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ABSTRACT

It is shown that the weighted parity problem for gammoids,
with matching and iransversal matroids as special cases, can be
reduced to the weighted graphic matching problem. Since the
cycle matroid of a series parallel graph is a gammoid, this means
that it is possible to solve the weighted parity problem for the
cycle matroid of a series parallel graph by graphic matching.

Keywords and phrases: matching matroid, transversal matroid,
gammoid, mairoid parity problem, graphic matching. polynomial
algorithm.

This research was supported by NSF Grants MCS78-20054 and MCS79-03787 administered
through the Flectronics Research Laboratory, the University of California at Berkeiey.
**Also supported by BM Graduate Tellowship.



1. INTRODUCTION

~ We assume the reader is familiar with basic matroid definitions and termi-
nology, including the notions of transversal matroids, matching matroids, and
graphic matroids. For reference, see Aigner [1979], Lawler [1976], Welsh [1978].

Let M = (S.Y) be a matroid whose ground set S is partitioned into two-
element subsets called pairs. A parity set P < S is a union of pairs. The
matroid parity problem (also known as the matroid matching problem (Lovdsz
[1978]) or the matchoid problem (Jenkyns [1974])) asks for an independent par-
ity set of maximum size. In the weighted version of the problem, the pairs have
specified weights and a maximum-weight independent parity set is sought. The
matroid parity problem is a common generalization of the graphic matching
problem and the matroid intersection problem {cf. Lawler [1976]).

Lovédsz has provided a polynomial-time algorithm for the unweighted
matroid parity problem in the case that the matroid is linearly representable
and, moreover, an explicit linear representation of the matroid is given. How-
ever, Lovdsz's algorithm is rather complicated and admits of no known generali-
zation to the weighted case. The purpose of this paper is to show that some spe-
cial cases of the weighted matroid parity problem can be solved by reducing
them to graphic matching problems. In particular, we shall exhibit such reduc-
tions for matching and transversal matroids and for gammoids. The cycle
matroid of a series parallel graph is a gammoid. This means that the weighted
version of the "spanning tree parity problem" (cf. Garey and Johnson [1979]) in
the special case of series parallel graphs can be solved as a weighted matching
problem. It appears that the cases dealt with in this paper are the only ones
(aside from the weighted matching problem itself) for which polynomial-
bounded algorithms have been found for the weighted matroid parity problem.

2. MATCHING MATROIDS

let ¢ = (V.E) be a graph and S C V be a given subset of its vertices. Then
M= (S.}C); is a matroid, where / ¢ S isin if and only if there exists a matching
in G covering all the vertices in /. Any matroid induced in this way is a muatch-
ing matroid (Edmonds and Fulkerson [1965]).

Suppose the vertices in S are partitioned into pairs and that a positive
weight w(s.s’) is specified for each pair {s,s'{ C S. The objective of the parity
problem for the matching matroid is to find a matching in G that covers a sub-
set of pairs of maximumn weight. The parity problem can be reduced to a
weighted matching problem as follows.

First assume, without loss of generality, that G contains no edges incident
to two vertices in ¥V — S. (¥ there are such edges, delete them from the graph,
without affecting the matching matroid that is induced.) Next add to G the set
of edges

E' = {(s.s") | {s.s'] a pair; s.s' nonadjacent}

thereby obtaining the graph G’ = (V,E UE"). Assign weights to the edges of G’ as
follows:

(i) Give weight w(s,s') to an edge (s.s")€E".

(#) Give weight w(s;,s';) + w(sz.5'2) to an edge (s,.s2) €E, where
5,,52€S and {s,,5'1}.{s2.5'2} are the unique pairs containing
s,.5z. (Thus if {s,,5z} is a pair, edge (s,,52) receives weight
Rw(s,.52).)
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(#i) Give weight w(s,s') to an edge (s,t)€E, where s€S,t€V-5
and {s,s'} is the unique pair containing s.

As a simple example, consider the graph & indicated in the upper part of
Figure 1. S ={s,5'1,....54,5'¢}, and there are four pairs {s;,s';] with
w(s;,s'y) =1, for i = 1,...,4. The graph ¢’ and its edge weights are as shown in
the lower part of the figure. Edges in E' are indicated by dashed lines.

For each pair {s,s'}C S there is an edge (s,s') in G' with positive weight. It
follows that any maximum-weight matching in G’ covers at least one vertex of
each pair. Moreover, it is not difficult to verify that the total weight of a
maximum-weight matching is equal to the sum of the weights of all pairs (a con-
stant) plus the weight of all pairs of vertices covered by edges of the matching in
E. Thus a maximum-weight matching N in G yields a matching N N £ in & that
covers a maximum-weight subset of pairs, and we have the following.

Theorem 1 Let N be any maximum-weight matching in G' = (V, £V E'). Then the
set of pairs of S covered by N nE is a maximum-weight independent parity set
for the matching matroid induced by G = (V.E), with S V.

In the example shown in Figure 1, a maximum-weight matching indicated
with bold lines) contains edges (s;,5';), (S2.5'2).(s'3,54) and (s'y,t2), which have
total weight 15. The pairs covered by edges in £ are {s,,s';1} and {s,,5'3} with
total weight 5. Note that 15 (total weight of matching) = 10 (total weight of all
pairs) + 5 (weight of covered pairs).

The weighted matching problem for &' = (V, E VE') can be solved in 0(1 vB)
time (Lawler [1976]), and this establishes an immediate upper bound on the
time required to solve the parity problem for the matching matroid induced on
G = (V.E). However, we can reduce this upper bound to o( vl +|El +1SB), by
making use of the following theorem, the bipartite version of which is well known
(cf. Aigner [1979], p. 378.)

Theorem 2 Let N be a matching in G = {V,E) that covers a maximum number of
the vertices in S C V. Then the graph obtained by deleting vertices in V-5 not
covered by N induces the same matching matroid as G.

Proaf: Exactly the same as that for Proposition 7.66 in Aigner [1979].

Assuming that the graph G is given in edge-list form, with random access to
the edge list of any given vertex, a matching N covering a maximum number of
vertices in S can be constructed in 0(',55) time: At most |S! augmentations are
necessary. For each augmentation, apply a labeling procedure (Lawler [1976])
to find an augmenting path from an exposed vertex in S. At most 2|S! vertices
need to be labeled, and at most | S# edges must be inspected for each augmenta-
tion. Thus the desired matching can be found in OOSF’) time. Deletion of
exposed vertices in G requires at most O(i Vi+ IE'f) time.

After deletion of vertices, we have |'< 2!S| Thus solution of the weighted
matching problem on G' can now be accomplished in 0(1 SB) time.

3. TRANSVERSAL MATROIDS

If the graph G = (V,£) defining a matching matroid on S C V is bipartite, i.e.
each edge extends between a vertex in S and a vertex in V- S, then the match-
ing matroid is said to be transversal (Edmonds and Fulkerson [1965]), given a
graph G = (V,E) and S CV, one can construct a bipartite graph that induces the
same matching matroid as G. Thus every matching matroid has a transversal
representation.

The reduction of the parity problem to weighted matching is somewhat
simpler when the graph G is bipartite. The graph G' {which is tripartite) is such
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that the only edges (s.s’) extending between vertices s,s' in S are edges in £’
with weight w(s.s'). This means that if all pairs {s,s'}J<.S have equal weight,
then all edges of G' have equal weight as well. In other words, the unweighted
parity problem for transversal matroids reduces to the unweighted matclhing

problem. Assuming |vl< 2ls| this latter problem can be solved in O(ISIZ_]E'()
time (Micali and Vazirani [1980]) instead of 0(.S?) time.

We should also note the special case in which the parity problem is actually
an intersection problem, with transversal matroids specified by two bipartite
graphs G, = (S, T,.E,) and G, = (S, Tz,Ez). In this case the graph &' is formed
by adding edges between corresponding vertices of S in G, and Gp. Thus G'is
itself bipartite and the matching problem is simpler to solve. This reduction to
a bipartite matching problem is essentially the same as Fulkerson's [1971]
reduction of the common transversal problem to a network flow problem.

4. GAMMOIDS

Gammoids are ordinarily defined in terms of linkings in directed graphs.
For our purposes, a strict gammoid is simply the dual of a transversal matroid
and a gammoid is a restriction of a strict gammoid. Gammoids are closed under
duality and taking of minors, but transversal matroids are not. Thus every
transversal matroid is a gammoid, but not conversely. (See Aigner [1979] and
Welsh [1978] for background on gammoids and for a discussion of the Ingleton-
Piff theorem which justifies our definition.)

Let us consider the dual of a transversal matroid, i.e. a strict gammoid. (We
could deal with matching matroids defined by nonbipartite graphs, but for sim-
plicity choose not to.) Suppose the transversal matroid is defined by a bipartite
graph & = (5, T,E). Without loss of generality, we may assume that each vertex
of T is covered by a maximum matching. (Recall the discussion in Section 2) A
subset 7 ¢S is independent in the dual of the transversal matroid if and only if
there is a maximum matching in G that leaves the vertices in J exposed.

In order to obtain a representation for the dual that is more similar to what
we are accustomed, we create a second copy of the vertex set S, call this
second copy S, and provide a set of edges E between corresponding vertices
s €S and 5§ €5. The result is a bipartite graph G = (SUT.S,EUE), as shown in
Figure 2. A set /CS is independent in the dual of the transversal matroid
induced by G if and only if there is a matching in & that covers all the vertices
in [ and in T. A restriction of this dual matroid is obtained by simply deleting
vertices, as appropriate, from S.

Hereafter a gammoid will be represented by a bipartite graph & = ($,T.FE)
and a subset S C.S' such that there is a matching in G covering all vertices in
S'—S. Asubset /¢S isindependent in the gammoid induced by G if and only if
there exists a matching covering all the vertices in / and all the vertices in
S'—S. If S = S', then the gammoid is transversal. Note that there is a polyno-
mial time algorithm to transform the representation of a gammoid in terms of
linkings to our chosen representation (see Aigner [1979]).

Note also that the matroid induced by G = (S', T, £), with S CS', may be
viewed as the contraction to S of the transversal matroid on S’ induced by G.
As is well known, a matroid is a gammoid if and only if it is the contraction of a
transversal matroid.

In order to reduce the parity problem for gammoids to the weighted match-
ing problem, a simple generalization of our previous reduction suffices: In form-
ing the graph G', all edges incident to vertices in S are assigned weights as
before. However, each edge incident to a vertex in S' —S is assigned weight ¥,
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where W is a large number. (¥ is chosen to be sufficiently large to insure that a
maximum-weight matching in G’ covers all vertices in S' - S.) By the same rea-
soning as that in Section 2, we have:

Theorem 3 Let N be any maximum-weight matching in G' = (S, T,EVE'). Then
the set of pairs of S covered by N nE is a maximum-weight independent parity
set for the gammoid induced by G = (S', T, E), with SC.S".

5. SERIES AND PARALLEL EXTENSIONS

Let M = (Sg) be a matroid and e € S. The series extension of M at e by
e'£ S is the matroid on S Ue' which has as its bases all sets of the form B ue’,
where B is a base of M, and B Ue, where B is a base of , with e £ B. The paral-
lel extension of M at e by e'£ S is the matroid on S Ue’ which has as its bases
all bases of B and all sets of the form (B —e)ue’, where B is a base of M, with
e € B. A series parallel extension of M is any matroid derived from M by a
finite sequence of series and parallel extensions.

1t is well known that any series or parallel extension of a gammoid is a gam-
moid and any series extension of a transversal matroid is transversal {(but a
parallel extension is not necessarily transversal). Here we give explicit con-
structions demonstrating these results, in terms of our chosen representation of
a gammoid.

Let G = (S, T.E), with SCS', represent a gammoid. Let us construct the
series extension by e’ at e. To do this, we simply add a vertexe'to S (and S")
and a vertex £ to T with edges (e t) and (e, t), as shown in Figure 3. If B is a
base of the gammoid, now B Ue' becomes a base, by adding edge {e'.t) to the
matching defining B. And if B, with e £ B, is a base of the gammoid, now Bue
is a base, by adding edge (e,t). Note that if § =S, so that the gammoid is
transversal, the series extension is transversal as well.

The construction for the parallel extension by e' at e is slightly more com-
plicated. The existing vertex e is renamed s’ and becomes a member of S'—S.
Add two new vertices e and e’ to S and a vertex ¢t to T, with edges (e'.t),(e,t),
and (s',t), as shown in Figure 4. Note that no matching can now cover both e
and e'. If B is a base of the gammoid, with e £ B, the edge (s',t) must be added
to the matching defining B in order to obtain a valid matching (covering all ver-
tices in S'—S) in the graph for the parallel extension. If B is a base of the gam-
moid, with e € B, then the matching defining B covers s’ (since this was e) and
either edge (e,t) or (e'.t) can be added to the matching, making B and
(B —e)ue’' bases in the parallel extension, as required. Note that if the gam-
moid is transversal, the parallel extension has not been given a transversal
representation (S'—S # ¢ for the parallel extension) and may indeed not be
transversal.

8. SERIES PARALLEL GRAPHS

The concept of series and parallel extension of a matroid is a generalization
of series and parallel extension of a graph. (Series extension is the subdivision
of an edge e to produce two edges e and e'. Parallel extension introduces a new
edge e’ incident to the same vertices as e.) Minty [1966] defines a graph to be
series parallel if it is obtained by series parallel extension of a bridge or a loop
(i e. a single edge between two distinct vertices or a loop at a single vertex). It
is well known that the cycle matroid of a series parallel graph is a gammoid.
Moreover, it is essentially true Duffin [1965] that a matroid is a binary gammoid
if and only if it is the cycle matroid of a series parallel graph. (See Aigner [1979]
or Welsh [1976] for a more precise and complete statement of this result.)
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There are linear-time algorithms for testing an arbitrary graph to deter-
mine whether or not it is series parallel and if it is, to find a sequence of series
and parallel extensions by which it is derived from a bridge or loop. (cf. Valdes,
et al [1982].) Given such a sequence of series and parallel extension, a bipartite
graph representing the matroid of the series parallel graph is easily obtained by
the construction given in the previous section. As an example, bipartite
representations of two dual series paralle! graphs are obtained by successive
series and parallel extensions, as shown in Figure 5. (Actually both matroids are
transversal.)

It follows from our discussion that it is possible to reduce the weighted par-
ity problem for graphic matroids to the weighted matching problem in the spe-
cial case of series parallel graphs, {cf. the "spanning tree parity problem" Garey
and Johnson [1979].)
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Example of reduction to weighted matching problem

Figure 1



Bipartite graph for strict gammoid

Figure 2



Graph for series extension

Figure 3
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Graph for parallel extension

Figure 4
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Obtaining representations of matroids of series parallel graphs

Figure 5



