that R and ¢ can be com-
puted exactly, as we do. Thus, in general, they are intervals. The width of c is 3
lower bound on the width of all x4 4. Typically, the width of the intervals in R
will depend on the condition number of A [6]. Thus, the width of x4 41 will depend
on the condition number of the problem, and, it turns out, of the size of the solu-
tion x itself. Wongwises [5] shows that naive use of (1) does indeed produce solu-
tion intervals whose width is proportional to the condition number of A, 2 perfor-
mance limitation shared by Gaussian elimination without any iterative improve-

ment at all. Cleverer use of (1) can deliver the answer to an accuracy equivalent
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to roundoff error in the largest components of the solution in most cases, but
there is still a decline in accuracy as the condition number of A gets too large
|6, 8]. This inescapable dependence of accuracy on condition number is
reflected in our algorithm by requiring higher precision to be able to deliver a
desired accuracy € if || R||is close to 1, but by assuming R and ¢ to be exact,
we eliminate the complicated dependence of the achievable accuracy on the size
the answer (which we do not, after all, know ahead of time) and on the width of
the intervals in R and e. In fact, the proof of our algorithm exploits the ease of

determining the width of x4 41 from x,.

As a final historical comment, we note that almost every iterative interval
algorithm has assumed that the initial interval vector Xo contains the solution,

and then iterates as follows:
X, 41 =(Rx, +c) X - (3)

xo is often determined by using a very coarse approximate interval inverse
matrix guaranteed to contain the actual inverse of A, and then multiplying this

matrix by b |5, 6]. This kind of iteration is shown in Figure 1.

Our algorithm, in contrast, makes no assumption about the accuracy of xq,
but only about its width. Our algorithm works by taking an x, of width less than
¢, artificially expanding it by adding a carefully chosen constant to the right
endpoints and subtracting it from the left endpoints of each component interval,
and then contracting this expanded interval using (1) several times to generate
aD X, 4 also of width less than ¢. This kind of iteration is shown in Figure 2. This
artificial expansion combined with the contraction (1) guarantees that the solu-
tion x eventually lies in some X,. The algorithm terminates when x,, lies within
the expanded version of X,. Choosing the parameters such as precision, how
much to artificially expand x,, and how many times to repeat (1) to guarantee
both span(x,4 ) <¢ and that the algorithm terminates precisely when it has

found the solution constitutes the proof of the algorithm, given in Section 3.

This expansion technique is also used by Rump [9]. He expands his inter-
vals by a certain fraction of their size, where he determined the fraction empiri-

cally as the one which gave best convergence [4]. We must choose the amount
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by which we expand subject to mathematical constraints given below; this care-
ful choice of expansion leads to the guaranteed performance described in the
theorem below. Our algorithm also differs from Rump’s in its restriction to
integer problems and its exploitation of variable precision arithmetic, using only

as much precision as required to solve the problem to the required accuracy.

We have not attempted to compare our algorithm to other ones designed
specifically for solving integer problems, since these algorithms may operate on
entirely different principles than seeking a contraction and iterating with it.
Integer Gaussian Elimination [10], for example, consists of a triangular factori-
zation of A scaling the factors to keep them integer and exact. The forward and
backward substitutions can also be done exactly by scaling. Alternatively, one
may solve Ax=b in modular arithmetic using several relatively prime moduli,
and retrieve the solution using the Chinese remainder theorem [11]. Our inten-
tion in this paper was to explore the benefits of taking a standard interval arith-

metic approach and tuning it for integer problems.

In Section 2 we define our notation, in Section 3 we state our algorithm and
prove it has the stated properties, in Section 4 we show how to choose certain
parameters of the algorithm to minimize the computation time, and in Section 5

we present numerical results.

2. Notation

F, denotes the set of fixed point numbers {nd: n is an integer and 4 is
the distance between adjacent numbers} over which we perform our computa-
tions. Typically d will be 1 over a power of the radix (e.g. 1/ 2’ or 1/ 107). We
assume that 1/ d is an integer so that that the integers are exactly represent-
able in F;. I, denotes the set of intervals over F;. Scalars in F, and I, will be
represented by lower case italic letters. w €l can be represented w =|w,T]
where w , T€EF; and w <. The span of an interval w is span(w) =" - w.
F; ,F}™ 1}, and 1J'™ denote n-vectors and n by m matrices over F, and | P
Vectors will be written as lower case bold letters, and matrices as capital italic

letters. If weI}, then span(w) =max span(w,), and similarly for span{R), REI;™.
]

All quantities will be assumed to consists of intervals, unless we wish to
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emphasize that a certain variable is a point interval, i.e. an interval of span zero.

Such variables will be written with a point over them, like R and é.

% will denote the solution of bz =R bz +€.

|| x|| © will denote the infinity norm of the vector x:

HmeEm?xlz,l

and || R|] o will denote the matrix norm induced by this vector norm, the max-

row-sum porm:

| R Es‘l;g l%%%;=mlax Y IR, |

The definitions of addition, subtraction, and multiplication of intervals can
be found in the literature [12]. Since we are interested in controlling the amount
of precision used in our calculations, we use a notation for interval arithmetic
which explicitly displays the precision: int(’expression‘,d) denotes the result of
evaluating the ’expression’ in interval arithmetic over I,. In our application
'‘expression’ will only contain additions, subtractions, and multiplications, so
since we are assuming unbounded range in F,, the value of 'expression’ is always
well defined. 'Expression’ may contain scalars, vectors, and matrices. If 'expres-
sion’ is a single variable, the operation int(’expression’,d) only involves rounding
outward.

We will need one more piece of notation to denote the artificial expansion of

an interval mentioned above . If w =[w , w)€l;, then
roundout(w,d,r) =[w - rd , T + rd] €l

r is the integer number of interpoint distances d to round out.

3. The Algorithm

The algorithm is as follows:
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4.1 Inpute,c, R, xo (span(xo) <eandn is the dimension of R)
42 Compute parameters m, 1, d, and ¢ according to the theorem
4.3 i =0

4.4 repeat

4.5 i == +1

4.6 w:=roundout(x,_,, ¢, d)

4.7 X, =W

4.8 for j :=1 to m do

4.9 x, :=int(int(R x, + ¢, de), d)

4.10 wuntilx, Cw

4.11 Output x,

The subscript § is only needed for stating the theorem below; x, may be
written over X,4;. Ihe expression in (4.9) indicates that Rx, 4+ ¢ is to be com-

puted in I, (¢ <1) and the result rounded out to fitin ;.
The parameters m, ¢, d, and ¢ have the following meanings:
d determines the precision (Fg) in which we will represent our data (R, ¢,
and x),
¢ is the extra precision used to compute the inner products in (4.9) (¢
means F,, is at least as precise as Fg; if d is a power of the radix (e.8.
(1/2) or (1/10)’ for some integer j) then we may also take ¢ to be a
power of the radix,
¢ (integer) determines by how many units of d we round x,_; out in (4.6),
and
m (integer) is the iteration count in (4.8).
The following theorem describes how the algorithm works.
Theorem: Given an arbitrary ¢>0, an arbitrary starting vector X (such that
span(xo) <€), R ( such that r =||R || o <1), and &, it is possible to choose the
parameters d, ¢, ¢, and m so that the algorithm generates a sequence of inter-

val vectors {x,} with the following properties:
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(5.1) span(x,)<e for all i. Thus, as soon as we know X€Xx,, X, is our answer.

(5.2) x€x, must occur for some finite i. Thus, the algorithm must eventually
find x.

(5.3) x€x, implies the algorithm terminates on the next iteration. Combined

with property (2) above, this property means the algorithm is finite.
(5.4) If the algorithm terminates, the final x, must contain X.

In short, it is possible to choose the parameters to compute an arbitrarily
narrow interval vector X, containing the solution x. In addition, we will see how
to choose the parameters to minimize the cost of computation in 2 problem

dependent way.
Proof: More succinctly, the four properties above are:
(5.1') span(x,) <e¢ —span{x,41) <¢,
(5.2) x € x, occurs for some finite i
(5.3') x€x, »x,41CW and
(5.4') x, Cw—x€x,.
We will prove the four properties in the order 5.4/, 5.2/, 5.1/, and 5.3 5.4'is

an application of Brouwer’s fixed point theorem [13] standard in interval

analysis, and 5.2’ is an application of the contraction mapping theorem.

We will then derive two inequalities in the parameters d, e, t,and m that
are sufficient conditions for the validity of 5.1’ and 5.3'. By solving these inequal-
ities simultaneously for the parameters, we will prove the theorem. Since the
two inequalities do not determine the four parameters uniquely, we can choose

the parameters to minimize the cost of computation.

To prove 5.4/, note that if F is a continuous mapping of a compact interval in
R* to a subset of itself, then it must have a fixed point in that subset by
Brouwer's theorem. In our case F is the mapping x—Rx + ¢ composed with itself
m times, the compact interval is w, and the subset is x,. Since the x, computed
in (4.8 - 4.9) must contain F(w) by the properties of interval arithmetic, (4.10)
does indeed guarantee that F(w) € x, Cw so0 the conditions of Brouwer’s
theorem are satisfied, implying F has a fixed point. It is easy to see that this

fixed point is the solution of the equation x =Rx + ¢, proving 5.4'.
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To prove 5.2/, we use the contraction mapping theorem [14]. Let X, be any
point in Xo, and let x, be the point image of x,_; under F, where F was defined in

the last paragraph. Then since
x, =R™"x,.1 +¢ (6)

for some constant vector ¢! we have

N% - %/ <r™ 1% - X[loSr™ [1%o - Xl - (7)

Since we use interval arithmetic, the point vector x, is a member of the interval

vector Xx,.

Thus, since we assumed r <l, some point in x, is eventually closer to the
solution x than td (here we use the fact that ¢ is an integer >1). Then, the next
time through the main loop 4.4 - 4.10, x, will be rounded out far enough so that
wcontains x. Since x € F(w) Cx, (X being a fixed point of F), 5.2/ is satisfied. It is

easy to see that the i for which 5.2 is true is bounded by

Llosltd/ lo- Rl o
mlogr

(8)

We will now derive an inequality in ¢, d,e,t and m whichisa sufficient con-
dition for 5.1’ to be true. Since the coordinates of x, are all multiples of d, we

introduce an integer variable ! which satisfies
ld <e (9)
and replace 5.1/ by
span(x,) <!d —span(x,) <!d

Our inequality will be in terms of I rather than d. We take [ to be an integer

variable since WIDTH(x,) must be an integer multiple of d.

Now span(x,) <!/d means
span(w) <(/ +2t)d (10)

by the definition of roundout used in 4.6.
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To compute the span of x, after one iteration of 4.9, we exploit the fact that
R and c contain only point intervals, and so contribute to span(x,) in a particu-
larly simple way. We also exploit the properties of fixed point arithmetic which
guarantee that addition and subtraction introduce no error, and bounds the

absolute error in multiplication. Taken together, these facts mean
span(int(R, w,, de)) <|R,, |span(w,) + 2de
and
span(int(R,w, + Ryw,, de)) =span(int(R,w,, de)} + span(int(R,, w, , de)) ,
so after some manipulation
span(int(Rw+ ¢, de)) <r span(w) + 2nde . (11)
Rounding out again yields
span(x, after 4.9 ) <r span(x, before 4.9 ) + 2d(ne+1) . (12)
After m iterations of 4.9 we get
span(x,4;) <r™ span(w) + (1 +r + - + r®-1) - 2d(ne+1) . (13)

Substituting ({+2¢)d for span(w) in the R.H.S. of (13) and requiring this quantity
to be less than [d (which is a sufficient condition for 5.1') yields (after some

manipulation)

2r® 2(ne+1)
{ ¢ .
> 1-r™ M- (14)

(14) is our first inequality relating [, ¢, ¢ and m.

We will derive our second inequality from 5.3'. x € x, means that the dis-
tance from x to the edge of wis at least td and no more than ({+t)d (see 4.6).
We seek a relationship among /, d,e,t,and m that guarantees that every point
of x,4, is no farther from x than td, because this will imply that x,4,; © w as
desired. We expect to be able to find such a relationship because the contrac-

tive property of F implies all points in wwill approach x under the ac tion of F.
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Thus, if X€x, and w=roundout(x,, ¢, d), we have
sup Ny - x[lo<(i+t)d . (15)
After every iteration of 4.9 we have from an analysis similar to the one leading to
(14)

~ sup Ny - x|jo<r - sup |¥- x|lo+ nde +4d , (16)
yExX, . sfter {9 ¥€x, .y before 4 9

so after m iterations of 4.9 we get

1-r
1-

sup ||§- Xlle<r™ (14t)d +( :)d(nc+1) . (17)

§€!,+1
We require that the R.H.S. of (17) be no larger than ¢d:

1-r™ 1-r*
[ < = t - o) (ne+1) . (18)

(18) is our second inequality relating [, ¢, ¢, and m .

Now we have to solve the inequalities (14) and (18) simultaneously in /, ¢, ¢,
and m (note that d does not appear; we will deal with it later). We will only show
here that a solution does exist, deferring to the next section 2 discussion of
finding the best solution. We may choose any ¢ such that 0<e <1. Considering
(14) and (18) only as inequalities in / and ¢, we see they are both linear, and so
both determine half planes in the ¢,/ plane. It is easy to see that (14) and (18)

can only have a common, positive solution in ¢ and ! if

> , (19)

or
0>(r™)2+2r™ -1, (20)

where (1-r®)/ (r™) is the slope of the balf plane boundary line determined by
(18) and (2r™)/(1-r™) is the slope of the half plane boundary line determined
by (14). We may simplify (20) and combine it with the condition 0<r <1 to get

>log!\/-2-- 1) (21)

logr
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(V2-1 is a root of the quadratic in (20)). Having chosen m subject to this last
constraint, the region of common solution of (14) and (18) is a sector in the ¢,/
plane, and so must contain points with integer (t,1) coordinates, any of which
are candidate solutions for (14) and (18). The sm allest possible values of ¢t and {
are the (not necessarily integer) coordinates of the apex of the sector, yielding

the lower bounds:

1-r" 14+r™
t >(ne+l )
(n ) 1-r 1—27‘"-—"2' (22)
and
1-r"® 2
{
>(ne+1) =7 I-ar*_r" (23)

So far we have shown how to choose ¢, t, | and m in order to simultane-
ously satisfy (14) and (18). It remains to choose d. d may be any number satisfy-
ing [d<e,or d<e/!. The lower bound on { in (23) transiates into an upper bound
on d:

e (1-2r™-r%") 1-71
2(ne+1) 1-r®

d < (24)

This completes the proof of the theorem. QE.D.

4. Choosing the parameters to minimlize cost

In the proof of the theorem we showed that subject to certain inequality
constraints, we could choose the parameters m, ¢, d, and ¢ to make the algo-
rithm behave as claimed. It became clear in the discussion that the constraints
left some freedom in the choice of these parameters. In this section we will

exploit that freedom and show how the parameters may be chosen to minimize

the cost of the algorithm. In particular, we will see that the naive choice of
parameters suggested by the proof of the theorem results in a cost function
with poles at a countable pumber of values of r, so that some care really must

be exercised in choosing parameters.

The cost is proportional to the product of the following four factors:
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(25.1) iy =the number of iterations of the main loop (4.4 - 4.10) of the algo-
rithm. A bound for iy is i+1, where i is bounded in (8).

(25.2) m =the number of iterations of the inner loop (4.8 - 4.9). Alower bound
for m is given in (21).

(25.3) The cost of a multiplication in the inner loop 4.9. This cost is 3 function,
mult, of the number of places, p, used in the computation. p is propor-
tional to log(1/ de), and mult can grow as slowly as plogploglogp [15] or as
quickly as p?depending on the implementation of multiplication.

(25.4) The number of multiplies in the inner loop, 2n?.

Thus, we model the cost as follows:

log(|l X0 - x|l e/ td)
—9n? f S
Cost =2n xl Tog 1/ 1

+3m Xmult(log(Tl-e-)) , (26)

where K is a constant of proportionality. We do not include the cost of comput-
ing R and ¢, which is n® (fixed point) multiplies no more expensive than those in
the inner loop above, as well as O(n?®) (foating point) multiplies to compute the
approximate inverse B. The cost in (26) above may be less or more than the cost
of obtaining R and ¢, depending on the initial error || Xo - X|] o and the desired
precision ¢. Here we address only the problem of minimizing the cost in (26)

since naive choices of m, ¢, d, and ¢ may make it much larger than necessary.

To minimize (26) exactly, we would need to knmow the initial error

| xo - X|] o the function mult, and the set of discrete values to which d is res-

tricted. Since we do not know all these things in general, we just show that the

following algorithm makes a reasonable choice of m, ¢, d,and ¢:
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27.1) e :=1 (i.e. no extra precision)

27.2) Choose the smallest m such that r® <1/3

27.3) d :=largest value less than the upper bound in (24)
(recall d must be a negative power of the radix)

27.4) | :=largest integer such that I<ef d

27.5) given /, find the largest integer ¢ satisfying both (14) and (18)

. . . 1 1-r"®
27.6) ifnosuch ¢ exists, orif t/ ! <o-——F—
2 2r™

decrease d to the next smaller value and goto (27.4)

The rationale behind this algorithm is as follows. From (26) we see that the
cost decreases as the precision decreases (de increases) and the amount of
round out in 4.6 increases (td increases). Approximating d by €/ (see (9)) we

see that the precision de is

de = NS LSNPy PR YL AL (28)

€
2 ne+1 1-r™
The term depending on the extra precision ¢ is maximized at e=l {(no extra

precision). This justifies 27.1.

The 1-r factor reflects the inescapable effect of condition number on preci-
sion, since the larger the condition number of A, the closer to one r is likely to
be, and so the more precision needed. (1/ (1-r™) is bounded between 1 2nd

1/(2- vV2) and does not effect the cost appreciably.)

The interesting factor is 1 - 2,® _ r2® If we choose m to be the smallest
integer greater than its lower bound log(v2-1)/logr (see (21)), then as a func-
tion of r, 1 - 2r™ - r2® has a countable number of points where it approaches
zero (from the left): {(\/5—1)1/’},.‘@ This means that if we choose m as small
as possible for all r, then there are a countable number of values of r where the
required precision goes to infinity! We avoid this strange behavior by simply
increasing m if r™ is too close to V2-1. Increasing m by a factor of 1.25 above
the minimum value, for example, guarantees that r™<i/3 and so

1- 2r™ — r2® >.22. On examining (26), we see that this can increase the

-
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second factor by at most 1.25 while possibly decreasing the third factor much

more. This justifies 27.2.

To justify the rest of the algorithm, we consider td ~e t/ 1. Maximizing td
im plies maximizing the ratio ¢t/ !, which means choosirg the point (¢,/) among
those points in the solution sector as close to the lower boundary as possible, in
particular as far to the right (in the ¢,{ plane) as possible. The maximum value
of t/ 1 is approached as both ! and ! approach +co: (1-r™)/ 2r™ (the reciprocal
of the slope of the lower boundary; see (14)). Therefore, in line 27.4 we pick the
largest possible { subject to d<¢/ [, and in 27.5 we pick the largest ¢ for that [.
Such a ¢ may not exist if the solution sector for (14) and (18) is unfortunately
located; even if it does exist t/{ may be far from its maximum value
(1-r=)/ 2r™. In either case we decrease d in 27.6 (by at least a factor of 2 in
binary arithmetic, in general by a factor of the radix) and recompute { and ¢.

The constraint r™ <1/ 3 and the looseness of the test

=
t/ 1 <l l=r

2 2r"

guarantees that ¢ and | will be recomputed by 27.4-27.5 at most once. This

justifies the rest of the algorithm.

We may now substitute the values of m, t, d, and ¢ computed by this algo-
rithm into our cost function (26). The upper bound on de obtained from (24) will
be within a factor of 1/ (6{(n +1}) of ¢(1-r), and td will be within 2 factor of 1/ 12

of e/ r™, 80 (26) will be close to

Cost ==2n? X( log (Il %o - %Il =/ €)+K1} Xmult[log(-l—) + log{ 1 )+ K;] (0
log(-i—) € 1-r

for modest constants K, and K,. The cost goes to coas either the desired preci-

sion ¢ goes to zero or the residual norm r goes to 1, as expected.

We mention the case when r < (for which m =1) which is likely when A is
not too ill-conditioned. In this case we may pick t very large while keeping !
small since the lower boundary of the solution sector is almost horizontal (slope
=2r/(1-r)). If we can pick ! large enough so that td is larger than the initial

error || %o - X||  then the first w will contain the solution x, and our algorithm
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will terminate after at most two iterations of the outer loop. If our initial guess
xo is good enough (and many good interval algorithms start with a reasonably
accurate solution obtained cheaply using noninterval arithmetic), then this

quick termination is likely.

5. Numerical Results

To test our algorithm we tried to invert the Hilbert matrix scaled to have
integer entries. Specifically, we multiplied H,, =1/ (i+j-1) by the least com-
mon multiple of 1,...,2n-1 (n is the dimension of the matrix). The Hilbert

matrix is known to be very ill-conditioned and so is a good test of our algorithm.

The algorithm was written in FORTRAN and executed on an IBM 370/158.
The arithmetic used was also written in FORTRAN (and accessed via subroutine
calls). It used a fixed point format, with 80 decimal places before and 80 places
after the decimal point. Decimal digits were available in blocks of 4, making the
radix effectively 10%.

The approximate inverse B was computed using the NAG [16] scientific sub-
routine library. The double precision versions of FO1ADF and FO1ACF were used.
FO1ADF computes the approximate inverse of a symmetric, positive-definite
matrix, such as the Hilbert matrix, and FO1ACF computes an accurate inverse

using iterative refinement.

In all cases, ¢ was 107'% || H"}|| » (which means that the largest element in
H-! was computed to a relative accuracy of at least 107!%), ¢ was taken to be
10-%, m turn out to be 1 (since r was </ 3 is all cases), and Xo was taken from
the approximate inverse supplied by the NAGLIB routines. Our results are shown
in Table 1. Column 1 (labelled n) gives the dimension of the Hilbert matrix,
column 2 (labelled Routine) indicates which NAGLIB routine was used to obtain B
(C for FO1ACF and D for FO1ADF), column 3 (labelled Cond) gives the condition
pumber || H || || H 'l o of the Hilbert matrix, columns 4, 6, 7, and 8 give the
values of the parameters r, d, ¢, and [, column 5 gives ¢ =10"1% || H !{| » and
column 9 (labelled iy) gives the maximum number of iterations of the

algorithm's main loop used by any of the columns of the inverse.

Numerical Results
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n Routine Cond r € d t 1y
10 D 3.5 - 102 0084 5.2-10"'' 10°'* 3 2 5
11 C 1.2 - 108 023 1.8-10°° 107 3 2 2
12 C 4.1-10' .23 2.5-10"° 107 5 3 3
13 o) 1.3 -10'®  20.1 2.5 108 - - - -

All the inequalities and inclusions predicted in the theorem were automati-
cally tested and verified. The values of { and [ were not chosen according to
algorithm 27 but as the smallest solutions of (14) and (18); our concern was not
to minimize time but to verify the conclusions of the theorem. FO1ADF (approxi-
mate inverse) could not be used for n>10 because the B it produced was so
inaccurate that r was greater than 1. For n=13 r was greater than 1 even with
the more accurate library routine, so we could not use the algorithm. The
pumber of iterations iy did not grow with n because the initial approximation Xg
came from the NAGLIB inverse B and so was rather accurate to start with.
Indeed, most good interval algorithms wisely attempt to attain as accurate a
solution as possible using poninterval arithmetic, requiring only a few iterations
of the relatively expensive interval arithmetic at the end to refine the result,

and ours is no exception.
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