Fourier Transforms in VILSI*

C. D. Thompson

Division of Computer Science
U. C. Berkeley
Berkeley, CA 94720

1. Introduction
One of the difficulties of VLSI design is the magnitude of the task. It is not

easy to lay out one hundred thousand transistors, let alone ten million of them.
Yet there is a sense in which the scale of VLSI is advantageous. The complexity
of a VLSI chip is so great that asymptotic approximations can give insight into

performance evaluation and design.

This paper shows how asymptotic analysis can aid in the design of Fourier
transform circuits in VLSI. Approaching chip design in this way has three advan-
tages. First of all, the analysis is simple: the calculations are easy to perform
and thus easy to believe. Second. the analysis points out the bottlenecks in a
design, indicating the portions that should be optimized. It is impossible to

»miss the forest for the trees” when one is thinking of asymptotic performance.

A third advantage of the analytic approach is that it provides a simple
framework for the evaluation and explanation of various designs. Limits on
area-time performance have been proved for a number of important problems,
including sorting, matrix multiplication, and integer multiplication
[1.3.7.10,13.15,16]. In the case of the central problem of this paper, the N-
element Fourier transform, it has been shown that no circuit can have a better
area*time? performance than Q(N3og?N)' [16].

For the purposes of this paper, "time performance” is defined as the
number of clock cycles in the interval between successive Fourier transforma-
tions by a possibly pipelined circuit. Note that it is a circuit’s throughput, not its
delay, that is measured by this definition of "time performance.” However, in

view of the importance of circuit delay in many applications, delay figures will be

¢ This work was supported in part by National Science Foundation Grant ECS-8110684, by a
Chevron U.S.A. Career Development Grant, and by U.S. Army Researchr Office Grant OAAGR26-78-G-
0187.

)

-2-

presented for all the Fourier transform-solving circuits in this paper. The
optimality of any particular delay figure can be judged by how close the circuit
comes to the limiting area*delay? performance of Q(/N?log®N) [13].

No matter how one defines a circuit’s time performance, it is important to
make explicit i/U assumptions when quoting or proving lower bound results.
Vuillemin's somewhat implicit convention [18), followed here, is that successive
problem inputs and outputs must enter and leave the circuit on the same pins.
For example, pin #1 might be used to carry the most significant bit of input #1
for all problems. This is a natural assumption for a pipelined circuit; a more
flexible form of parallelism would allow different problem instances to enter the
circuit on different 1/0 lines. (The area*delay? performance limit quoted above
relies on the assumption that all the bits of an input word entered the circuit
through the same pin, or at least through a localized set of pins. However,
Vuillemin's proof technique makes it clear that the delay bound also applies
under the 1/0 assumptions of this paper.) Readers interested in a further dis-
cussion of the way 1/0 assumptions can affect lower and upper bounds on circuit -

performance are referred to [15].

The fact that there is a theoretical limit to area*time? performance sug-
gests that designs be evaluated in terms of how closely they approach this limit.
Any design that achieves this limit must be optimal in some sense and thus
deserves careful study. This paper presents a number of optimal and nearly
optimal designs, corresponding to different tradeoffs of area for time. For
example, Section 3's "FFT network” takes only O(log N) time but O(N?) area to
perform its Fourier transform. Thus it is a.faster but larger circuit than, say,
the "Mesh implementation” which solves an N-element problem in O(VN) time
and O(Nliog?N) area.

Section 2 of this paper develops a simple model for VLS], laying the ground-
work for the implementations and the analyses. The model is based on a small
number of assumptions that are valid for any currently envisioned transistor-
based technology. Thus the resuits apply equally well to the fleld-effect transis-
tors of the MOS technologies (CMOS, HMOS, VMOS, . . .), to the bipolar transistors

t The OMEGA() notation means "grows at least as fast as”: as N increases, the area*time?®
preduct for these circuits is bounded from below by some constant times N°log°N. In contrast, the
more familiar 0() notation is used exclusively for upper bounds, since it means "grows at most as
fast as.” For example, a circuit occupies area A=0 N if there is some constant C for which ASCN
for all but a finite number of problem sizes V. Finally, all logarithms in this paper are base two.

T

of I?2L, and to any GaAs process.

Section 3 describes nine implementations of Fourier transform-solving cir-
cuits in VLSL. Most of these circuits are highly parallel in nature. None of the
circuits are original to the paper. However, only a few had been previously

analyzed for their area-time performance.

Section 4 concludes the paper with a summary of the performance figures

of the designs.

2. The Model

Briefly, a VLSI circuit is modeled as a collection of nodes and wires. A node
represents a wire junction, a transistor, or a gate. A wire represents the con-

ductor that carries signals from one node to another.

In keeping with the planar nature of VLSI, restrictions are placed on the
ways in which nodes and wires are allowed to overlap each other. At most two
different wires can cross over each other at any point in the plane. The rules for
node-wire and node-node overlap are somewhat more complicated, but are
intended to assure that the resulting circuit can be implemented in current
VLSI technologies. In particular, the rules imply that no two transistors will

overlap.

The unit of time in the model is equal to the period of the system clock, if
one exists. (Asynchronous circuits and “self-timed" circuits are discussed in the
author's dissertation [13}; only the synchronous case is described here.) In par-
ticular, a wire can carry one bit of information in one unit of time. This bit is

typically used to change the state of the node at the other end of the wire. '

The unit of area in the model is determined by the "minimum feature
width" of the processing technology. Wires have unit width and nodes occupy
0(1) area, that is, a node is some constant number of wire-widths on a side. The
area of a node also includes an allowance for power and clock wires, which are
not represented explicitly in the model. It is important that the area of a node
and the length of its output wires be limited by constants. In this way, fanin and

fanout restrictions can be enforced.

The problem of long-distance communication receives special attention.
Most nodes can drive only short wires. A specialized "driver node” of O(k) area
is required to send a signal down a wire of length k. (In the NMOS technologies,

a driver is about 10% of the area of its output wire.)

-4-

Long-wire drivers are built according to the scheme described in [8, p. 13].
In general, a driver of O(k) area is built from O(log k) amplifier stages. The
gate area of each stage is a constant factor larger than the gate area of the
preceding stage; the gate area of the last stage must be O(k), to match the
capacitive load presented by a wire of length k. The natural layout for each
stage is a long, thin rectangle of O(1) height, since it is essentially one large
transistor gated by the system clock. The entire driver thus fits into an 0(1)-by-
O(k) unit rectangle, as long as its serial amplification stages are laid out in a

linear array.

The model’s timing rules are predicated on the assumption that the load
presented by a long wire is capacitive in nature and proportional to its length [8,
p. 315]. Inevitably, resistive effects and current limitations will degrade the per-
formance of drivers for extremely long wires [8, p. 230]. The unit-bandwidth,
logarithmic-delay assumption for long-wire drivers is therefore somewhat
optimistic. On the other hand, it might be argued that the logarithmic-delay
assumption is somewhat pessimistic, since a driver with 3 stages of amplification

is currently optimal for even the longest of wires.

As mentioned above, nodes are allowed to overlap other nodes and wires.
The justification for this may seem a bit involved, but it makes it much easier to
estimate the total area required by a circuit. By making use of node-node over-
lap, one need only consider the area contributions of wires and logic nodes.
There is always enough room for long-wire drivers, when the following layout

strategy is used.

All long-wire drivers are laid out lengthwise, alongside the wires they drive.
Since the drivers are only O0(1) units wide, this strategy can increase the
eflective wire-wire spacing by at most a constant factor. Since one driver can
intersect another, the initial portion of a long wire's run behaves no differently
than the final portion.

‘The layout strategy described above can result in a fairly large number of
node-node crossovers. However, these can always be implemented by "splitting”
the transistors involved in the two nodes. The split transistors operate in paral-
lel, so that their current sourcing (or sinking) abilities are approximately addi-
tive. A few wires of O(1) length must be added to the layout to connect every
pair of split tranistors. However, this only adds a constant amount of area to
the size of each node-node crossing. A more serious eflect comes from the

inefficiencies of split transistors. If a driver is split into too many pieces, its

(S

-5-

time performance will surely suffer. Still, as long as the circuit’s wires can be
modelled as capacitances (s, p. 315], node-node crossings will not affect system
timing. Since the model is already predicated upon this "capacitive load

assumption,” it is consistent (and very useful) to allow node-node crossings.

The model is summarized in the list of assumptions below. A fuller explana-
tion and defense of a similar model is contained in the author's thesis [13]. A

slightly different version of the model, with modified 1/0 assumptions, appears in
[15].
Assumption 1: Embedding.

a. Wires are one unit wide.

b. At most two wires may cross over each other at any point in the plane.

c. A logic node occupies O(1) area. It has 0(1) input wires and O0(1) out- |

put wires, none of which are more than 0(1) units long. (In general, a
logic node can implement any boolean function that is computable by a
constant number of TTL gates. Hence an "and gate" or a "j-k flip-flop”

is represented by a single logic node.)

d. A (long-wire) driver node of O(k) area has two output wires that are
each k units long, and two input wires. Its "low-power" input wire is
0(1) units long, and is usually driven by the output of a logic node. Its
"high-power” input wire is at least k units long, which means it must be
driven by a driver node of similar size. A driver node is originally
designed as an 0(1)-by-0(k) unit rectangle, but it may be "folded” into
any other rectilinear shape with O(k) area.

e. Two nodes, or one node and one wire, may overlap each other but their
intersection area does not count toward the required area for the
node(s).

Assumption 2: Total area.

The total area of a collection of nodes and wires is the number of unit
squares in the smallest enclosing rectangle. (A rectangular die is used to
cut individuai chips out of a silicon wafer: the larger the die, the fewer cir-
cuits per wafer. This paper's area measure is thus correlated with

manufacturing costs.)

Assumption 3: Timing.

-8-

Wires have unit bandwidth. They carry at most one bit of information

in a unit of time.

Logic nodes have O(1) delay. (This assumption, while realistic, is

theoretically redundant in view of Assumption 3a.)

The driver node for a wire of length k imposes an O(log k) delay on the
signals coming from its “low power” input wire. However, signals on its
"high power” input encounter only 0(1) delay, since they only pass
through one amplifier stage. (The two input signals are "wire-ored" at

the input to the last stage. See Assumption 4c.)

Assumption 4: Transmission Sunctions.

a.

The "state” of a node is a bit-vector that is updated every time unit
according to some fixed function of the signals on its input wires. The
signals appearing on the output wires of a node are some fixed function
of its current "state.” (With this definition, a node is seen to have the

functionality of a finite state automaton of the Moore variety.)
Logic nodes are limited to 0(1) bits of state.

Driver nodes have O(log k) bits of state, one Sit for each stage in their
amplification chain. This state vector acts as a shift register plus an or
gate. That is, the signal on the output wire of a driver node is obtained
by or-ing the signal on its "high power" input wire with the signal on its

“low power’ input wire delayed by O(log k) time units.

Assumption 5: Problemn definilion.

a.

A problem instance is obtained by assigning one of ¥ different values
to each of N input variables. All N¥ possible problem instances are
equally likely: there is no correlation between the variables in a single
problem instance, nor is there any correlation between the variables in
different problem instances. (If successive problem instances were
correlated, pipelined circuits might take advantage of this correlation,
invalidating the lower bounds on achievable performance. It would of
course be interesting to make a separate study of circuits that

efficiently transform correlated data.)

N is an integral power of 2. This allows us to use the FFT algorithm in

our circuits.

s

-7-

log M = B(log N): a word length of logM] = c (logzN) bits is necessary
and sufficient to represent the value of an input variable, using any of
the usual binary encoding schemes: one’'s complement, two’'s comple-
ment, ete. (This assumption allows us to suppress the parameter ¥ in
our upper and lower bounds. Binary encoding is required in the lower
bound proof [18]; it should be possible to remove this restriction. The
restriction on word length seems to be congruent with normal usage of
the Fourier transform: in practice, ¢ seems to be a small constant

greater than 1.)

The output variables § are related to the input variables Z by the equa-
tion 9 = AZ. The (i,j)-th entry of A has the value wY, where w is a prin-
cipal N-th root of unity in the ring of multiplication and addition mod
M. (This assumption defines a number-theoretic transform; results for
the more common Fourier transform over the fileld of complex

numbers are analogous.)

Assumption 6: Input registers.

a.

Each of the N input variables is associated with one input register
formed of a chain of flogM] logic nodes. In other words, input register i

corresponds to input variable z;, O<i<N-—1.

Each input register receives the value of its variable once, at the begin-
ning of each computation; each input value is sent to exactly one input
register. (This paper’s model is thus "when- and where-oblivious" [7].
since the times and locations of input events are not data-dependent.
The model is also "semelective and unilocal" [10], since each input

value is read at a single time and location.)

Assumption 7: Output registers.

a.

Each of the N output variables is associated with one output register

formed of a chain of flogM] logic nodes.

A computation is complete when the correct value of each output vari-
able is encoded in the state of the nodes in its output register.
Presumably, some other circuit will make use of these output values at
this time.

Assumption 8: Pipelined Time Performance.

-8-

A collection of nodes and wires operates in “pipelined time T" if it com-
pletes computations at an average rate of one every T time units. The time
bounds of this paper thus measure the throughput, not the delay, of Fourier
transform circuits. (llowever, delays are considered in Section 4's com-

parison of the nine designs.)

3. The Implementations

All of the Fourier transform circuits of this paper are built from a few basic
building blocks: shift registers, multiply-add cells, random-access memories,

and processors. These are described below.

A k-bit shift register can be built from a string of k logic nodes in O(k)
area. Each of the logic nodes stores one bit. Shift registers are used to store the
values of variables and constants; these values may be accessed in bit-serial

fashion, one bit per time unit.

Multiply-add cells are used to perform the arithmetic operations in a
Fourier transform. Each cell has three bit-serial inputs ¥, z¢ and z,. It pro-

duces two bit-serial outputs
yo=zo+o*z, and Y =zg-u®z, (1)

The inputs and the outputs are all llog Ml = 8(log N) bit integers.

It is fairly easy to see that a simple (if slow) multiply-add cell can be built
from O(log N) logic gates [13]. The multiplication is performed by O(log N)
steps of addition in a carry-save adder. Tiue subsequent addition and subtrac-
tion can also be done in O(log N) time. Thus a complete multiply-add computa-

tion can be done in O(log N) time and 0O(log N) area.

The aspect ratios of the multiply-add cell and shift register may be adjusted
at will. They should be designed as a rectangle of O(1) width that can be folded

into any rectangular shape.

An S-bit random-access memory with a cycle time of O(log S) can be built
in 0(S) area, using the techniques of Mead and Rem [8, pp 317-321]. (Their area
and time analyses are essentially consistent with the model of this paper; see
[13] for a comparative study of the two models.) The cycle time claimed above
is the best possible, given the logarithmic delay Assumption 3c, since most of

the storage locations are at least VT wire-widths from the output port of the

-9-

memory. To achieve this optimal cycle time, the number of levels in Mead and

Rem'’s hierarchical memory must grow proportionally with log S.

Processors are used to generate control signals, whenever these become
complex. Each processor is a simple von Neumnann computer equipped with an
O(log N)-bit wide ALU, O(log N) registers, and a control store with O(log N)
instructions. The cycle time of a PE is O(log N) time units. This is enough time
to fetch and execute a register-to-register move, a conditional branch, an "add",
or even a "multiply” instruction. It is also enough time to allow the processor’'s

operands to come from an N-bit random-access memory.

At least O(log2N) units of area are required to implement a processor,
since it has O(log N) words = O(log?N) bits of storage. A straightforward, if
tedious, argument can be made to show that 0(log2N) area is actually sufficient
to build a processor [13]. Neither the ALU, the data paths, nor the instruction
decoding circuitry will occupy more room (asymptotically) than the control

store.

3.1. The Direct Fourier Transform on One Multiply-Add Cell

The naive or "direct” algorithm for computing the Fourier transform is to
compute all terms in the matrix-vector product of Assumption 5d. Following
this scheme, a total of N? multiplications are required when an N-element input
vector # is multiplied by an N-by-N matrix of constants A, to yield an N-
element output vector §. Three degrees of parallelism immediately suggest
themselves: the product may be calculated on one multiply-add cell, on N
multiply-add cells, or on N? multiply-add cells. Each possibility is discussed

separately in the discussion that follows.

A single multiply-add cell will take 0(N%og N) time to perform all the cal-
culations required in the direct Fourier transform algorithm. (Recall that a
muiltiply-add calculation takes O(log N) time.) To this must be added the over-
head of calculating the constants in the matrix 4, since a prohibitively large
amount of area would be required to store these explicitly. Fortunately, this cal-
culation is quite simple. The constant required during the ij-th muttiply-add
step (see statement 4 of Figure 1) can generally be obtained by multiplying o*
by the constant used in the previous multiply-add step, wt-1). A single proces-
sor is capable of performing this calculation, supplying the necessary constants
to the multiply-add cell as rapidly as they are needed. The time performance of
the uniprocessor DFT design is thus O(N?®og N).

-~ "‘v“_;’.: o
- "

-10-

1. FORi « 0TON-1DO

2 T

3. FORj « 0TON-1DO
4. Yy « g + 0¥z

5 OD;

6. OD.

Figure 1: The naive or "direct” Fourier transform algorithm.

The area required by the single muitiply-add cell design is O(log N) for the
multiply-add cell, O{log?N) for the processor supplying the constants, and
O(N log N) for the random-access memory containing the input and output
registers. This last contribution clearly dominates the others, giving the unipro-
cessor DFT design a total area of O(N log N). Its combined area*time® perfor-
mance is thus a dismal O(NSlog?N). It has far too little parallelism for its area.
The designs in the next two sections employ progressively more parallelism to

achieve better performance figures.

3.2. The Direct Fourier Transform on N Cells
Kung and Leiserson [8. pp. 289-291] were apparently the first to suggest

that the Fourier transform could be computed by the “direct” algorithm on
2N —1 multiply-add cells connected in a linear array. These cells operate with a
50% duty cycle: the even-numbered cells and the odd-numbered cells alternately
perform the computational step described below. An obvious optimization [8]
results in a circuit using only N multiply-add cells to accumulate the terms in
the DFT.

The entire DFT calculation is complete in 4N -3 computational steps. During
each step in which it is active, each even- (or odd-) numbered cell computes
Yy + y + azx using the value y provided by its right-hand neighbor (the leftmost
cell always uses y=0). The y' values eventually emerging from the leftmost cell
are the outputs § in natural order. The inputs # to the circuit enter through the
leftmost cell and are passed, unchanged, down the line of cells. Due to the 50%
duty cycle of the cells, one vy value is produced (and one z value is consumed)

every other computational step.

The only complicated part of the circuit has to do with computing the con-

-

stant values a. A complete description of this computatiomis rather lengthy [8,

P
L 2l & I
P . -

(L.

-11-

pp. 290-291]; only a sketch is attempted here. Suffice it to say that each a value
is obtained by a single multiplication from the a value previously used by the
cell next closest to the center of the line. The only exception to this rule is that
the constant-generating circuitry for the centermost cell must perform four
multiplications to obtain the next a value. (Perhaps a fast multiplier might be
provided for the centermost cell, to keep it from slowing down the whole array.)
In any event, the constant-generating circuitry for each cell performs a fixed
sequence of register-register operations, all off which can be completed in
O(log N) time and O(log N) area.

The time performance of the N-cell DFT design is O(N log N), since each of
the 4N -3 computational steps can be completed in O(log N) time. The total

area of the N cells and their constant-generating circuitry is O(N log N)

Note that the total area of the N-cell DFT design is asymptotically identical
to that of the 1-cell design. This is a reflection of the fact that a register takes
the same amount of room (to within a constant factor) as a multiply-add cell.
However, one can confidently expect that an actual implementation of the 1-cell
design will be significantly smaller than an N-cell design due to this "constant
factor difference.” Section 4 contains a further discussion of the significance of

constant factors in the interpretation of the asymptotic results of this paper.

The area*time? performance of the N-cell DFT design is 0(N%0og3N). Thisis
far from optimal, but it is a great improvement on the 1-cell design. The next
section describes an N?-cell design that has a nearly optimal area*time® perfor-

mance figure.

3.3. The Direct Fourier Transform on N? Cells
One way of boosting the efliciency of the N-cell DFT design is to pipeline its

computation. Instead of circulating intermediate values among one row of 2N -1
cells for 4N -3 steps, one can "unroll” the computation onto 4N—3 rows of 2N -1
cells. Now each problem instance spends just one computational step on each
row of cells before moving on to the next row. (Note that there are actually
about BN? cells in the “N?-cell” design.)

All 1/0 occurs through the leftmost cell in the odd-numbered rows, in the
staggered order shown in Figure 2. This figure shows only the 1/0 for a single
problem instance; inputs for successive problem instances may follow immedi-
ately behind the analogous inputs for the previous problem, after & delay of one

eomputational step.

- et -

n1s

%

-12 -

Y3 - L
Y2 <+ L

Yy - L

yO - L.

X3 —

X2 —

X —*

X0~

Figure 2: Staggered 1/0 pattern for the N2-cell DFT design.

More precisely, the first input for each problem instance enters the left-
most cell of the first row. The second input enters the leftmost cell of the third
row, two computational steps later (remember that each computational step, as
defined in the previous section, involves only "even” or "odd" cells). The N-th
input enters the leftmost cell of the (2N—1)-th row, 2N -2 computational steps
after the first input entered the circuit. At the end of this step, the first output
is available from this same cell. The second output comes from the leftmost cell
of the (2N +1)-th row, after two more steps...and finally the N-th output emerges
from the leftmost cell of the (4N—3)-th row, (4N —3) computational steps after

the first input was injected into the circuit.

As noted above, the k-th input for another problem instance can follow
immediately behind the k-th input for the previous problem, delayed by only
one computational step. The circuit thus operates in pipelined time
T = O(log N). The total area of the N2-cell design is A = O(N?®log N), since each
cell occupies O(log N) area. The combined area*time?® performance of the
design is only a factor of O(log N) from the optimal figure of Q(NZlog?N). Thus it
is pointless to look for a smaller circuit with a similar pipelined tune perfor-

mance. Hewever, it is possible to make great improvements on this cxrcuxt s

- . . sl .

-t
H

-13-

solution delay, as shown by the (N log N)-cell FFT design presented later in this
paper.

It is fairly easy to describe a few "constant factor” improvements to the
NZ-cell DFT design. First of all, at least half of the cells on each row are idle, due
to the 50% duty cycle inherent in the Kung-Leiserson approach. Secondly, the
computations done in the shaded portion of Figure 2 are irrelevant {the result-
ing ¢ values do not affect the circuit’'s outputs). Each of these considerations
halves the number of required multiply-add cells, leaving fewer than 2N? cells in
an optimized design. Finally, the constant-generating circuitry described for
the N-cell design need not be carried over to the NZ2-cell design, for each cell
uses the same a value every time it does a computational step. In other words,
the constant matrix A can be "hard-wired"” into the registers of the multiply-add

cells.

An alternative design for a Fourier transform circuit with about N2 cells
may be derived from Kung and Leiserson's matrix-matrix multiplier [8. p. 277].
(An earlier version of this paper proposed this design in somewhat greater
detail.) The inputs to the Kung-Leiserson multiplier are the constant matrix 4
and the matrix formed by concatenating N different problem input vectors Z;
the outputs are N problem output vectors §. The alternative design has the
advantage of using about 4N? multiply-add cells at-a 33% duty cycle, that is,
there are only 1.33N? fully-utilized cells in an optimized design. On the other
hand, the alternative design has the disadvantage that it cannot continuously
accept input problems: »gaps” of 2N—1 time units must intervene between
"bursts" of N problem instances. Furthermore, additional wires are required in
the alternative design to circulate the constant matrix 4 among the multiply-
add cells.

3.4. The Fast Fourier Transform on One Processor

Up to now, all the circuits in this paper have computed the Fourier
transform by the naive or direct algorithm. Great increases in efficiency are
observed in conventional uniprocessors using the fast Fourier transform algo-
rithm; it would be remarkable indeed if we could not take advantage of our

knowledge of the FFT in the design of Fourier transform circuits.

There are a number of versions of the FFT in the literature, differing chiefly
in the order m_wmch they use inputs, outputs, and constants. Figure 3 shows.a
ime" algorithm, taken from Figure 5 of [4]. Figure 4 shows a

"decimation in t
B Y

.

-14 -

"decimation in frequency' algorithm, adapted from Figure 10 of [4]. In both
cases, the N problem inputs are stored in z;, the N problem outputs are y;, and

@ is a principal N-th root of unity.

1. FORb « (log N) — 1 TO 0 BY -1 DO
2 p«2% g« N/p: /* notethat N=pg */;
3 z « oP; /» z is a principal g-th root of unity %/:
4 FORi « 0TON-1DO

5. j «imod q; k « reverse(i);
6 IF (k mod p) = (k mod 2p) THEN

7 Ty, Tpep> « <Tp + 29 Zp4p, T — 27 Zpap >
8 FL;

9 0D;

10. OD;

11. FORi « 0TON-1DO /* unscramble outputs */;
12. Yreversa (i) © &is

13. OD.

Figure 3: The FFT by "decimation in time.” Note: reverse (i) interprets i as
an unsigned (log N)-bit binary integer then outputs that integer with its
bits reversed, i.e., with its most-significant bit in the least-significant

position.

Either Figure 3 or 4 may be used as an algorithm for a uniprocessor that
runs in O(N log N) computational steps. The total area of such a design is
O(N log N), due mostly to input and output storage. (Recall that a single pro-
cessor fits in O(log2N) area.) Total time for an N-element FFT is O(N log®N),
since each computational step takes O(log N) time units. This is, as expected, a
vast improvement over the uniprocessor DFT circuit. However, it is far from
being area*time? optimal, for its processor/memory ratio is too high. Adding
more processors, as in the following design, increases the performance of an FFT

circuit.

«m

-15-

1. FORb « (log N) - 1TO0BY -1 DO

2. p«2 gq«N/p:

3. z « w1/% /* z is a principal 2p-th root of unity */;
4. FORi « 0TON-1DO

5. j « i mod p;

B. IF (i mod 2p) = j THEN

7. Ty, Tiap> ¢ <Ti + Tinp, 2T = 2 Bap >

8. FL,

9. OD;

10. OD;

11. FOR1i « 0 TO N—1 DO /* unscramble outputs ./,

12, Yreverse(i) ¢ Fii
13. OD.

Figure 4: The FFT by "decimation in frequency.”

3.5. The Cascade Implementation of the Fast Fourier Transform

The Cascade arrangement of log N multiply-add cells [5] is nicely suited for
the computation of the Fourier transform using the decimation in frequency
algorithm. See Figure 4 for the algorithm and Figure 5 for a diagram of the Cas-

cade arrangement.

T (e L

X - —> r'—-’-)-"

Figure 5: The Cascade arrangement of 3 multiply-add cells, for computing
8-element FFTs. The multiply-add cells are square; the rectangular boxes each

represent one word of shift register storage.

In a Cascade, one of the outputs of each multiply-add cell is connected to
the input of a shift register of an appropriate length. The shift register’s output
is connected to one of the multiply-add cell's inputs, forming a feedback loop.

The remaining inputs and outputs of the multiply-add cells are used to connect

Toetee

-16 -

thern into a linear array. Problem inputs (values of Z) are fed into the leftmost

cell; problem outputs (values of §) emerge from the rightmost cell.

Each cell handles the computations associated with a single value of the
loop index b in Figure 4. The leftmost cell performs the loop for b = log N -1
the rightmost cell performs the loop computations for & = 0. The pairing of z
values indicated in statement 7 of Figure 4 is accomplished by the 2% -word shift

register associated with cell b.

The attentive reader will note that statement 7 is not exactly the same as
the multiply-add step defined in Equation (1). Statement 7 involves one con-
stant value 2z, two variable values z; and z;,n. two additions, but two (inst.ead. of
one) multiplications. Thus its computation will take about twice as much time

or area as a "standard” multiply-add step.

The conditional test of statement 6 is implemented by having each cell
monitor the b-th bit of the count i of input elements that it has already pro-
cessed. The condition of statement 6 is satisfied whenever that bit is 0. In this
case, a cell performs the computation indicated in statement 7. It sends the
new value for z; to the right, and retains the new value for z;,p in its shift regis-
ter. Whenever the b-th bit of i is 1, no multiply-add computations are per-
formed. However, some data movement is necessary: the data appearing on the
cell's lower input line should be copied into its shift register. Also, the values

emerging from its shift register should be sent on to the next cell on its right.

One of the advantages of using the decimation in frequency algorithm on
the Cascade is the ease of computing the constants for its multiply-add steps.
Only a few registers and a single rnultiplie; are required to generate the con-
stants required by each cell. Referring again to the prograrri of Figure 4, the
constant 27 required in statement 7 may be obtained by multiplying the previ-
ously generated constant zi~! by z. If this multiplication is performed whether
or not statement 7 is executed, no conditional transfers are necessary in the
constant-generating circuitry.y

As noted above, the constant-generating circuitry for each cell consists ofa
multiplier and a few registers. It is thus comparable in area and time complex-

ity to the multiply-add cell itself. Thus the total area of the Cascade design is

t Note that 2% = 27 whenever the b-th bit of 1 is 0, since Z is a 2p-th root of umity. Of
course, exact equality obtains only when exact arithmetic is employed. This is easy to arrange in a
number-theoretic transform. When round-off errors cannot be avoided, for exemple in a complex-
valued transform, it is probably best to use & conditional transfer to reset 2 3 to 1 wheneverj =0

-17 -

obtained by multiplying the number of cells, log N, by the area per cell
O(log N). To this must be added the area of the shift registers. Unfortunately,
there is a total of N—1 words of storage in these registers, so the entire design
occupies O{N log N) area. Thus the Cascade, like the one-processor design, is
almost ali memory. An entire problem instance must be stored in the circuit

while the Fourier transform is in progress.

The time performance of the Cascade is somewhat improved over the one-
processor design. Input values enter the leftmost processor at the rate of one
per multiply-add step. An entire problem instance is thus loaded in O(N log N)
time units. 1t is easy to see that the Cascade can start processing a new prob-
lem instance as soon as the previous one has been completely loaded, so its
#pipelined time" performance is T = O(N log N).

One awkward feature of the Cascade is that it produces its output values in
bit-reversed order. Formally, their order is derived from the natural lefi-to-
right indexing (0 to N —1) by reversing the bits in each index value, so that the
least significant bit is interpreted as the most significant bit. The last few lines
of Figure 4 perform this bit-reversal, but they cannot be performed on the cir-
cuit described thus far. If natural ordering is desired, a processor should be
attached to the output end of the Cascade. If this processor has N words of RAM
storage, a simple algorithm will allow it to reorder the outputs of the Cascade as
rapidly as they are produced.

3.8. The FF¥T Network

One of the most obvious ways of implémenting the FFT in hardware is to
provide one multiply-add cell for each execution of statement 7 in the algorithm
of Figure 3. (The algoritbm of Figure 4 might also be used, but, as noted in the
previous section, its multiply-add computation is a little more complex.) Each
cell is provided with a register holding its particular value of 24, Since state-
ment 7 is executed N/ 2 log N times, a total of N/ 2 log N multiply-add cells are
required for this "full parallelization” of the FFT. Such a circuit is called an FFT
fietwork in this paper.

One possible layout for the cells in an FFT network is to have log N rows of
N/ 2 cells each, as shown in Figure 6. (This diagram was adapted from Figure 5
of [4].) Each row of cells in the FFT network corresponds to an entire iteration of
the "FOR b" loop of the algorithm of Figure 3. The interconnections between the

rows are defined by the way that the array ¥ is accessed. The reader is invited to

-18 -

check that each multiply-add cell in Figure 6 corresponds to an execution of

statement 7 in Figure 3 for the case N=8.
Note that the inputs to the FFT network are in "bit-shuffled” order and its

outputs are in "bit-reversed” order. This seems to minimize the amount of area
required for interconnecting the rows. Additional wiring may of course be added

to place inputs and outputs in their natural, left-to-right order.

The interconnections of Figure 6 may be obtained from the following gen-
eral scheme. Number the cells naturally: from 0 to N/ 2-1, from left to right.
Then cell i in the first row is connected to two cells in the second row: cell 1 and
cell (i + N/4)mod N/2. Celli in the second row is connected to cells i1 and
E/(N/4) + (i + N/8) mod N/ 4) in the third row. Celli in the kth row (where
k=12...log N - 1) is connected to two cells in the (k +1)-th row: cell i and cell
E/(N/2%) + ((i + N/ 2*1) mod N/2%). Another way of describing this
"butterfly” interconnection pattern is to say that a cell on the kth row connects
to the two cells on the next row whose indices differ at most in their kth most
significant bit. (The interconnections between rows in an FFT network can also
be laid out in the "perfect shuflle” pattern described in the next section. How-

ever, this seems to lead to a larger layout, if only by a constant factor.)

A careful study of Figure 6 and the preceding paragraph should convince
the reader that N/2 horizontal tracks are necessary and sufficient for laying
out the interconnections between the first two rows. Essentially, each cell in the
first row has one “long” output wire that must cross the vertical midline of the
diagram. This connection must be assigned a unique horizontal track to cross
the midline. Once this is done, the rest of the wiring for that row is trivial, espe-

cially if the cells are "staggered” slightly as in Figure 8.

The connections between the second and third rows occupy only N/ 4 hor-
izontal tracks. No wires cross the vertical midline of the diagram, but each of
the N/4 cells on either side of the midline have a fairly long connection that
takes up to half of a horizontal track.

In general, the connections emerging from the kth row (k=0,1,...log N — 1)
occupy N/ 2%*! tracks. Straight vertical wires are used to connect cell © in the
kth row with cell i in the {k+1)th row. The horizontal tracks are divided into 2*
equally-sized pieces, then individually assigned to the "long” connection from

each cell.

-19-

XOX4 X | X XZXG X3X7

S O S O T
XoXo| X X3 [XeXa| [X7Xs

Ll v 6

XoX)| [XsX2| [Xa¥s| [*7Xel

' v v v
YoYa YoY% Wi¥s YaYz

Figure 8: The FFT network for N=8.

Following the scheme outlined above, a total of N—1 horizontal tracks are
required to lay out the inter-row connections. An additional N horizontal tracks
could be added above and below the FFT network to bring its inputs and outputs

into natural order.

The number of vertical tracks in an FFT network depends strongly upon the
width of the multiply-add cells. If these are set on end, so that each is 0(1) units
tall and O(log N) units wide, then the entire network will fit into a rectangular
region that is O(N) units wide and O(N) units tall. The height of the log N rows
of multiply-add cells is asymptotically negligible.

The pipelined time performance of the FFT network is clearly O(log N)

since a new problem instance can enter the network as soon as the previous one

< A
A A

-20-

has left the first row of multiply-add cells. The delay imposed by each row's
multiply-add computation and long-wire drivers is O(log N), and there are
O(log N) rows, so the total delay of the network is O(log®N).

Note that this paper’s layout of the FFT network must be optimal, for the
circuit has an optimal area*ime® performance of O{N®1og?®N). Any asymptotic
improverment in the layout area would amount to a disproof of Vuillemin's
optimality result [16].

3.7. The Perfect-Shuffie Implementation of the FFT

Over a decade ago, Stone [12] noted that the "perfect shuffle” interconnec-
tion pattern of N/ 2 multiply-add cells is perfectly suited for an FFT computa-
tion by decimation in time. Figure 7 shows the perfect shuffle network for the 8-

element FFT, and Figure 3 shows the appropriate version of the FFT algorithm.

] XoXi [~Tx, Xs | TXa Xs X X7]

Figure 7: The perfect shuffle interconnections for N=8.

Each multiply-add cell in a perfect shuffle network is associated with two
input values, 7, and Zp.). Here, k is an even number in the range D<k <N-1.
A connection is provided from one of the outputs of the cell containing T Lo one
of the inputs of the cell containing z; if and only if j = 2k mod N—1. Note that
this mapping of output indices onto input indices is one-to-one, and that it
corresponds to an nend-around left shift" of the (log N)-bit binary representa-

tion of k.

The computation of the FFT on the perfect shuffle network can now be
described. First, the input values z, are loaded into their respective multiply-
add cells. Then a muiltiply-add step is performed: each cell ships its original z,
values out over its output lines, and computes new z; values according to Equa-
tion (1). It is not very obvious, but nonetheless it is true, that this corresponds
to an entire iteration of the "FOR b" loop of Figure 3. For example, the leftmost
cell of Figure 6 computes new values for zy and z,, having received the original

value of the former from its own output line and the original value of the latter

-21-

from the third cell. This is the computation required by step 7 of Figure 3, when
N=8, b=2, p=4, g=2, i=0, j=0, and k£ =0.

The FFT computation proceeds in this fashion for log N parallel multiply-
add steps. In each step, the cell containing the (updated) version of z; ships this
value to the cell formerly containing the (updated) version of Zzx mod N-1- Each
cell then performs a multiply-add computation, updating the two data values

currently in its possession.

At the end of log N parallel multiply-add steps, each cell contains the final
versions of its original data values. Unfortunately, the FFT computation of Figure
3 is not complete. The outputs 7 are all available among the final 2 values, but
they appear in "bit-reversed” order. Additional circuitry is required to bring
them into natural order, following steps 11-13 of Figure 3. The techniques of [14]
could be employed in the design of reordering circuitry that would operate in
O(log?N) time, without affecting the area performance of the perfect shuffle net-
work. A detailed description of such circuitry is beyond the scope of this paper,
since Assumption 7 does not require the circuit to produce its ¢ values in any

particular order.

The log N parallel multiply-add steps require a total of O(log®N) time. The
data movement involved in each multiply-add step does not require any addi-
tional time, at least in an asymptotic sense. As will be seen below, the "shuflle”
connections between cells are implemented as single wires carrying bit-serial
data. Each wire is less than O(N) units long, and each word has O(log N) bits, so
that the data transmission time per step is the same as the multiplication time,
O(log N) time units.

The total area of the perfect shuflle implementation is a bit harder to esti-
mate. There are N/ 2 multiply-add cells, each occupying O(log N) are. However,
the best embedding known for the shuffle interconnections takes up
O(N®/10g®N) area [6]. It is easy to see that no better embedding is possible,
since otherwise the perfect shuflle circuit would have an impossibly good

area*time? performance.

9.8. The CCC Network

The cube-connected-cycles (CCC) interconn’ection for N cells is capable of
performing an N-element FFT in O(log N) multiply-add steps [8]. Using the
multiply-add cell of the previous constructions, the complete FFT takes
0{log?N) time.

AN

-22.

The CCC network is very closely related to the FFT network. In fact, a CCC
network is just an FFT network with vend-around” connections between the first
and last rows. For this reason, CCC networks do not exist for all N, only for those
N of the form (K/ 2)*(log K) for some integer K. Figure 8 illustrates the CCC
network for N=8. It is derived from the 4-element FFT network with “split cells':
each cell handles one element of the input vector Z, instead of two as in the FFT
network of Figure 8. (The reader is invited to redraw Figure B, combining the
cells linked by horizontal data paths. The resulting graph should be isomorphic

to a "butterfly’” whose outputs have been fed back into its inputs.)

Figure B: The CCC network for N=8.

The CCC network is somewhat smaller than the FFT network, since it uses
only N cells to solve an N-element problem instead of the FFT network’s
(N/2)*(log N) cells. Furthermore, the CCC’s interconnections can be embed-
ded in only O(N?/log?N) area [9]. This is an optimal embedding, for the com-
bined area*time? performance is within a constant factor of the limit,
Q(N%log?N).

1t is rather difficult to describe the data routing pattern during the compu-
tation of a Fourier transform on a CCC, although the basic approach is similar to
that taken on the perfect shuffle network. Each of the log N multiply-add steps
is preceded and followed by a routing step. These routing steps take O(log N)
time each, for they move 0(1) words over each intercellular connection. Thus
the total time spent in routing data does not dominate the time spent on

multiply-add computations.

--

-23-

3.9. The Mesh Implementation

A square Mesh of N processors is shown in Figure 9. It consists of approxi-
mately VN rows of VN processors each, fitted with word-parallel interconnec-
tions. It is thus essentially the ILLIAC IV architecture, with the difference that
each processor in the Mesh is capable of running its own program. (A closer
approximation to the ILLIAC 1V would have N multiply-add cells, each deriving
control signals from a central processor.)

o "E.::::

PO=gs o00
‘..‘.Oc

p—a» coe

p=—g> 6 60

. .

. .

[] °
[}

Figure 9: The Mesh of N processors, formed of ooz N)/4 rows and 20e& ¥/ 2

columns.

The total area of the Mesh is O{N log®N), since there are N processors each
of O(log?N) area. The processors should each be laid out with a square aspect
ratio, so that the O(log N) wires in each word-parallel data path do not add to
the asymptotic area of the layout. Note that it takes O(loglog N) time to send a
word of data from one processor to its neighbor, since the interprocessor wires
are O(log N) in length.

Stevens [11] appears to have been the first to point out that the Mesh can
perform an N-element FFT in log N steps of computation. Each "step' consists
of an entire iteration of the FOR b loop of Figure 3. Each processor in the Mesh
performs the loop computation for one value of the index variable k. The total
amount of data movement during the FFT can be minimized by making an
appropriate assignment of index values k to individual Mesh processors. It turns
out that a fairly good choice is obtained from the natural row-major ordering (0

to N-1) of the Mesh. Processor k is then the "home" of the variable z;.

-24 -

(Another, more intuitive way of visualizing the computation of the FFT on
the Mesh is to view the latter as a time-multiplexed version of the FFT network.
During each step, N/2 of the Mesh's processors take on the role of the N/2
cells in one row of the FFT network. The wires connecting the rows of the FFT

network are simulated by data movement among the processors of the Mesh.)

An iteration of the FOR b loop of Figure 3 can now be described. Each
mesh processor examines the b-th bit of reverse (k) to decide if it will perform
the computation of statement 7. (For example when b=0, n2=1 so that only the
even-numbered processors will perform statement 7.) Next, each processor that
will not perform statement 7 sends its current value of z;, to processor k+2°.
(For example, when b=0, each odd-numbered processor sends its z value to the
processor on its left.) Statement 7 is then executed, and finally the updated z;

values are returned to their "home" processors.

When b =log N — 1, the data movement required before statement 7 can be
visualized by “sliding” all the z, values in the bottom half of the Mesh up to the
top half of the Mesh. In this way, processor 0 receives the current value of zy 3.
processor 1 receives the value of zy,2+1, ete. This particular data movement will
be called a "distance-N/2 route.” In general, a distance-2® route must be per-

formed both before and after each execution of statement 7.

The time required by a distance-2° route depends, of course, on the value of
b. When b = 0 or 20 N/2 a5l data movement is between nearest neighbors
{horizontal or vertical) in the Mesh. As mentioned above, this takes only
O(loglog N) time.

When b = 20e N3 or 1og N — 1, it would seem that O(VN loglog N) time is
required for a distance-2° route. Each data element must ripple through about
VN /2 processors. However, this result may be improved by using the "high-
power” inputs on the long-wire drivers on the interprocessor data paths (see
Assumption 1d). Once the bits in a data element have been amplified enough to
be sent to a neighboring processor, only one more stage of amplification is
necessary to send these bits on to the next processor. Since the amplifier stages
in a long-wire driver are individually clocked, all data elements in a routing
operation may "slide” toward their destination simultaneously, moving by one
processor-processor distance every time unit. The total time taken by a
distance-2° routing is thus easily seen to be (2° mad [(log N}/ 3) + O(loglog N).

The total time taken by all routings in a complete FFT computation is
bounded by O(VN). Essentially, this is the sum of a geometric series whose

¢

-25-

largest term is the time taken by the longest routing operation, O(¥N). The
time performance of the Mesh design is thus O(~N). At least asymptotically,
the O(log?N) time required for the multiply-add computations is insignificant

compared to the time required for the routing operations.

Three aspects of the Mesh implementation deserve further attention. First
of all, the individual processors are expected to come up with their own 27
values, as they execute statement 7 of Figure 3. This is not difficult to arrange:
each processor has O{log?N) bits of program storage, so it can easily perform a
table look-up to obtain the required constants. One constant is needed for each

processor, for each value of b.

Secondly, the algorithm described computes the § values in bit-reversed
order (relative to the natural row-major ordering of the Mesh). If the outputs are
desired in natural order, another O(VN) routing operations are required [14],
and the individual processors’' programs become a bit more complicated.

One final note: the Mesh implementation, as described, is area*time®

optimal. A slightly less efficient, but possibly more practical design was sug-
gested by one of the referees. Instead of using word-parallel buses. between N
processors in a mesh, one might provide bit-serial buses between N cells in a
mesh. Now the best possible time performance is constrained by the bit-serial
buses to be no better than O(VN log N). Similarly, the area could be reduced to
as little as O(N log N). However, it will be a bit tricky to attain these perfor-
mance figures. There is not enough area to store each cell's 27 values locally, so
these values must be computed "on the fly” in (hopefully) only few extra multi-
plications. This seems to be impossible to daccomplish directly. One solution to
this difficulty is to have the cells exchange 27 values as well as z; values. The
bit-serial approach is thus inherently slower both in routing time and in the
number of necessary multiplications. On the other hand, the word-parallel
approach has wider buses and perhaps larger look-up tables, so that it takes up

somewhat more area.

4 Conclusion

The area and time performance of the nine implementations is summarized
by Table 1. Note that the last four designs are optimal in the area*time? sense.
(Remember that AT? = Q(N?10g2N) for the solution of the N-element Fourier
transform.) In general, the problem with the nonoptimal designs is that they

are processor-poor: the number of multiply-add cells does not grow quickly

-28 -

enough with problem size.

Design Area Time Area*Time? | Delay
1-cell DFT Nlog N N%og N | NSlog3N N2log N
N-cell DFT Nlog N Nlog N | N3log3N Nilog N
NZ2-cell DFT NRlog N log N N2log3N N?log N
1-proc FFT Nlog N N log®N | N3log®N N log®N
Cascade Nlog N Nlog N | N3og3N N log®N
FFT Network N? log N N®1o0g?N log?N
Perfect Shuffle | N?/1og?N | log®N N?log?N log?N
cce N?/10g?N | log®N N?1og3N log?N
Mesh N log®N vN NZ%log?®N vN

Table 1: Area-time performance of the Fourier transform-solving circuits.

The Mesh is the only design that is nearly optimal under any AT?* metric for
O<z<1. Here the limiting performance is AT* = Q(N 1+z]0g?% N') [13]. None of the
other designs with O(N) or fewer multiply-add cells is fast enough, while the

other designs are much too large.

When delay figures are taken into consideration, only the last three designs
are seen to be optimal. The Perfect Shuflle, the CCC and the Mesh are the only
designs that achieve the limiting area*delay? product of Q(N?og®N) [13]. These
designs keep all their multiply-add cells and wires busy solving Fourier
transforms using the eflicient FFT algorithm. All the others, save one, use too
few processors or an inefficient algorithm. The FFT network is an interesting
exception to this observation. Its delay inefficiency seems to be a result of its
slow bit-serial multipliers. If fast parallel muitipliers were employed, the delay
in each stage of the FFT network might be as low as O(loglogN). This would not
increase its total area significantly, since its area is still dominated by its
"butterfly” wiring. The improved FFT network could thus have a area*time? pro-
duct of as little as O(N®log?Nloglog?N).

Of course, asymptotic figures can hide significant differences among sup-
posedly optimal designs due to "constant factors.” The area and time estimates
employed in this paper are not sensitive to the relative complexity of the various

control circuits required in the designs. For example, the NZ-cell DFT, the

o0

-27-

Cascade, the FFT Network and the Perfect Shuffle are especially attractive
designs because they have no complicated routing steps. They are thus given a

more detailed examination below.

As indicated in Table 1, the N2-cell DFT is nearly optimal in its area*time®
performance. However, it is by far the largest design considered in this paper
since it uses more than N? muitiply-add cells. (The others use O(N log N) or
fewer cells.) Using current technology, one might place 10 multiply-add cells on
a chip [13]: this means that one hundred thousand chips would be needed for a
thousand-element FFT! Thus the N2-cell DFT design cannot be considered feasi-
ble until technology improves to the point that 100 or 1000 cells can be formed
on a single wafer. Even then, the interconnections between chips will pose some
difficulties, for there are 40 cells on the "edge” of a 100-cell chip.

The N-cell DFT is an attractive design at present, despite its non-optimal
area*time® performance. It uses only 2N cells in a linear array, so that a
thousand-element Fourier transform can be implemented with only 102 chips of
10 multiply-add cells each. This design is of course much slower than the N2-cell
DFT, since it produces only one element of a transform at a time rather than an

entire transform.

The FFT Network is also fairly attractive at present, for its (N/2)*(log N)
cells can be formed on about the same number of chips as the N-cell DFT, yet
its performance is equal to the NZ2-cell DFT. The drawback of the FFT Network is
that the wiring on and between the chips is very area-consuming. It also has very
long intercell wires, whereas the DFT designs use only nearest-neighbor connec-

tions.

The constant factor considerations of the Perfect Shuffle design are very
similar to those of the FFT Network discussed above. The Perfect Shuffle uses a
factor of log N fewer cells than the FFT Network, so it is a bit smaller and
slower. However, it suffers from the same problem of long inter-chip wires and
poor partitionability.

The Cascade is another non-optimal design, like the N-cell DFT, that
deserves consideration because of its good »constant factors.” It uses only log ¥
multiply-add cells and N words of shift-register memory. These are arranged in
a simple linear fashion. The Cascade achieves the same performance as the N-
cell DFT, producing one element of a Fourier transform during each multiply-
add time. It is superior to the N-cell DFT in that it uses many fewer multiply-
add cells.

-28-

1t is interesting to speculate whether the Cascade is the best way of produc-
ing one element of a Fourier transform at a time. A new metric and method of
analysis is needed to answer this question, for such designs are non-optimal by
definition. (So much area is required to store the problem inputs and outputs

that the optimal area*ime? figure can not be achieved.)

Another interesting open problem is that of partitioning the Perfect Shuffle
network. If 100 or 1000 multiply-add cells can be placed on a single chip, what
sort of off-chip connections should be provided so that these chips can be com-

posed into a large Perfect Shuflle design?

Acknowledgment

The author gratefully acknowledges the insightful comments of two anonymous

referees.

References

[1] H. Abelson and P. Andreae, "Information Transfer and Area-Time TradeofIs
for VLSI Multiplication,” Comm. ACM, Vol. 23, No. 1, pp. 20-23, Jan. 1980.

[2] A. Aho, J. Hopcroft, and J. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, 1974.

[3] R Brent and H. T. Kung, "The Area-Time Comﬁlexit.y of Binary Multiplica-
tion,” CMU-CS-79-138, Carnegie-Mellon Computer Science Dept., July 1979.

[4] W. Cochran and J. Cooley, et al., "What is the Fast Fourier Transform?" /EEE
Trans. on Audio and Electro., Vol. AU-15, No. 2, pp- 45-55, Jun. 1967.

[5] A. Despain, "Very Fast Fourier Transform Algorithms for. Hardware Imple-
mentation,” IEEE Trans. Comput., Vol C-28, No. 5, pp. 333-341, May 1979.

[8] F. T. Leighton, La.youfs for the Shuffle-Exzchange Graphs and Lower Bound
Technigques for VLSI, Ph.D. Dissertation, Department of Mathematics, MIT,
August 1981.

[7] R J. Lipton and R Sedgewick, "Lower Bounds for VLSL," Proc. 13th Annual
ACHM Symp. on Theary of Computing, pp. 300, 307, May 1981.

[8] C.Mead and L. Conway, /ntroduction fo VLSI Systems, Addison-Wesley, 1980.

R

-29-

[9] F. Preparata and J. Vuillemin, “The Cube-Connected Cycles: A Versatile Net-
work for Parallel Computation,” Proc. 20th Annual Symp. on Foundations of
Computer Science, IEEE Computer Society, pp. 140-147, Oct. 1979.

[10] J. Savage, "Area-Time Tradeofls for Matrix Multiplication and Related Prob-
lems in VLSI Models,” TR-CS-50, Brown Univ. Dept. of Computer Science,
Aug. 1979.

[11] J. Stevens, "A Fast Fourier Transform Subroutine for Illiac IV, Technical
Report, Center for Advanced Computation, lllinois, 1971.

[12] H. Stone, "Parallel Processing with the Perfect Shuffle,” JEEE Trans. Com-
put., Vol. C-20, No. 2, pp. 153-161, Feb. 1971.

[13] C. Thompson, A Complexity Theory for VLSI, Ph.D. Thesis, Carnegie-Mellon
Computer Science Dept., Aug. 1980.

[14] C. Thompson, “Generalized Connection Networks for Parallel Processor
Intercommunication,” IEEE Trans. Comput., Vol. C-27, No. 12, pp. 1119-
1125, Dec. 1978.

[15] C. Thompson, "The VLS! Complexity of Sorting,” UCB/ERL M82/5, Dept. of
Electrical Engineering and Computer Science, U.C. Berkeley, Feb. 1982.

(18] J. Vuillemin, "A Combinatorial Limit to the Computing Power of VLSI Cir-
cuits,” Proc. 21st Symp. on the Foundations of Computer Science, IEEE
Computer Society, pp. 294-300, October 1980.

AR
¥

