»___but will RISC run LISP??"
(a feasibility study)

Carl Ponder

University of Celifornia
Department of Electrical Engineering & Computer Sciences
Computer Science Division

ABSTRACT

The Berkeley RISC microprocessor, developed under the
direction of David Patterson & Carlo Sequin [1], is targeted for
efficient execution of C programs. The architecture has competed
successfully with existing systems such as the Vax-11/780 and
MCB88000. A major question about such a reduced, targeted archi-
tecture is how well it extends to other languages. An important
language in symbolic computation is Lisp. Lisp is a functional
language which has little in common with the standard block struc-
tured languages. such as C. This has led to the often-asked ques-
tion — "will RISC run Lisp?".

The purpose of this paper is to explore the feasibility of a LISP
system running on RISC. The major parts of this include a look at
the behavior of large-scale "typical” Lisp programs, and an exami-
nation of current LISP implementations.

May 11, 1983

The work reported herein was supported in part by Defense Advance Research Projects
Agency (DoD) ARPA Order No. 3803, Monitored by Naval Electronic System Command under
Contract No. N00039-81-K-0251, and the U.S. Department of energy under Contract DE-ATOS-
76SF00034, Project Agreement DE-AS0S-78ER103%58.

"_.. but will RISC run LISP??"
(a feasibility study)

Carl Ponder

1. Introduction

Lisp is the second oldest "high-level” language in popular use. It was
designed to perform symbolic manipulation, particularly for problems in
artificial intelligence. The main features of Lisp are its simple structure, extensi-
bility, and the equivalence of programs and data. The language has been imple-
mented on many general-purpose machines (IBM 370, PDP-10, VAX), as well as a
few special purpose ones (CDC 7600, CADR). Several "high-level language'’ com-
puters have been designed to run Lisp, interpreting Lisp instructions directly in
the microcode; these have received widespread attention in the computer indus-
try.

A new perspective on "high-level language” computers has been popularized
with the RISC I design; a simple instruction set for high-speed execution is com-
bined with a radical "register window file” for minimizing procedure call over-
head. The exclusory use of high-level languages on the machine allows the com-
piler to hide from the user any complicated or counter-intuitive properties of
the underlying architecture.

These conflicting approaches to high-level language architectures has been
characterized as the RISC-CISC controversy, RISC standing for Reduced Instruc-
tion Set Computer, and CISC standing for Complex Instruction Set Computer. On
the RISC side is the Berkeley RISC I, the IBM 801 [2], and the Stanford MIPS (3]
processor; the projected performance of the final Berkeley RISC is competitive
with modern general purpose processors such as the VAX 11/780 and Motorola
68000. Two notable CISC processors are the Intel iAPX-432 and the MIT SCHEME
chip; the Intel 432 has shown feeble performance, and the SCHEME chip will be
examined later on in a Lisp perspective to the RISC-CISC controversy. In the
meantime 1 will study the feasibility of Lisp on the Berkeley RISC processor.

2. Why Lisp is not like C
In the next section, we will lock at the RISC architecture and estimate how

useful it would be for the properties of Lisp; to do this we must explore the
differences between Lisp and C.

Table 1 contrasts the features of the two languages. Lisp is intended to exhi-
bit the full generality and flexibility available to interpreted languages, while Cis
designed for eflicient compilation and fast execution. For example, dynamic
scoping. typeless variables, and dynamic storage allocation are reiatively easy to
implement in an interpreter, whereas static scoping, strong typing, and iterative
control constructs are well adapted to compiletime semantics checking and
eflicient object code generation.

Table 1 -- Lispvs C

1 Recursion - based control structures Iterative control structures
2 Dynamic scoping Static scoping

3 call-by-value (lambda), closure or
funarg supported parameters
4 typeless variables, explicit checking
required to determine types

call-by-value

loose typing, instruction traps

5 runtime support important

for space allocation

system primitives available:
io's, page allocation

executable data, requiring

strictly compiled

presence of interpreter

7 operators correspond to function
calls in interpreted code, often
in compiled code as well.
Exceptions are simple control
structures and logical operations.

8 lists as fundamental data structure.
parameters are always pointers to
objects, requiring some degree of
fetching.

9 exotic procedure exits cause
variable pops of activation
records - throw, return, nonlocal
goto, etc.

operations closely related to
features of machine language

words as fundamental data type.
locality of variable /parameter
references.

canonical escapes from control
structures -- break, return, exit

Lisp can be fairly eflficient as a compiled language; some Lisp dialects run
competitively with Pascal and C for given benchmarks (Table 6). This efliciency
is necessary to obtain tolerable performance from large Lisp systems. Simple
extensions to the language make compilation easier, such as optional declara-
tions; furthermore, clever compilers manage to replace ineflficient constructs
with more efficient ones (such as replacing recursion with iteration).

Many of the differences listed in table 1 have little impact on the perfor-
mance of compiled Lisp; here | address each of them:

(1) Iterative control structures in Lisp, which are defined using equivalent
recursive structures, actually map into iterative forms in compilation.
Furthermore, recursion is in many cases transformed into equivalent itera-
tion.

-3-

(2) control-flow analysis at compilation can determine whether or not variables
must remain dynamically scoped. Some Lisp dialects specify static scoping
(NIL, Scheme, and the new Common Lisp), while others consider it the
default in compiled modules (UCI and Franz Lisp). Dynamic scoping is then
made available through declarations.

(3) Closures and funargs were not used in any of the programs studied here
(Franz, GLEAN, Liszt, PHRAN, and Vaxima). An object-oriented style of Lisp
programming may use them heavily.

(4) Using typed segments, as in Franz Lisp, typechecking is a simple operation
- shift the address and load from a type table. Other schemes use typed
pointers, when only part of an address field is used; this can be done in one
operation, although it is only possible on machines with subfield addressing
mechanisms.

(5) The memory manager is necessary for Lisp. Making it as eflicient as possi-
ble is important. Garbage collection is largely a matter of linked list and bit
operations.

(8) Calls to "eval” may be faster if the Lisp interpreter is microcoded, but such
implementations tend to run much slower than compiled Lisp. The tradeofl
involved depends upon the ratio of time spent in the compiled code vs. the
amount of time spent in the interpreter. Macsyma, for example, spends
most time doing list operations when in the kernel.

(7) This merely suggests that a Lisp program will make more procedure calls
than a C program for the same computation. In some cases the extra rou-
tines can be expanded in-line for maximal efficiency, but this may cause
large object files to be created. The procedure call overhead is often minor
in relation to the operations contained within a function.

(8) The implied memory overhead is a very important point. 1 shall take this up
in the next section. It is worth noting that the memory speed of a machine
must be fast to guarantee fast list operations.

(9) Table 2 shows the frequency of occurrence of exotic functions exits. Rea-
sonably inefficient implementations should be tolerable.

Table 2 — frequency of exotic returns in Lis
contrived examples calls/returns | exotic returns ratio
throw-catch (compiled) | 812 101 12%
goto (interpreted) l 3644 200 5%
real examples
PHRAN 139484 0 0%
Liszt 392384 0 0%
GLEAN 1849 0 0%

We see, then, that Lisp can be like C in such things as scoping and control
structures. In some places where they differ, such as pointer manipulations and
typechecking, the operations are simple enough to be performed efficiently on
most machines. Use of other features, such as funargs and eval, are a matter of
style; systems inefficiently supporting them can competitively execute a wide
class of Lisp programs.

3. The C machine as a Lisp machine

In this section I will address the problems involved in an efficient Lisp
implementation on RISC. Three questions are of importance here:

Is the memory speed of RISC suflicient for list processing?
Is the reduced instruction set capable of supporting Lisp operations?

And will the register window scheme succeed in reducing procedure-
call overhead?
The third question is defered until the fifth section.

Table 3 shows the timings on several C-coded benchmarks, executing on
different machines. In all but one case, RISC I is favored, however little. The
linked-list, bit-test, and Ackermann benchmarks represent cases we would
expect to appear in a running Lisp system — linked-list operations as in memory
management and structure manipulation, bit manipulation as in typechecking
and storage marking, and excessive procedure calls as might occur in interpret-
ing Lisp or making kernel calls from compiled code. Furthermore, the slowest
operation (byte manipulation) is not a major part of Lisp, so the RISC architec-
ture appears to support the demands of Lisp.

Table 3.
C Benchmarks: RISC I Ezacution Time
and RISC [Performance Ratio

RISC] 88000 | 28002 | VAX-11/780 | 11/70 | C/70
BENCHMARK msecs Number of Times Slower Than RISC 1
E - string search .48 2.8 - 1.8 1.3 0.9 2.2
F - bit test .08 4.8 7.2 4.8 8.2 9.2
H - linked list .10 1.8 2.4 1.2 1.9 2.5
K - bit matrix .43 4.0 5.2 3.0 4.0 9.3
1 - quicksort 50.4 4.1 5.2 3.0 3.8 5.8
Ackermann(3.6) 3200 = 2.8 1.8 1.8 —
recursive gsort 800 — 5.9 2.3 3.2 1.3
puzzie(subscript) [4700 - 4.2 2.0 1.8 3.4
puzzie(pointer) 3200 4.2 2.3 1.3 2.0 2.1
sed(batch editor) | 5100 - 4.4 1.1 1.1 2.8
towers Hanoi{18 1.8 2.3 1.8

Average+S.D.

In [4], Fateman asserts that in Lisp programs, memory operations are the
dominant factor; the performance of Lisp on a given machine is bounded by its
ability to do them quickly. Figure 1 shows a C-coded "pseudo” benchmark to
measure the memory speed of a given system; the results for several machines
appear in table 4. The memory speed of RISC compares favorably with the oth-
ers. The Macsyma benchmarks seem to agree, except in the case between the
CDC 7800 and the KL-10. Here Fateman suggests three contributing factors:

-5-

Figure 1 — the c-coded PSEUDO benchmark

int h[1000], j[1000], k[1000];

main()

¢

register int i;
register int *hp, *kp:
int *jp;

int tvi[8], tv2[8}:

for (i=1; i<=1000; i++)
hfi] = 0;
k[i]=1
i[i] = i+

!

h[1000] = 1;
times(&tv1);

hp = hi jp =i kp =}

=1;
while (hplipli]] = 1) §
nplkp[i]] = bp(il:
i=jlil:

iimes(&tvz):
printf("%d0, (tv2[0] - tv[o])*18);

J

Table 4 -- comparisons of memory & Lisp speeds

benchmark A

benchmark B

[machine memory access time pseudo
memory cache

KA 10 1.9 us 43 ms 0.078 sec 1.10 sec
KI 10 1.0 us 22-29 ms
11/750 2(?) us 0.32 us 13.5-18 ms 0.103 sec 1.4 sec
11/780 2 us 0.2 us 11-14 ms 0.075 sec 0.920 sec
KL 10 940ns 133ns 13 ms 0.011 sec 0.188 sec
RISC1 0.4 us 10.4 ms
CDC 7600 0.125 1.8-2 ms 0.014 sec 0.205 sec

The CDC & PDP-10 pseudo tests were done in fortran, and the RISC & VAX in C.
Benchmark A was macsyma/vaxima performing a symbolic expansion of (x+y)**12}
B was the expansion of (x+y+z)**20

-8-

(a) the KL-10 data cache, with an access time near the speed of the CDC 7800
memory cycle,

(b) a vastly superior compiler for the PDP-10, and
(c) abetter instruction set.

In [5]. 2 high degree of static locality is shown in lists in PDP-10 Interlisp for
five benchmarks. 85-90% of the time, successive cars and cdrs occupy the same
page. 79-98% of the time, successive cars and cdrs occupy adjacent locations.
Dynamic locality was not measured, but sequential accesses of successive list
elements would show locality on a fifo basis. This would make a data cache suc-
cessful only with fast parallel block fetches, a luxury not available to micropro-
cessors.

The small CDC instruction set bears little resemblance to the RISC I, we
must satisfy ourselves that it is not an obstacle to Lisp performance. The CcnC
architecture distinguishes address/index registers from data registers. In sim-
ple tasks such as traversing linked lists, an extra operation must be performed
at each fetch to move the fetched pointer into an address register for the next
tetch. In the 7800, the register-register move takes 25% of the time required to
perform the memory fetch [6]. In the macsyma comparisons, the CDC ran ~25%
slower than the KL-10; this may explain a large part of the difference, but the
KL-10 case was still able to compensate for time lost in cache misses.

The RISC architecture is not crippled by the address/data register distinc-
tion. As a further note, it doesn’t seem to suffer from lack of double indirect
addressing. This mode was used in the Vax-compiled "pseudo” benchmark, but
the VAX still lost to RISC.

Table 5 is from [7], a study of macsyma by John Foderaro and Ricbard Fate-
man. It shows the dynamic opcode frequencies of vaxima, running on an 11,/780
in Franz Lisp. 22% of all movl's were used in stacking. As will be shown later, the
RISC must use registers to be competitive -- in which case parameter stacking is
replaced by register-register or memory-register operations. a one-for-one
exchange of opcodes. For each of the cases, the opcodes have simple analogs in
RISC; the problem is the addressing modes.

The static frequencies for Lisp show that 58% of all instructions are nothing
but loads and stores (movi, movab, clrl); again, each of the instructions in the
list is simple in nature.

Figure 2 shows the frequency of calls to each procedure in the vaxima sys-
tem: interestingly, 80% of the time was spent in the (C coded) Lisp system and
40% was spent in (Lisp coded) vaxima. This explains in part why the dynamic
opcode frequency leans more toward C than Lisp. Another item of interest is
that the notable spikes in the graph show that the most popular procedures did
nothing but the simplest operations - creating integers and cells, checking ine-
qualities, garbage collecting, and simple list primitives.

The two major spikes on the chart were coded in VAX assembly language,
rather than C; the versions coded for RISC were less than twice the size of the
original VAX-code, consistent with several of the C-coded benchmarks.

We see that the RISC has the major feature for good Lisp performance --
memory speed. This puts it in the ball park with VAX and pdp-10, aside from data
cache considerations. Current microprocessors have no such edge, so the com-
parison lies with the instruction sets. A simple benchmark is tested in the next
section, where RISC shows encouraging performance.

mmber of referenses h

Figure 2

P‘ﬁ-‘

Table 5: Instruction usage

Static - Dynamic
C coded Lisp coded Begin demo
Lisp functions Lisp functions

Instruction pet | Instruction pct | Instruction pect
movl 20 | movl 43 | movl 27
pushl 12 | movab 9 | empl 7
calls 10 | calls 7 | boequ 8
pushal 7 { bed 4 | beglu $
cmpl 4 | elrt 4 | ashi L)
begqla 4 | jsb 4 | movab 4
bnequ 3 | beqlu 3 | tstd 4
brd 3 | boequ 3 | cvthl 3
ret 3 | tstl 3 | bed 3
clirl 2 | bew 2 | calls 2

other 32 other 18 other 34

100 Unique instr.

32 Unique instr.

109 Unique instr.

4. aTAKing a current benchmark

As the Franz Lisp system could not be made operational on RISC, hand cod-
ing was used to compare performance. A valuable result of this was the realiza-
tion that Franz Lisp (which makes minimal use of registers) [8] was less suitable
for the RISC architecture than the approach used for PSL (Portable Standard
Lisp, which uses registers to pass parameters) [9].

Figure 3 shows the TAK benchmark, a heavily recursive function of unques-
tionable uselessness. It shows the efliciency of procedure call, as well as the
difference in speed between fixnum and bignum arithmetic. Fixnum arithmetic
refers to integers of bounded length, where operations are tuned to run faster
than the unbounded bignum arithmetic on some Lisps. Table 8 shows the execu-
tion times for a wide range of machines running a wide range of Lisps. An
interesting item to note is the case where 11/750 PSL INUM outruns C; this is
probably due to the Lisp compiler removing tail-recursion, while the C compiler
is not so sophisticated.

Figure 3 - the TAK benchmark

(tak 18 12 8)

(defun tak (x y z)
(cond ({not (lessp y x)) z)
(t (tak (tak (subl x)y z)
(tak (subl y) z x)
(tak (subl z) x y)))))

Four entries for RISC are on the list. A C-coded version for RISC performed
outrageously well. The Franz benchmark was prepared as follows:

The function was compiled on the Vax using LISZT to produce symbolic
assembly. This was converted into RISC code on an instruction-by-instruction
basis - no special models of compilation or RISC-based optimizations were
assumed. Two stack pointers, called np and lbot, were passed as parameters.
Normally they occupy reserved global registers. but the RISC C compiler does
not allow this. The kernel function "lessp” had to be modified to work without the
rest of the kernel. This was done in such a way as to force it to use the same set
of operations, so we get a valid timing, although an optimizer will affect the final
performance. The process is shown step-by-step in appendix I. The kernel fun-
cions and the assembly code were compiled and run on the RISC simulator.

The projection for Franz running on RISC is mediocre compared to C perfor-
mance. | don't feel safe in "tuning” the code as a real RISC-Lisp compiler might.
because the performance may be unrealistically fast. The result is a valid lower
bound on performance; it was sufficient to beat the 11/750 in C, and the
MCB88000 in both Franz Lisp and Pascal. The problem is the excessive amount of
memory traffic due to stacking and unstacking Lisp parameters, which are not
passed in registers in Franz. :

The next stab was to do the same thing in PSL. The PSL kernel is written in
a more obscure "SYSLISP", so the two support routines were instead taken from
Franz. This benchmark gives a valid lower bound on performance if RISC-Lisp
passed parameters in registers, and is like Franz in all other ways. The only
difference comes in memory management, where pointers in registers also
reference active data.

-9-

Table 6 -- executions of the TAK benchmark [12]
Results on tak function, including projection of RISC-compiled Lisp.

Takeuchi function of various types

On 11/750 in Franz ordinary arith
On 11,/780 in Franz with (nfc)(TAKF)
On Dolphin in InterLisp Nov 1981 (tr)
On 11/780 in Franz (nfc)

On 11/780 in Franz (nfc)

On 11/780 in Franz with (fIc)(TAKF)
On 11/750 in PSL, generic arith

On MC (KL) in MacLisp (TAKF)

On Dolphin in InterLisp Jan 1982 (tr)
On Dual (MC68000) in Franz(lfc)

On Vax 11/780 in InterLisp (load = 0)
On Foonly F2 in MacLisp

On Apollo (MC88000) Pascal

On 11/750 in Franz, Fixnum arith
(Projected) On RISC in Franz (flc, tr)
(Projected) On RISC in Franz (ifc, tr)
On MIT CADR in ZetaLisp

On MIT CADR in Zetalisp

On MIT CADR in Zetalisp (TAKF)

On Apollo (MC88000) PSL SYSLISP
On 11/780 in NIL (TAKF)

On 11/780 in NIL

On 11/750in C

(Projected) RISC PSL/Franz (ifc, tr)
On 11/780 in Franz (fIc)

On 11/780 (Diablo) in Franz (fic)

On 11/780 in Franz (fIc)

(Projected) RISC PSL/Franz (lfc, tr)
On 68000 inC

On Utah-20 in PSL Generic arith

On 11/750 in PSL INUM arith

On 11/780 (Diablo) in C

On 11/780 in Franz (lfc)

On UTAH-20 in Lisp 1.6

On UTAH-20 in PSL Inum arith

On MC (KL) in MacLisp

On SAIL (KL) in MacLisp

On SAIL in bummed MacLisp

On 88000 in machine language

On RISCin C

On Dorado in InterLisp Jan 1982 (tr)
On UTAH-20 in SYSLISP arith

On SAIL in machine language

On SAIL in machine language

On SCORE (2080) in machine language
On S-1 Mark | in machine language

19.9

15.8

11.195
8.4
8.35
7.5

7.1
5.8
5.7
5.3
4.2

D

1
8
6
5
5
1

[o B 4]

1
1
93

4
3
3
3
3
3
3
3
2
2.8
2.7
2.4
2.2
2.1
2.
2.
2.
1.
1.
1.
1.
1.
1.

1

seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds (extra waits?)
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds (NOPs removed)
seconds
seconds
seconds
seconds
seconds (open coded?)
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds

-10 -

47707 function calls
max recursion depth is 18
average recursion depth is 15.4

notes:

All cases running compiled

(tr) means Tail Recursion Removal

(nfc) means ‘normal function call’ in Franz

(fic) means ‘fast function call’ in Franz

(ifc) means ‘local function call’ in Franz (function cell directly to an
entry point using knowledge of the internals of the function by the
compiler).

On the 68000 Franz, np & lbot are in registers rather than the standard
memory locations.

The PSL compiler generated the VAX assembly code, which was again
expanded into the equivalent RISC instructions. Under a naive association of
registers, the result was surprisingly good. The current RISC standard {chosen
by Jim Miros) is to pass the result of a procedure call back in the same register
as the first parameter; the construction of the TAK function saves 3 register
moves per call. A second kernel function, "subl”, had to be introduced, since the
PSL compiler did not expand it in-line. An in-line expansion would have sped up

the benchmark somewhat. This process is shown in appendix Il

The result is the faster PSL/Franz entry for RISC; it outran the 11/750 in C,
the 11/780 in NIL (a statically scoped Lisp), and the MC88000 running PSL SYS-
LISP. The PSL SYSLISP is a Lisp-structured language for systems programming;
no other Lisp should run much faster. ’

The PSL Lisp was still a far cry from the C performance. With INUM arith-
metic, it should be much faster. The simplicity of the benchmark leaves little
room for optimizations, although the following are possible:

(1) the 4 NOP's can be eliminated; some data flow analysis would be required to
keep the operations correct. This appears as the “NOP’s removed” entry
which outruns the 11/780 Franaz.

(2) the branch to the return statement might be replaced by the the return
statement itself; this requires simple control flow analysis in the optimizer.

1 feel this is an encouraging result. Although not outrageously fast, we can,
at worst, expect better performance than the VAX 11/750 or the MC88000. A
real Lisp system, with a sophisticated compiler, would gain some edge on the
11/780. With Inum arithmetic, for example, the benchmark should beat the
speed of C on the RISC. The Inum arithmetic would use the same hardware arith-
metic as C, and removal of tail-recursion would eliminate extra procedure calils.

-11-

5. Ups and Downs with the Lisp runtime stack

1 was at first worried about the performance of the RISC window flle. The
window flle is an array of eight frames of local registers; procedure calls and
returns cause the active frame to shift. In C, most of the stack motion is con-
tained by the window flle. Occasionally the file overflows or underflows, and win-
dows have to be moved in or out of memory. The memory traflic due to pro-
cedure calls and returns is greatly reduced.

Textbook Lisp programs tend to be highly recursive functions such as fac-
torials or linear list traversals. Such functions would generate long, monotonic
rises and falls in the stack height; these would negate the advantages of the win-
dow file, as opposed to & standard register saving mechanism. To test the vali-
dity of this assumption, a special compiler and interpreter were constructed.

The Lisp compiler, LISZT, was modified to interject a call statement before
and after each original call and jsb. These extra calls invoke the tracing pro-
cedures "upstack” and "downstack”, which put tracing codes into an output file
for later analysis.

The Lisp interpreter was rebuilt to trace its own internal calls and jsb's, and
the "upstack” and "downstack” procedures are included in the kernel. When Lisp
functions were compiled with the tracing compiler, and loaded into the tracing
interpreter, all stack movement is monitored, except for system calls and calls
to the tracing functions themselves.

The usage of exotic returns was handled separately. Franz Lisp keeps a
linked list threaded through the execution stack, and the links are followed in
the event of an abnormal return. Eventually a frame in the execution stack is
found, which is capable of catching the exception. 1 had intended to handle this
on RISC by directly writing over the window file, and restoring execution from
the correct frame. This requires about the same amount of work as processing a
file overflow. To account for the occurrence of such returns in the stack simula-
tion, they were replaced by a sequence of eight stack rises. Rises were used, as
opposed to falls, to prevent the stack from falling into negative space; the effect
on file performance should be the same. Interestingly, no abnormal returns
occurred in any of the test cases.

Six test cases were used, four real and two contrived. The real examples are
PHRAN, the PHRasal ANalyser; LISZT, the Franz Lisp compiler; the Lisp-coded
portion of LISZT: and GLEAN, a system for performing static analyses of Lisp pro-
grams. The two contrived cases are the compiled and interpreted versions of a
function which copies a list; it is used to measure the effect of linear stack
behavior.

Figure 4 shows the stack behavior of the interpreted copy function copying
a list. The intermediate calls in the interpreter obscure the overall rise/fall pat-
tern, so [2,2] replacement is optimal (as in most C programs). Under [2,2]
replacement, two windows are copied to memory each time the file overflows,
and two are restored from memory each time the flle underflows. Figure 5
shows the operation of LISZT as it compiles itself. The monotonic rises and falls
tend to be shallow.

Table 7 shows the frequency of the various length rises and falls. Over B0Z
in each case were of length two or less. Over 80% of all calls & returns were con-
tained in these shallow moves. Table 8 shows the performance of the [2.2]
replacement policy. In the case of LISZT, [2.2] replacement came in third place
to [2,1] and [1,2] replacement, but was within 3% of the first place policy. In the
compiled copy case, [7.8] replacement is in first place. In this contrived exam-
ple, the stack rises and falls 100 places, with a minor amount, of intermediate

Figure 4 - COPY stack behavior

stack level (in activation records)

stack level (in activation records)

1. Figure 5 - Liszt stack behavior

calls. [7,8] replacement is

sistent with the other

showed the best performance.

-12-

measurements. In the other four cases,
This is the same best policy as for c.

within 2% of optimal, while [2,2] replacement is con-
[2.2] replacement

—

Table 7 — rise/fall patterns in Lis
% of calls/returns maximum
program % of intervals contained by intervals depth
length=1 length=2 | length=1 length=2
PHRAN 617% 287% 387 327% 38
LISZT 567% 257% 33% 297 43
LISZT (Lisp part) 84% 27% 43% 36% 56
GLEAN 817% 227% 37% 277% 26
L Table 8 - behavior of window file, under [2,2] replacement olic
% memory traflic | % flle dumps
program calls/returns .
over optimal saved
PHRAN 139484 497% 97%
LISZT 302384 83% 987%
LISZT (Lisp part) 141059 4ABZ 98%
GLEAN 1649 407 987%
COPY (interpreted) 2826 427 89%
COPY (compiled) 812 51% 88%

Note also from table 8 that the registe
the procedure calls, saving
ter file is definitely a success for these cases,

~B85% of the procedure-call housekeeping.

the beginning of this project.
This unexpected pattern in stack behavior is probably due to:

(1

a large percentage of the execution

shows typical C-like behavior,

2

(3
(4)

sion,

use of iterative control struc

clever compilation frequently removing recursion, and
a large number of intermediate function calls masking o

tonic rises and falls.
execution in the Lisp kernel is mentioned in section 2. The

The frequency of

shallow maximum depth in

sons, and the fourthis demonstrated in the graph of figure 4.

r file was able to contain all but 3% of

The regis-

something 1 had not anticipated at

occurring in the C-coded kernel, which

tures in Lisp, eliminating much need for recur-

ut any long, mono-

table 7 is attributable to the second and third rea-

-13-

8. RISC vs. CISC Lisping

Previously 1 mentioned execution of data in Lisp; this is commonly done by
invoking an interpreter function, even from compiled code. An alternative is to
interpret Lisp directly on the hardware or firmware. Some current Lisp
machines interpret bytecodes, which are produced by preprocessing Lisp pro-
grams; one such is the CADR machine listed in table 8. Its performance is rea-
sonable, although nothing spectacular. An important consideration is whether a
machine is single-user or timeshared; the MC88000 shows reasonable perfor-
mance in comparison with an overloaded pdp-11, so the cost per operation per
user may favor the microprocessor.

The SCHEME chip is an attempt to execute Lisp directly in microcode [10].
Scheme [11] is a statically scoped dialect of Lisp. The order of parameter
evaluation is unspecified, and all parameters are evaluated before calling. This
makes the language well-adapted for compilation.

The projected performance of the scheme chip is good in comparison with
interpreted Lisp, but shows poor performance compared with compiled Lisp. A
LISP system would have to be largely interpreted to run as slow as the SCHEME
chip.

Table 9 shows the comparison of times to compute the 20th Fibonacci
number, using Peano arithmetic. The projected performance of SCHEME is twice
as fast as the Franz Lisp interpreter, but is twenty times slower than compiled
Franz Lisp. This is outrageously bad performance for Lisp applications such as
Macsyma.

Figure 6 - The scheme benchmark

(defun fib (x)
(cond ((zerop x) 0)
((zerop (subl x)) 1)
(t (plus (fib (subl x))
(8b (subl (subl x))))))

(defun plus (x y)

(cond {((zerop x) y)
(t (plus (sub1l x)

(add1 y)))))

Table 9 - performance of the scheme benchmark
KA-10 scheme interpreter in MacLisp 3.8 min
VAX 11/780 Franz interpreter 2 min
scheme chip (projected) 1 min

VAX 11/780 Franz, compiled (normal funcall) | 8.7 sec
VAX 11/780 Franz, compiled (local funcall) 3 sec

-14 -

7. Conclusion

We find no reason to anticipate poor performance of Lisp running on RISC
architecture. The memory speed is high enough for list processing, the instruc-
tion set has the most important features, and the register window file appears
surprisingly successful. For good performance, a RISC Lisp system must be
modeled after the C system; the language must be compiled and registers must
be used as much as possible, resembling more the structure of PSL/SYSLISP.

Other general-purpose and CISC microprocessor systems, such as the
MC88000 and scheme chips, are unlikely to deliver superior performance and
may indeed perform a great deal worse.

-

10.

11.

12

-15-

. References

Patterson, D.A. and Sequin, C.H., "A VLSI RISC", Computer, 9/82,p. 8

Radin, G.. "The 801 Minicomputer”, Proc. Symposium on Architecturai Sup-
port for Programming Languages and Operating Systems, 3/83, p. 39

Hennessy, J., Jouppi, N., Baskett, F., Strong, A., Gross, T., Rowen, C.. and
Gill, J., "The MIPS Machine", Proc. Compcon 2/82

Fateman, R.J., "Is a Lisp machine different from a Fortran machine?", ACM
SIGSAM bulletin, vol. 12 no 3, August '78 (8-11).

Clark, D.W., and Green, C.C., "An empirical study of list structure in Lisp",
CACM 20, p. 78, 1877

"Control Data 7600 computer system - preliminary reference manual”, Con-
trol Data corporation, St. Paul, Minnesota, 1968

Foderaro, J.K., and Fateman, R.J., »Characterization of VAX Macsyma”,
Proceedings of the 1981 ACM Symposium on Symbolic and Algebraic Compu-
tation, SYMSAC 81, p. 14.

Foderaro, J.K., and Sklower, K.L., "The Franz Lisp Manual”, University of Cal-
ifornia, Berkeley, 9/81

Griss, M.L.. and Morrison, B., "The Portable Standard Lisp Users Manual”,
University of Utah, 6/5/82

Sussman, G.J.. Holloway, J., Steel, G.L., and Bell, A., "SCHEME-79 -- Lisp on a
chip”, Computer, 7/81, p. 10.

Steele, G.L.. and Sussman, G.J., "The revised report on SCHEME — a dialect
of Lisp”, MIT Al memo #452

Gabriel, D., private communication from RPG@SU-Al

Appendix I — coding TAK from Franz to risc

(defun tak {(x y 2)
(cond ((not (lessp
(t (tak (tak
(tak
(tak

(defun test ()
(tak 18 12 6))

y X))
(sub1
(sub1
(sub1

1.1. TAK in Franz

X N <

z)
x)
y)))))

«3lobl
FQQC13:
sword
movab
movl
movab
L0Jo14:
nmovl

movl
moavab
calls
movl
tstl
Jnaa
movl
jior
L330106:
cmpl

jleg
cmpl
Jlea
LJJ017:
movl
Jjshb
movl
jbr
£00013:
subl3
LO0G19:
movl
movl
movah
calls
movl
movl
cmpl
jleq
cmpl
jleag
L0002C:
movl
jsb
movl
jbr
LGC0021:
subl3

1.2. Vax output code from Liszt

FOJ013 #(fcn lamnda tak)

Ox5¢3
linker,r$
r?7,r13
12¢r13),ré

4¢r10),(réd)+ #(beginning cond)
#(beginning not)

#(calling lessp)

g(from y to stack)

A(r12),(rél)+ g{fromn x to stack)
“3(rod),r?

$),xtrantb+d

r?,rb

rC

LCJ316

8¢(r1C),r0 1(from 2z to resg)
LC0015

0(r13),81024 “(ecalling tak)
#{(tail merging)

#(calling tak)

LJ0d17?

0(r103,35212

L23J32313

c¢r1d),r0 £(from x to rag)
-gonaminus

rd,(rs)+ #(fron reg to stack)
L2019

$4,0¢r10),(rb)+

4(r10),(rod + £(from y to stack)
g(r1C),(rb)+ #(from to stack)
=12(ré),r?

$J),*tranth+3d

r7,rb

rld,(rd)+ #(from reg to stack)
4(r1C),31324 #(czlling tak)
LoQ0QC20

4(r10),39212

L0JQ21

2]

4(r19),r2 #(from y to reg)
-goneminus

r0,(ré6d)+ 2(from reg to stack)
L2022

34,4Cr1C)/ (rs)+

Lodoz22:

movl 3(r10),(ré)+ g4(from z to stack)
movl 0(r10),(rs)+ #(from x to stack)
movab -12¢ré),r?

calls $0,xtrantb+d

novl r7eré

novl rd,(ré)+ 2(from reg to stack)

cmnnl 8(r10),3%1324 4(calling tak)

jlagq L00023

cmpl 8(r13),39212

jleq LJJDc4

L002023:

movl 8¢(r10),r0 2(from 2z to reg)

jsi _gqoneminus

movl r,(ré)+ 4{from reg to stack)

jbr L02025

LGJ0Z24:

subl3 $4,3(r10),(rb)+

L3J3025:

novl 0(r1d),(réd)+ g(from x to staclk)

movl 4(r10),(réd)+ 2(frem y to gtack)

novab «12(rb),r?

calls $J,xtrantp*d

movl r7,rb

movl rd,(ré)+ d(€from rej to stack)

movl -12¢r6),0Cr10)

movl ~3(ré8) ,uCrid)d

movl “4(ré6),ECr1Q)

movab 12¢r13)rrs

jor LO0014

L0JJI1s:

ret

«globl FJ0C26 R(fcn lambda test)

FOJC26:

+uord Ix5¢0

movan linker,ré&

movl r7,013

movab 0(r1C),ré

L00027:

movi $5192,C(ré) ¢+ #(calling tak)
d(from (fixnum 13) to stack)

movl $5168,(rd)+ g(from (fixnum 12) %o stack)

movl $5144,(ré) ¢+ #£(from (fixnum 6) 1to stack)

movab -12(ré),r?

calls $0,*trantnp+3

movl r7,rb

ret

bind_org:
.set linker_sizer
.set trans_sizZas

N O

.long
«slong
«slon3

d
0

-1

lit_org:

sas5cCiz
«asCciz
eadSC1iZ
easciz

'llesspll
"tak"
"tak"
"test"

lit_end:
§ this is just for documnentation
.asciz "a(#)Compiled by Liszt version 8,1C on Tue Ser 7 22:12:14 1982"

.data

«dS5CiZ
asciz
«35C12Z
sasciz
edscCiz
sasClz
easCiz
«asCi2
«s@SCAZ
.25cCiz2
«asciz

"2(#)decl.l
"a2(¥#)array.l
"3(#)datah.l
"I(s)expra.l
H3(¥)io.l
"3(%)funa.l
"J(4)funb.l
w3 (#)func.l
"A(#)tlavel
I (4)fixnumal
"3 (4)util.l

1.9 3715/7¢2"
1 9/25/81"
3 5/27/82"
3 5/76/82"
1 s/25/81"
3 2/10782"
11 7/721/32"
4 5/7/382"
17 3/24/32"

6 19/721/821"
2 10/77/281"

1.3. Equivalent code for risc

(fen lambda tak)

s

«globl FJ32213

£Q0213:
add rd, 80, r8 ; linker stub
add r3d, £#12, r2°
L30C14:
1ldl 4¢r30), r1% ; (neginninrg cond)
stl r13, C(r29)
add r25, 44, r29 ; (beginning not)
; (calling lessp)
; (from y to stack)
ldl J(r30), r13 ; (from x to stack)
stl r18, C(r29)
add r29, 24, r253
add r2%, r0, r13 ; poess np % lbot as parametaers
add r2%, £=%, rl1é
10l trantb+d(r0), r18 ; calling lessp
call r15, _lasso(r2)
add rd, r1, rl1é
acd r25, 8=8, r29
sub r14, r0, 9, {c}
jmp ner LOOQS15(r?)
nop
ldl 8¢(r3CY, r3Z ; (returning 2)
jmp nonas, L3JIC15(r) ; return
nop
L003C16:
1dl A(r30), r18% ; (calling tak)
sub r13,#Fixzero+4596-439érrC,(c} ; constant MAY be to0 big!
; (tail merging)
; (ecalling tak)
jnp 13, L22217(r)
nop
ldl 0¢r3l), r12
sub r13,#Fixzerc+457é+40961r01{c} : constant MAY be too higt
jmp le, LOCI13(rDM
nopo
L02217:
ldl C(r30), ri1é ; (fronm x to reg)
call r15, _getout(rd)
add rds r1sr r16 ; exit on overflow
L00018:
ladl 0¢(r30), r18
sub r19, #4, r18
stl r13, 0(r23)

add r23, #4, r2?

L39319:

ldl 4¢r30), r18 ; (from y to stack)
stl r13, 0(r29)
add r23, %4, r29
1dl 8(r33), r18 ; (from 2z to stack)
stl r1S, 2(r29)
add r2%, 84, P29
add r23, #=12, rla
1ldl trantb+8(rdd), r18
call r15, FOJ3012(rQ)
acdd rd, r1, r1é
add r2%, #=12, r29
stl r1é4, 2(r2?3) ; (from rz2g to stack)
add re?, R4, ra2y
1dl 4(r33), r18
sub r13, zFixzero+s4398=-4359%, r0, {c2 ; (calling tak)
jmo le,» LCCJ20(rC)
nop
ladl 4¢r30), r13
sub r12, &Fixzero+4595+4035%, r2, {c} ; (ealling tak)
jmp la, LCJ2321(r0)
nop
L0J320:
1dl «(r33), ri1é ; (from y to reg)
call r15, _getout(rﬂ)
add rds r1, rlé
L5021
1dl (r33), r18
sub r18, R4, r1°2
stl r13, 3(r29)
acd r2%, %4, r29
LonNg22:
1cdl g(r30), r18 ; (from 2z to stack)
stl r13, 0(r2?3)
add r29, 84, r29
1ldl 0¢(r30), r18 ; (from x *o stack)
stl r13, C(r2M)
add rS, Ré, r29
add r23, #=12, rlé
ldl tranthb+2(r0), r18
call r15, £023213(rd)
add rl, r1, 16
add r2%, =12, r29
stl r14, 0(r29) ; (from reg to stack)
add r2s, a4, r29
1dl 8¢r3C), r18 ; (calling tak)
sub r1%, #Fixzero+4595-4C5¢, r3, {c?
jmp la, L22023(rQ)

nop

LCO023:

L0J3J24:

LG30e

w

L0O0T15:

ldl
sub
jmp
noo

1ldl
call
add

ldl
sub
stl
add

1dl
stl
add
1dl
stl
add
add
1dl
call
add
add
stl
add
141
stl
ldl
stl
1dl
stl
add
jmo
nop

rat
nop

8(r30), r18

r13, EFixzero+4596+409%,

le, LCO0J24(r0)

B(r32), rl4
r15, _getout(rO)
r), P11, P16

g(r30), r1t
ri8, #4, r12
r13, 2(r23)
r25, Eb, 27

Q(r3C), r13

r18, 0(r29)

r23., gL, r2sy
4(r32), r12

r13, 3(r29)

r2%, %6, r2°
r29, =12, rlé
tranta*+2(rd), r12
r15, F02013(rl)
rd, rl1s P15

r23, 4=12, rlS
r14, S(r29D

r25, 24, r29
-12(r29), r13
r15%, 2(r3d)
-3(r2%), 18
r13, 4(r3C)
-4(r23), r13
13, 3(r30)

r3%, 812, r29
none, LJ3314(rl)

r31

rCr {c}

; (from z to reg)

; (from x to stack)

; (from y %Yo stack)

; (from res to stack)

_test:
F33326:

L00027:

tranth:

«globi
eglobl

add
ada

add
stl
add
add
stl
add
add
stl
add
add
1dl
call
actd
add
add
ret
nop

; linkage stuff

«long
«long
«1long
.long

_tast ’
FO0322¢

~e

#C, r3 ’

rd, ras

rd,

rZl,

rd, AFixzero*45%4+72, r13
r14, J(r27?) ;
r23, #4, r27

r3, AFixzera*4534+483,
r1S, 5(r29)

r29, 6, r29

rd, BFixzaro+taSPE+24,
r1%, 2(r2?)

r23, B4, r23

r2%., 2=12, r1é
trantb+3(rd), r1¢
ris, F02013(rd)

rGs r1, r1é

PZ?I #-12, r29

ri4, rd, r3C

r31

r1¢

rié

_lessp ;
FJ32012
FQ2313
F£33326 ;

e

names

(fzn

linke

(from

location of

visible from "C"

lambda test)

r stub

; (calling tak)
(fixnum 18) to stack)

; (from (fixnum 12) to stack

5 (from (fixnum 6) to stack)

; pass result upuward

Nlessp"
"tak"

"test"

)

Appendix II — coding TAK from PSL to risc

(de tak (x y 2)
(cond ((not (lasss vy x)) 2)

(t (tax (tak {sulb? x)
(tak (subl y)
(tak (surtl 2)

(ue test Q)
(tak 13 12 =)

GLJaoe2

(]
(&)
w
(@]
&

30001

*x*x (TAK): basea
TAK

2.1. TAK in PSL
(»SNTRY TAK 2x%2 3)
(SU3L2 27 (RsG 37T))
(MSVL (RZ35 1) (Dz==R°zD (
(M3vL (R2G 2) (21I5PLACZHE
(MOVL (RZ25 3) (DISPLACSEMZ
(MIvL (RZ5 1) (REZ 2))
(MOVL (DISPLACSHMINT (RESS
(JS3 (SNTRY LESS™))
(Cv¥2L (REG 1) (RT5 NILDD
(UJNZS 532246)
(A2VvL (DISPLACZIMENT (035
(J3R 32321
(MIOVL (2582227 (R3I5 STY))

(J353 (ENTRY SU21))

(MIvL (2ISTLACSVENT (QFS
40Vl (JISPLACEZMENT (RE
(353W C(INTIRNLLENTSY TAK)

2)

x N K
x
~

y))¥))

Z =™
— ~n

ST) 2) (RZ5 1))
(R26 1))
STY 8) (RESG 3))

STY 4) (REG 2))
)

(42VL (R33 1) (JTISPLACEIMENT (RSG5 ST) 12))

(MOVL (JISPLRACZVMENT (Rk=3
(J33 (ENTRY SU21))

(MavL (JE#ZR2ED (RS35 ST
(MOvL (JISPLACZH4ENT (FES
(3534 (IMNTSRNALENTRY TAK)
(43vL (R=ZG 1) (2TISPLAC=M
(MSVL (JISPLACEMEINT (323
(JS3 (ENTRY SL21))

(MJIVL (DISSPLACZA4ENT (RFG
(MoVL (ZSRERRED (R=5 ST
(3353w (INTERNAGLENTRY TaK)
(40vL (RZ5 1) (RE3 3))
(MOvL (DISPLACIVENT (RZ§
(M2vL (DISPLACEMENT (RZ5
(J3R 322C2)

(aAd2L2 23 (R=3 ST

(RS3)

547386, langth 123 nytes

(*ZNTRY TEST zx2¢ 2)
(MOVL 4 (RES 3))
(M3vL 12 (235 2))
(M3vL 13 (Rz6 1))
(JMP (ENTRY TAK))

G

3

*xx (TEST): base 547775, length 15 bytes

2.2. Intermediate code from compiler

ENT (

STY 4) (RZG 1))

(rs
ST
)

ST) &) (R:
STY 4) (RZ3 1))
(223 2))

)

ST) 19) (RZGC 2))
ST) 12) (REG 1))

5¢: susl? $14,5p0

Stbe movl r1,(s0)
Se: movl r2,4(32)
62: novl r3,2(sn)
55 navl rt,r2

59 movl 4(sp),r1
6t s Jsh «5cC0323M1
73: emol r1,r11

7%: bnagu Te

753 movl 8({snr),r1
7c: brb cf

Ta: movl {sp),r1
31: Jsh *»3cJ20230C2
27: movl 2(sz2),r3
Sis movl 4Csa),r2
2f: bsouw 58

92: nmovl r1,e(3p)
762 movl 4(sa),r1
9a: jsh *$200027802
a0: movl (sn),r3
a3: movl 8(sa),r2
al: hsauw 512

az: movl r1,10(0s2)
2a: movl “(spl),ri
hes Js» *52373C03352
neé: movl 4(sp)erd
he: movl (s2)r,r2
ht: shuw 5¢

ci: movl r1,r3

c5: movl 19(sp),r?2
cy: movl c(sa),r1
cd: bro Sh

cf: addl? $14s5D

d2s rsh

dd movl Sé,r?

d=: movi Sc,r2

ds: novli 12,01

de: jno *3225300803
223 clrl r3

a4 movl $$2233C%04,r2
ab: movl $$25023%20,71
f2: Jsn *$c50323C5

2.3. VAX output code from compiler

eglonl
tax:
add
add
call
aad
aad
Jmo
nop
add
Jun
noes
stay:
add
call
add
add
ada
call
add
add
add
call
sad
add
add
call
add
add
add
czll
add
add
add
call
add
add
add
add
Jno
noo
out:
ret
nop

e3lobl _tesx
_test:
add
auad
add
AR J-
noo

tak ; (fen lampda tak)

r22, r2s r12
r23, rls, 146
r15, _la2ss2(rQ)
rd, r1, r1s
ri4, rd, rd,
ner stay(r?2)

{<}

r23,
nonars

rdl, r32
sut(rl)

r3Js rls rlb
r1S, _sub1(rl)
rd, r1, r1%
r23, rS, r12
r2?, r2, r12
r15, tak(rl)
rds, rl, rib
rté4, ros r17
r2?2, rl, r1s
r15, _3ub1(rd)
2, rl, rts
r3J, rd, r12
r22, r2, r13
r15, tac(r~2)
rd, r1, r15
ri4, 2, r13
r23, rd, rlea
r15, _sun1l(r?)
rd, r1s, rlé
r29, rd, r12
r33, rd, r13
r15, tak(r?)
r3, rl, r14
r14, P2, r2%
r1%, rl, r29
r17, r2, r22
nones, tak(rl)

r31

r2s

r29
rid

£EFixzaro+ib,
3Fixzera+dl,
fFixzers+72,
tak{rl)

rds
rd,
rd.,
ngnar

2.4. Equivalent code for risc

we weo

ALl

fixnum

€
12
18

