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ABSTRACT
Instrumenting programs with code to monitor their dy-
namic behaviour is a technique as old as computing. Today,
most instrumentation is either inserted manually by pro-
grammers, which is tedious, or automatically by specialized
tools, which are nontrivial to build and monitor particu-
lar properties. We introduce Program Trace Query Lan-
guage (PTQL), a general language in which programmers
can write expressive, declarative queries about program be-
haviour. PTQL is based on relational queries over program
traces. We argue that PTQL is more amenable to human
and machine understanding than competing languages. We
also describe a compiler, Partiqle, that takes a PTQL query
and a Java program and produces an instrumented program.
This instrumented program runs normally but also evaluates
the PTQL query on-line. We explain some novel optimiza-
tions required to compile relational queries into efficient in-
strumentation. To help evaluate our work, we present the
results of applying a variety of PTQL queries to a set of
benchmark programs, including the Apache Tomcat Web
server. The results show that our prototype system already
has usable performance, and that our optimizations are crit-
ical to obtaining this performance. Our queries also revealed
significant (and apparently unknown) performance bugs in
the jack SpecJVM98 benchmark, in Tomcat, and in the IBM
Java class library, and some uncomfortably clever code in the
Xerces XML parser.

1. INTRODUCTION
∗This work continues under the terms of joint study agree-
ment W0135710 between IBM and UC Berkeley.
†This research was supported in part by the National Sci-
ence Foundation under grant no. NSF CCR-0085949, and
by Subcontract no. PY-1099 to Stanford, from the Dept. of
the Air Force, prime contract no. F33615-00-C-1693. The
information presented here does not necessarily reflect the
position or the policy of the Government and no official en-
dorsement should be inferred.

Dynamic analysis is an important technique for measur-
ing program performance and checking program correctness.
Full blown dynamic analyses are difficult to write and almost
certainly not worth the trouble for small questions. Often,
programmers resort to ad hoc dynamic analysis: inserting
extra fields and print statements. This manual instrumen-
tation is labor intensive and makes code harder to read and
maintain.

Consider the following program fragment:

public class DB {

B b;

void doTransaction() {

b.y();

}

}

public class B {

void y() {

sleep();

}

void sleep() { }

}

Can method DB.doTransaction() transitively call method
sleep()? While the answer to this question is clearly “yes”
for our contrived example, understanding the who-calls-
whom relation in a large, object-oriented program can be
a non-trivial task. A programmer might try to answer the
question by instrumenting the code in the following way:

public class DB {

B b;

public static boolean doTransActive = false;

void doTransaction() {

doTransActive = true;

b.y();

doTransActive = false;

}

}

public class B {

void y() {

sleep();

}



void sleep() {

if (DB.doTransActive) {

System.out.println("call to sleep()!");

}

}

}

For only five lines of code, this instrumentation adds
considerable complexity. We have added a new field
(doTransActive) to class DB — necessary to communi-
cate to sleep() the fact that doTransaction() is execut-
ing. Furthermore, we have added logic to both sleep() and
doTransaction() which, without documentation, is not ob-
viously separate from the primary function of these meth-
ods. Keeping this instrumentation in the code and turning
it on and off becomes a matter of commenting or uncom-
menting (hopefully all of) it.

Worst of all, this instrumentation is not even cor-
rect. If doTransaction() terminates in an exception,
doTransActive is never unset. If doTransaction() is a re-
cursive function, doTransActive is set to false too soon
(when the first activation of doTransaction() returns). The
situation is quite a bit more complex in a multithreaded
program. Each thread needs to keep track of whether it is
executing DB.doTransaction() and care must be taken to
avoid data races. Fortunately, these complexities are sim-
ilar for all analyses and inserting the necessary supporting
instrumentation could be automated.

In this paper we describe our design of Program Trace Query
Language (PTQL), a language for writing queries over pro-
gram traces.

We also describe our implementation and evaluation of Par-
tiqle, a tool to compile a PTQL query into light-weight in-
strumentation on Java programs to answer that query.

Expressing the question above, “Can method
DB.doTransaction() transitively call method sleep()?”,
in PTQL avoids the problems that come with manual
instrumentation. A query is written in one place and thus is
much easier to understand and maintain, and furthermore
does not clutter the program. Queries are also declarative.
Finally, the programmer does not need not consider issues
such as thread safety and recursion as those are left to
Partiqle. Consider:

SELECT doTrans.startTime, sleep.startTime
FROM MethodInvocation doTrans,

MethodInvocation sleep
WHERE doTrans.methodName = ’doTransaction’

AND doTrans.declaringClass = ’DB’
AND sleep.methodName = ’sleep’
AND sleep.declaringClass = ’B’
AND doTrans.thread = sleep.thread
AND doTrans.startTime < sleep.startTime
AND sleep.endTime < doTrans.endTime

This PTQL query is looking for two method invocations,
doTrans and sleep, where doTrans is a method named
doTransaction defined in class DB and sleep is method
named sleep defined in class B. Furthermore, doTrans and
sleep should happen in the same thread and sleep should

happen during doTrans. We discuss the details of PTQL in
Section 2.

The contributions of this paper are as follows:

• We introduce PTQL (Section 2). PTQL is a declar-
ative language, similar in spirit to SQL. With PTQL
the user need only specify what data she wants and
not worry about how to gather it. As in relational
databases, this decision leaves the implementor free to
choose efficient data representations and query evalu-
ation plans.

• We describe a number of optimizations that we imple-
mented in Partiqle (Section 3). These optimizations
are critical to reducing the time and space overhead of
evaluating queries as the program runs.

• We identify a class of queries that are amenable to
online evaluation and describe how other queries can
be split into several queries in this class.

• We report our preliminary experience with an imple-
mentation (Section 4). We used Partiqle to run several
queries on 20 real Java programs, including Apache
Tomcat [4]. Our queries also revealed significant (and
apparently unknown) performance bugs in the jack
SpecJVM98 [17] benchmark, in Tomcat, and in the
IBM Java class library, and some uncomfortably clever
code in the Xerces XML parser.

We examine related work in Section 5, discuss future work
in Section 6, and conclude in Section 7.

2. Program Trace Query Language (PTQL)
This section describes PTQL, our SQL-like query language
over Java program traces. A relational data model for pro-
gram traces and an SQL-like language for querying them
have several advantages:

• Program traces are naturally viewed as sets of records.
Each record corresponds to a program event where the
record’s fields are properties of that event. Each type
of event is a relation in the PTQL schema.

• Interesting properties of a program’s execution lie in
correlations of different events (i.e., relational joins).

• This view allows PTQL to be declarative, thus free-
ing the user from specifying how to gather data and
freeing the implementor to choose efficient data rep-
resentations and query evaluation plans. There are
many well-known and successful optimizations for SQL
which can aid us in optimizing PTQL. Optimization is
very important as many natural queries produce over-
whelming amounts of data if naively implemented.

Section 2.1 describes in more detail the relational schema
over which PTQL interprets queries, Section 2.2 gives a for-
mal semantics of PTQL, and Section 2.3 provides some ex-
ample queries.



2.1 Data Model: Tables and Fields
Our current schema for a program trace consists of two re-
lations:

• MethodInvocation contains a record for each method
invocation that occurs during program execution.

• ObjectAllocation contains a record for each object
allocated during program execution.

The fields currently defined in MethodInvocation and
ObjectAllocation are listed along with their types in Fig-
ures 1 and 2 respectively. Fields of type object contain
references to records in ObjectAllocation (i.e. anything
that the Java type system could type as Object). Fields of
type variant may contain values of any type. Fields are
assigned this type because the type of values that they con-
tain cannot be determined until query evaluation. Fields
may be compared using any of <, =, or >. Records from
ObjectAllocation may be compared with fields of type
object or variant.

As we demonstrate in Section 4, our current data model is
rich enough to express useful queries. Nonetheless, we de-
signed it with extensibility in mind. In future work, we plan
to investigate two dimensions of extensibility. First, adding
other relations will allow PTQL to talk about different sorts
of events like reads or writes to object fields, lock acquires
and releases, and thread start and stop. Second, adding
fields to existing relations will allow more inspection of pro-
gram state when events fire. Examples include investigation
of local variables on method end, and values of object fields
at method start, method end, and object collection.

2.2 Formal Definition
In this section we sketch a formal semantics for PTQL. This
section can be safely skipped, as subsequent discussion does
not rely on it.

A query consists of three clauses (see Figure 3): a FROM

clause, a WHERE clause and a SELECT clause. Query results
are drawn from the cartesian product of the relations in the
FROM clause. Let z be a tuple from this cartesian product.
The identifiers in the FROM clause give each position in z a
unique name. Using these names, the WHERE clause gives
predicates that z must satisfy if it is to be included in query
results. Finally, the SELECT clause specifies the fields from
z to be output with each query result.

More formally, we define the semantics of a PTQL query
applied to a program P in terms of two sets of records:
MethodInvocationP and ObjectAllocationP . The set
MethodInvocationP contains one record, with all fields de-
fined in Section 2.1, for each method call that occurs in eval-
uating program P . Similarly, ObjectAllocationP contains
one record for each object allocated during the run of P .
The timestamp fields guarantee that each record is unique
and thus that MethodInvocationP and ObjectAllocationP

are indeed sets.

We define the comparison operators so that fields with
incompatible types are not equal, greater, nor less than

each other and fields of type object are neither less than
nor greater than each other. If the field x.paramI of
“MethodInvocation x” is used in a query, only invocations
of methods with at least I+1 parameters can match x. Sim-
ilarly, use of x.result means only methods whose return
type is not void can match x and use of x.receiver means
only non-static methods can match x.

Figure 4 gives the semantics of a PTQL query applied to
program P . F is a vector of “identifier.field” pairs and is
used in defining ψ. The helper functions field and pred are
parameterized by ψ, the mapping from identifier.field to po-
sitions in the flattened tuple z ∈ [[T1]]

P × · · · × [[Tn]]P . In
equation 5, field takes x.f , an identifier.field pair and a flat-
tened tuple z from [[T1]]

P × · · · × [[Tn]]P ; it returns the value
of the field f from the table named x (at position ψ(x.f))
from z. In equations 6 and 7, pred takes a predicate from the
WHERE clause and a flattened tuple from [[T1]]

P ×· · ·× [[Tn]]
P ;

it finds the semantic values of the left and right hand sides
of the predicate, compares them according to the compari-
son operator, and finally returns a boolean value indicating
whether they have the specified relationship. The final equa-
tion gives the semantics of a query applied to program P .
For all z ∈ [[T1]]

P ×· · ·× [[Tn]]P that satisfy all the predicates
in the WHERE clause, the projection of z, as specified in the
SELECT clause, appears in the set of query results.

2.3 Example Queries
We conclude our discussion of PTQL with a few example
queries.

2.3.1 Actual parameters for each call toFoo.y

SELECT Y.param0, Y.param1
FROM MethodInvocation Y

WHERE Y.methodName = ’y’
AND Y.declaringClass = ’Foo’

For each call to methods named y declared in class Foo,
this query returns a result containing the first two actual
parameters of the call.

2.3.2 Consistency ofhashCode() with equals()

The documentation for java.util.Hashcode [3] requires
that implementations of the hashCode() method agree
equals(). In particular, if x.equals(y) returns true,
x.hashCode() == y.hashCode() should hold. This query
checks that any calls to hashCode() and equals() follow
this specification.

SELECT *
FROM MethodInvocation eq, MethodInvocation xhc,

MethodInvocation yhc
WHERE eq.methodName = ’equals’

AND eq.declaringClass = ’Object’
AND xhc.methodName = ’hashCode’
AND xhc.declaringClass = ’Object’
AND yhc.methodName = ’hashCode’
AND yhc.declaringClass = ’Object’
AND eq.receiver = xhc.receiver
AND eq.param0 = yhc.receiver
AND eq.result = true
AND xhc.result != yhc.result

In this query eq matches calls to equals(), and xhc and



• startTime : long - a unique timestamp for the start of the method invocation

• endTime : long - a unique timestamp for the end of the method invocation

• methodName : string - name of the method

• declaringClass : string - name of the class in which the method is first defined

• implementingClass : string - name of the class which implements this version of the method

• receiver : object - this parameter to the method (if non-static)

• thread : object - the thread in which the method is invoked

• result : variant- value returned by method

• param0, param1, ... : variant- values of the actual parameters to the method

Figure 1: Fields of MethodInvocation

• startTime : long - a unique timestamp for the allocation time of the object

• endTime : long - a unique timestamp for the collection of an object

• allocThread : object - the thread in which the object is allocated

• dynamicType : string - the class name of the object’s runtime type

• receiver : object - the object

Figure 2: Fields of ObjectAllocation

〈query〉 ::= SELECT 〈selectitem〉 [, 〈selectitem〉]*
FROM 〈fromitem〉 [, 〈fromitem〉]*
WHERE 〈whereitem〉 [AND 〈whereitem〉]*

〈selectitem〉 ::= identifier.field
〈fromitem〉 ::= 〈relation〉 identifier
〈whereitem〉 ::= identifier.field 〈op〉 identifier.field

| identifier.field = ’string’
〈relation〉 ::= MethodInvocation | ObjectAllocation

〈op〉 ::= < | = | != | >

Figure 3: Syntax of Query Language

[[MethodInvocation]]P = MethodInvocation
P (1)

[[ObjectAllocation]]P = ObjectAllocation
P (2)

Fx = 〈x.f1, . . . , x.fn〉 (3)

where the fields of T are f1, . . . , fn (4)

fieldψ (x.f, z) = z.ψ(x.f) (5)

predψ (x1.f1 < x2.f2, z) = fieldψ (x1.f1, z) < fieldψ (x2.f2, z) (6)

predψ
`
x1.f1 = ′

string
′, z

´
= fieldψ (x1.f1, z) = “string” (7)

2
4
2
4

SELECT s1, . . . , sm
FROM T1 x1, . . . , Tn xn
WHERE w1, . . . , wk

3
5
3
5
P

=

8<
:

D
fieldψ (s1, z) , . . . , fieldψ (sm, z)

E
˛̨
˛̨
˛̨
F = concatenate(Fx1 , . . . , Fxn)
ψ(y.f) = i iff F.i = y.f
z ∈ [[T1]]

P × · · · × [[Tn]]P ∧ V
j predψ (wj , z)

9=
;

Figure 4: Semantics of Query on Program P



yhc match calls to hashCode(). The query is interested in a
concordance of events such that that the receivers of the
calls to hashCode() are the receiver and first parameter
to the call to equals(). For such a group of events, the
specification requires that if the call to equals() returns
true, the calls to hashCode must agree. This query returns
results where the calls to hashCode do not agree.

3. Partiqle: INSTRUMENTATION AND OP-
TIMIZATIONS

This section discusses Partiqle, our tool to compile a PTQL
query into light-weight instrumentation to answer the query
while the program runs. We outline our instrumentation
strategy, describe runtime support structures needed to eval-
uate queries online, and discuss optimizations that reduce
execution time overhead and memory footprint.

In designing Partiqle, we had to choose between offline anal-
ysis (logging events to a trace file, and analyzing the trace
file post-mortem) and online analysis (and design points in
between).

Offline evaluation of the query allows for a constant sized
memory footprint as events are gathered during program ex-
ecution. However, in practice, the post-mortem processing
of large traces usually requires similar resources to simply
doing the analysis on-line; in particular, because random
accesses to disk are very slow, efficient analyses must read
traces sequentially. The main advantages of offline evalu-
ation are that the analysis need not compete with the ap-
plication for space, and offline analyses can read the trace
sequentially multiple times — clever algorithms can some-
times be designed to take advantage of this [16].

We prefer on-line processing whenever reasonable perfor-
mance can be obtained from an on-line algorithm. Even
though disk is cheap, managing large volumes of trace data
can impose considerable overhead. On-line query evaluation
presents a simpler model to the user by eliminating post-
processing steps. Online evaluation can also provide the
quickest feedback, keeping the code-debug cycle short. An-
other advantage is the ability to stop the program when cer-
tain behaviours are detected and start a debugger or dump
a stack trace. For these reasons, plus the fact that we saw
opportunities to optimize and reduce our overhead to be-
low the minimum overhead of off-line analysis, we chose to
implement Partiqle as an online analysis engine. However,
one can easily imagine implementing PTQL queries using
offline analysis, or even extending Partiqle with automatic
or manual selection of the degree of off-line-ness.

To ease development and deployment of Partiqle, we instru-
ment the program at the level of Java bytecodes and write
our instrumentation in Java. This creates reentrancy issues,
which we resolve by avoiding the use of most Java library
classes and refusing to instrument those library classes we
do use. In theory Partiqle is usable in conjunction with any
Java virtual machine, and in practice we use it with both
Sun and IBM VMs.

Section 3.1 outlines Partiqle’s basic instrumentation strat-
egy, runtime data structures, and query evaluation strategy.
Sections 3.2, 3.3 and 3.5 describe optimizations. Section 3.8

Object method(Object arg0, Object arg1) {
get global lock;
MethodDescriptor mdescr = new MethodDescriptor(

this,
array of arguments to method,
statically determined method id for method

);
add mdescr to runtime tables;
release global lock;

/* method may terminate with an exception */
try {

method body
store return value in retval;

} catch (Throwable e) {
/* end-of-method code for exception case */
get global lock;
mdescr.setEndTimeExceptionResult();
release global lock;
throw e; /* rethrow e */

}

/* end-of-method code for regular termination */
get global lock;
mdescr.setEndTimeAndResult(returnValue);
release global lock;
return retval;

}

Figure 6: Baseline instrumentation for a method

applies Partiqle’s instrumentation, runtime data structures,
and optimizations to an example query.

3.1 Instrumentation
In order to answer a PTQL query over program P , Partiqle
must instrument P to gather records that match the various
events specified in the query. For each event, Partiqle must
include instrumentation to record the fields PTQL specifies.
In practice, many records never need to be generated and
many fields never need to be set. Subsequent sections dis-
cuss optimizations that will augment, change or discard this
instrumentation to take advantage of this situation.

3.1.1 Method Invocations
Figure 6 shows a baseline for instrumentation to gather
method invocations (i.e., records in MethodInvocation).
This instrumentation is thread safe: operations on shared
data structures are protected by a global lock. At the
start of the method, this instrumentation records the start
time (field startTime), thread (thread), actual parame-
ters (param0 and param1) and this pointer (receiver). At
the end, it records the return value (result) and end time
(endTime). If the method invocation ends with an excep-
tion, the instrumentation records that fact, sets endTime

and rethrows the exception.

Java dictates that in a constructor, the ’this’ reference is
not accessible until after the superclass constructor has been
called. This is also enforced at the bytecode level. Thus, in
constructors, the receiver field is not available until some
time during the invocation of the method. This unfortu-
nately complicates some of the analyses described below,
although the details are tedious and beyond the scope of
this paper.
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Figure 5: Partiqle Architecture

3.1.2 Objects
Gathering information about object lifetimes is harder than
for method invocations because more code locations are in-
volved. The semantics of Java also adds some complications.

We want to add a record to our table(s) as soon as an ob-
ject has been created. The first Java bytecode instructions
executed after the object is created and accessible are in
the constructor of java.lang.Object. Unfortunately instru-
menting this method causes every JVM we have access to
to crash. Therefore our strategy is to insert instrumentation
right after every call to the Object constructor — either in
constructors for direct subclasses of Object, or in normal
code constructing a plain Object. Arrays are allocated with
a different instruction sequence, and no constructor is called,
so we instrument them separately.

To map Java objects to our records without necessarily caus-
ing space leaks, we maintain a hash table whose keys are
weak references to the Java objects and whose values refer
to our records.

We need a notification when objects are garbage collected.
Java’s “reference queue” mechanism notifies Partiqle when-
ever one of the weak references in the hash table loses its
referent, at which point Partiqle executes the ”end event”
code for the object.

Creating one record for every single Java object is usu-
ally quite impractical. Fortunately, most queries do not
refer to the information available only at allocation time
(allocThread and startTime), and constrain the object to
be some parameter or result of a method invocation. For
these queries it suffices to allocate an object’s record lazily,
when the method invocation first constrains the object and
makes it relevant to the query. This is particularly ad-
vantageous when optimizations severely reduce the number
of methods instrumented, because most objects then never
need records.

3.1.3 Partiqle Runtime Data Structures
Partiqle’s runtime data structures must store event records
until query evaluation. Partiqle keeps one runtime table per
〈relation〉 identifier pair in the FROM clause of the query.
Each of these runtime tables is a collection of records that
potentially satisfy the predicates associated with that slot
in the query. For example the “Does DB.doTransaction()

transitively call sleep()?” query from Section 1 has two
runtime tables: one for invocations of doTrans() and one
for invocations of sleep().

In our current implementation, runtime tables of
MethodInvocation records are indexed by the receiver,

param0, and result fields. Runtime tables of
ObjectAllocation records are not indexed. In future
work, we plan to choose index fields based on predicates in
the query.

The data gathering instrumentation creates records and
adds them to suitable runtime tables. Note that there sev-
eral instrumentation sites may generate records for a run-
time table. A single instrumentation site may generate
records for multiple runtime tables; in this case, a single
record is allocated and shared among them.

Based on the discussion above, a runtime table must support
the operations listed below. For completeness, we mention
operations required by query evaluation as well as those re-
quired for optimizations:

• add a record

• update some fields of a record, e.g. endTime, result

• join a record into a partial query result (Section 3.1.4)

• check for existence of a record that satisfies some pred-
icate (i.e., allow other runtime tables to do admission
and retention checks – Section 3.5)

• delete a record (Section 3.5)

3.1.4 Query Evaluation
Query evaluation proceeds in a nested loop. At instrumenta-
tion time, Partiqle decides on the order in which to join the
runtime tables. Thus, at query evaluation time, as records
from each runtime table are considered in turn, Partiqle
knows exactly which fields will be in the partial query result,
which fields it will contribute, which of its indices it will use,
and thus which predicates to evaluate – those that involve a
record from the current runtime table and a record already
in the partial result. Each time a new record is appended
to the partial result, it knows which runtime table is next in
the join order and loops through that runtime table, looking
for records to join in.

3.2 Static Filtering
Predicates in the query that depend only on static prop-
erties of the code allow Partiqle to filter instrumenta-
tion sites. We refer to such predicates as static predi-
cates. If an instrumentation site violates a static pred-
icate, Partiqle need not insert instrumentation at that
site. The predicates that Partiqle uses in this way
are comparisons of the methodName, declaringClass and
implementingClass fields in MethodInvocation records
with constant strings, and comparisons of the dynamicType

field in ObjectAllocation records with constant strings.



Consider for instance the example query from Section 1.
One MethodInvocation record in the query is constrained
to be named doTransaction (doTrans.methodName =

’doTransaction’) and the other sleep (sleep.methodName
= ’sleep’). Thus, invocations of method y will never have
any part in query results and Partiqle need not instrument
the body of y.

This optimization is quite straightforward to implement
at MethodInvocation instrumentation sites, because the
method name, defining class and implementing class are all
apparent from the method being instrumented. Static filter-
ing on dynamicType is only possible at sites where enough is
known about the static type of the object reference in ques-
tion, and enough is known about the program’s class hier-
archy, to statically determine whether the object reference
refers to an object of the desired class. To support these de-
cisions, Partiqle builds a partial class hierarchy based on the
code available at instrumentation time, making conservative
(safe) approximations for unknown code.

3.3 Dynamic Filtering
Query predicates that involve only one record can be evalu-
ated at the instrumentation site that sets the relevant fields
of that record. We refer to these predicates as simple dy-
namic predicates. For instance consider the following query
which lists all method invocations where the this pointer is
the same as the first parameter:

SELECT *

FROM MethodInvocation f

WHERE f.param0 = f.receiver

The instrumentation at the start of each method checks that
the first parameter to the function is equal to the this

pointer. If not, the record can never be part of a query
result.

Sometimes the fields necessary to evaluate a simple dynamic
predicate are not available when the record is generated.
In this case the record is added to the runtime tables as
usual. Later, when the missing fields become available, the
predicate is evaluated. If it fails, the record is removed from
the runtime tables. Consider the following example which
lists all method invocations which return their this pointer:

SELECT *

FROM MethodInvocation g

WHERE g.result = g.receiver

At the start of a method, a record will be added to the
runtime table. Since result is not available until the end of
the method, this predicate cannot be checked until then. If
it fails, the record is removed from the table.

3.4 Timing Analysis
The optimizations to be described next require information
about the ordering of the events in a query result. Partiqle
performs timing analysis to compute this information and
stores it as a timing graph. The timing graph is a directed
acyclic graph with two nodes for each runtime table – one for
the start event (the beginning of a method invocation or the
allocation of an object) and one for the end event (the end of

a method invocation or the garbage collection of an object).
An edge from node x to node y indicates that event x must
happen before event y for the events to satisfy the query.
For example, if the query contains a term a.startTime <

b.startTime then there will be an edge from a.start to
b.start in the timing graph. Because timestamps are to-
tally ordered, the graph is transitively closed.

Figure 7 shows the timing graph for the example from Sec-
tion 1. In addition to edges induced by explicit constraints
in the query, Partiqle infers edges using axioms about the
semantics of Java. In this example, the dotted edges from
doTrans.start to doTrans.end and from sleep.start to
sleep.end follow from the axiom that the start of a method
invocation always precedes the end of that method invoca-
tion. The dashed edges from doTrans.start to sleep.end
and from sleep.start to doTrans.end follow from transitiv-
ity.

The complete rules for building the timing graph are given in
Figure 8. These rules are applied repeatedly until a fixpoint
is reached.

For some optimizations, we also want an “unclosed” form of
the graph. This is a minimal graph whose closure under the
“transitive closure”, “end follows start” and “overlapping
method invocations” rules gives the basic timing graph. It
can be obtained from the basic timing graph by repeatedly
applying the rules:

• If (a, b) ∈ E∧(b, c) ∈ E∧(a, c) ∈ E, remove (a, c) from
E

• For all query identifiers x, remove (x.start, x.end)
from E.

• For method invocations x and y, if
(x.start, y.start) ∈ E ∧ (y.start, x.end) ∈
E ∧“x.thread = y.thread′′ ∈ Q∧ (y.end, x.end) ∈ E,
remove (y.end, x.end) from E.

The minimal graph is not unique, but this is not a problem.

The idea is that if the timing relationships in the “unclosed”
graph are dynamically verified for a set of events, then the
rest of the timing relationships are guaranteed to hold for
those events.

3.5 Admission Checks
We refer to query predicates that cannot be evaluated stat-
ically and that involve more than one record as join predi-
cates. Armed with timing information, Partiqle adds instru-
mentation to check some join predicates when new records
are created. We refer to these checks as admission checks
because they deny a record admission to a runtime table if
it cannot possibly satisfy a join predicate.

Before describing admission checks in detail, we return again
to the example query from Section 1. Notice the join pred-
icate “doTrans.startTime < sleep.startTime” and sup-
pose the instrumentation at the start of sleep() is now
executing (i.e., an invocation of sleep() is starting). If



sleep.end

doTrans.start doTrans.end

sleep.start

Figure 7: Timing graph for example query from Section 1

Let Q be the set of query whereitems. Let E be the set of timing graph edges.
Explicit timing constraints induce timing edges. For all identifiers x, y:

“x.startTime < y.startTime′′ ∈ Q =⇒ (x.start, y.start) ∈ E

“x.endTime < y.startTime′′ ∈ Q =⇒ (x.end, y.start) ∈ E

“x.startTime < y.endTime′′ ∈ Q =⇒ (x.start, y.end) ∈ E

“x.endTime < y.endTime′′ ∈ Q =⇒ (x.end, y.end) ∈ E
The lifetime of the ’this’ parameter of a method includes the method invocation. For all method invocations m and object
instances o:

“m.receiver = o.receiver′′ ∈ Q =⇒
(o.start,m.start) ∈ E ∧ (m.end, o.end) ∈ E

The lifetime of an object mentioned as a parameter or result of a method must include the start (or end) of the method. For
all method invocations m and object instances o, and all integers n:

“m.paramn = o.receiver′′ ∈ Q =⇒
(o.start,m.start) ∈ E ∧ (m.start, o.end) ∈ E

“m.result = o.receiver′′ ∈ Q =⇒
(o.start,m.end) ∈ E ∧ (m.end, o.end) ∈ E

The timing graph is transitively closed. For all nodes a, b, c:

(a, b) ∈ E ∧ (b, c) ∈ E =⇒ (a, c) ∈ E

End events follow start events. For query identifiers x:

(x.start, x.end) ∈ E

Overlapping method invocations on the same thread must actually be nested. For all identifiers x, y corresponding to method
invocations:

(x.start, y.start) ∈ E ∧ (y.start, x.end) ∈ E

∧ “x.thread = y.thread′′ ∈ Q =⇒ (y.end, x.end) ∈ E

Figure 8: Timing Edge Inference



this sleep is to satisfy the join predicate above, then ac-
cording to the timing graph any record for an invocation
of doTransaction() that can match with this sleep must
already have started. So, at the start of sleep() we check
to see if any suitable “supporting” record doTrans has been
stored in its table; if not, this sleep can never be part of a
query result and it can be discarded.

If the query includes additional constraints relating
doTrans and sleep, for example “doTrans.param0 =

sleep.param0”, then these constraints are evaluated as part
of the admission check; the check fails unless a match-
ing doTrans record is found. Join predicates such as
doTrans.param0 = sleep.result, which depend on infor-
mation available at the end of sleep, cannot be evaluated
by the admission check. However, we can defer such pred-
icates to a “retention check”; at the end of the method in-
vocation (or object lifetime), when the result is known, we
check for supporting doTrans records and if none are found
we discard the invocation sleep.

There are a wide range of strategies that can be used to
exploit admission checks. Partiqle inserts admission checks
at each instrumentation point (i.e., a start or end event).
At each timing graph node e we perform admission checks
against the tables corresponding to the nodes e′ which are
immediate predecessors of e in the unclosed timing graph.
The admission check succeeds if there is a record in the
runtime table for e′ satisfying all join predicates between e
and e′ that depend only on fields available at e and e′. If
any admission check fails, e’s record is discarded from the
table.

3.6 The Post-dominator
Efficient dynamic analysis often requires that results be out-
put on-line. Otherwise intermediate data structures may
become too large or even grow without bound. Our post-
dominator analysis allows us to output results on the fly
and prune intermediate data structures.

The post-dominator analysis identifies a node in the timing
graph, the post-dominator node d, with the property that
when an event e occurs at d, all record tuples that will satisfy
the query and include the record for e can be computed from
the records currently in tables. In other words, we guarantee
that no future records will arrive which could combine with
the record for e to produce a valid query result.

We ensure this by imposing the following conditions on d:

• There is a path from every start event to d in the
timing graph.

• If the query selects a field for output that is only avail-
able at an end event, then there is a path from that
end event’s node to d.

• If the query contains a predicate depending on a field
value which is only available at an end event, and the
predicate is not a comparison of the event’s end time
with some other time, then there is a path from that
end event’s node n to d in the timing graph.

• If the unclosed timing graph has an edge from node
p to node q, then there is a path from p to d in the
timing graph.

The first condition ensures that all the records in a result
tuple that can match a record at d will have at least started
by the time the d event occurs — otherwise results will cer-
tainly be missed. The second condition ensures that the
values output by the query are actually available by the
time of the d event. The third condition ensures that when
the query expression is evaluated on each tuple of records,
the fields required by the predicates are available. The ex-
ception is when comparing the end time of an event e to
the time of some other event; instead of doing a direct com-
parison, we can simply verify all the timing constraints in
the unclosed timing graph. If they hold, we know that all
the constraints in the full timing graph also hold (which will
include all the time comparison constraints derived from the
query predicates).

Note that if p and q are nodes, where p has a path to d in
the timing graph but q does not, then when an event occurs
at d we can dynamically check the relationship between the
timestamps of all p events and q events relevant to the d
event. For, we know that the timestamps for all relevant
events at p must be in the past (because d dominates p) and
are therefore available in the records in p’s table. The times-
tamps for all relevant events at q must be either in the past,
in which case they can be retrieved from the records of q’s
table and compared to the relevant p timestamps, or in the
future, in which case we know that the timestamps on those
events are strictly greater than the relevant p timestamps.
(These two cases can be distinguished at runtime because
until a record’s end event happens, the endTime field holds
a sentinel value.)

In the example from Section 1 and Figure 7, the node
sleep.start is a post-dominator. The unclosed timing graph
contains just the two edges (doTrans.start, sleep.start)
and (sleep.start, doTrans.end). It is easy to verify that
the required conditions hold. The remarkable thing is
that although the query means to check sleep.endTime <
doTrans.endTime, Partiqle infers that it can output results
before either event has happened. This is an example of
where starting with the temporal predicates from the query,
closing the timing graph, and then unclosing it leads to a
more minimal graph than the original.

If there is no post-dominator node, Partiqle currently re-
ports an error and halts. In the future this could be relaxed,
so that we switch to off-line analysis. If there is more than
one post-dominator node, Partiqle chooses an “earliest post-
dominator” — a post-dominator node d such that there is
no path from any other post-dominator d′ to d in the tim-
ing graph. If there are multiple earliest post-dominators,
Partiqle chooses one arbitrarily.

When we execute an event e associated with a post-
dominator node d and a record identifier x, we go ahead
and evaluate the query, with x bound to the record for e
and the other identifiers ranging over the current contents
of their tables. Instead of checking explicit predicates on
timestamps, which might require time values we do not yet



have, we check the timing constraints of the unclosed tim-
ing graph. We output any query results found. We will have
output all results that can ever involve the record for e. It is
then safe to remove the record from x’s table. if e is a start
event, we never need to add the record to x’s table; in fact,
x’s table will always be empty. Notice that this removal al-
lows Partiqle to infer that some retention checks will always
fail.

If a query has no post-dominator, a simple transforma-
tion can split it into several queries that do have post-
dominators. The union of the results of these queries is
the same as the results of the original query. The transfor-
mation on query q, generates one query, qs, for each sink s
in the timing graph. The query qs is defined to be the query
q with the additional constraint that s comes after all the
other sink events in the timing graph.

3.7 Deletion Propagation
Suppose there is a predicate relating records in the runtime
tables xs and ys. When Partiqle removes a record from
xs, some records in ys may be unable to participate in fur-
ther query results, because they can only match with the xs
records that have been deleted. (In other words, ys records
were subject to admission checks that only passed because
of the presence of records in xs that have now been deleted.)
Ideally, Partiqle would drop such records from ys immedi-
ately. We refer to this removal as deletion propagation.

In practice however, discovering opportunities for deletion
propagation can require a large number of runtime checks.
Partiqle takes a conservative approach and empties ys if xs
has just been emptied and there was an admission check for
ys records against xs records. This decision was made for
ease of implementation; this is an important area of investi-
gation in future work.

Record removal at the post-dominator (Section 3.6), reten-
tion checks (Section 3.5), and deletion propagation work to-
gether to remove records from the runtime tables once all
results involving those records have been output.

3.8 Example of Optimized Instrumentation
In this section we show the instrumentation that Partiqle
would add to the code from Section 1 to answer the example
query from Section 1.

This query requires two runtime tables: xs for
MethodInvocation doTrans and zs for MethodInvocation

sleep. Based on the static predicates

doTrans.methodName = ’doTransaction’

AND doTrans.declaringClass = ’DB’

AND sleep.methodName = ’sleep’

AND sleep.declaringClass = ’B’

only DB.doTransaction() needs to be instrumented to add
records to xs and only sleep() needs to be instrumented to
add records to zs.

As discussed in Section 3.6, the start event for sleep() is the
post-dominator for this query. Therefore, the instrumenta-
tion at the start of sleep() creates a record, Z, and then

computes and outputs query results involving Z; that is,
for each record X in xs with X.thread = Z.thread, output
(X.startTime, Z.startTime). The timing constraints need
not be checked at query evaluation since they are always
satisfied (records in xs are for calls to DB.doTransaction()

that have started, but not completed). Since all query re-
sults involving Z are output at the start of sleep(), Z need
not be recorded. In fact, no table zs is actually necessary.

Since zs is always empty, the retention check at the end of
DB.doTransaction() will always fail. The instrumentation
at the end of DB.doTransaction() removes the record from
xs.

4. RESULTS
4.1 Benchmarks
We present several examples of the use of Partiqle on real
programs. Our suite of benchmark programs is shown in
Table 1. They include the SpecJVM98 benchmark suite [17],
a variety of other benchmarks, and the Apache Tomcat [4]
version 4 Web server and servlet container (which includes
the Xerces XML parser and other components). The code
size is reported as the number of methods in the application.
However, we also instrument the Java class library, so the
actual code subject to instrumentation is very much larger
than reported here (although hard to directly measure).

Except for Tomcat, we ran the programs on inputs provided;
we used the largest input size available for the SpecJVM98
benchmarks. For Tomcat, we gathered a list of all URLs
to pages under Tomcat’s “examples” directory and wrote a
harness that loads these pages sequentially, running through
the complete list twice. This exercises a number of JSPs and
servlets.

4.2 Queries
We constructed several queries aimed at finding correctness
or performance bugs in Java code.

• HashCodeConsistent checks that hashCode called on
the same object always returns the same value. Vio-
lations of this rule would cause problems if the object
was stored as a key in some data structure.

SELECT first.result, second.result

FROM MethodInvocation first,

MethodInvocation second,

ObjectAllocation obj

WHERE first.methodName = ’hashCode’

AND second.methodName = ’hashCode’

AND first.receiver = obj.receiver

AND second.receiver = obj.receiver

AND first.result != second.result

Introducing an explicit query variable for the object
allows the end event for the object to be a post-
dominator for the query. This simple transformation
would be easy to automate.

• EqualObjectsButInequalHashCodes checks that if two
objects were deemed equal by equals, then they have
the same hashCode. This is an important invariant of
these methods.



Example Methods Description
db 35 small database management program (SpecJVM98)
compress 44 Java port of LZW (de)compression (SpecJVM98)
lisp 104 Lisp interpreter
jscheme 110 Scheme interpreter
MipsSimulator 112 architectural simulator
raytrace 180 ray-tracing program (SpecJVM98)
mtrt 184 multi-threaded ray-tracing program (SpecJVM98)
mpegaudio 280 MP3 decoder (SpecJVM98)
jack 313 Java parser generator (SpecJVM98)
jess 673 expert shell system (SpecJVM98)
javac 1179 JDK 1.0.2 Java compiler (SpecJVM98)
tomcat 16940 Apache Web application server (v4.0.4)

Table 1: Benchmark programs

• InequalObjectsButEqualHashCodes checks that if two
objects are not deemed equal by equals, then their
hash codes should be different. Violation of this rule
is not strictly speaking a bug, but could lead to per-
formance problems due to hash collisions. The query
is very similar to the previous query.

• StringConcats searches for the anti-pattern
String s = ...;

for (...) { s = s + ...; }
This code can induce O(n2) performance where n is
the length of the final string. Avoiding this prob-
lem is listed as “Best Practice 11” in an IBM white
paper [18]. We look for the result of a call to
StringBuffer.toString being passed to the construc-
tor of another StringBuffer, then the result of that
StringBuffer’s toString being passed to construct
another StringBuffer, and so on. Our actual query
looks for a chain of five such constructions. For the
sake of brevity, here is the code for a chain of two
constructions:

SELECT c2.param0

FROM MethodInvocation ts1,

MethodInvocation c1,

MethodInvocation ts2,

MethodInvocation c2

WHERE ts1.methodName = ’toString’

AND ts1.implementingClass = ’StringBuffer’

AND c1.methodName = ’<init>’

AND c1.implementingClass = ’StringBuffer’

AND ts2.methodName = ’toString’

AND ts2.implementingClass = ’StringBuffer’

AND c2.methodName = ’<init>’

AND c2.implementingClass = ’StringBuffer’

AND ts1.result = c1.param0

AND ts1.endTime < c1.startTime

AND c1.receiver = ts2.receiver

AND c1.endTime < ts2.startTime

AND ts2.result = c2.param0

AND ts2.endTime < c2.startTime

Here the timing constraints are necessary to pre-
vent ambiguities, as well as helping to ensure a post-
dominator exists (c2.start, in this case). For exam-
ple, the intuition that the result of ts1 is passed as
a parameter to c1 means not only that the value is

the same but c1 starts after ts1 returns. In gen-
eral it might be possible for ts1 to return a String

that previously existed and had been used to construct
a StringBuffer, so it is important to stipulate that
ts1.endTime < c1.startTime. It is easy to acciden-
tally under-constrain a query this way. Fortunately
this often leads to no post-dominator node being found
and Partiqle issuing a warning.

• DelayedClose searches for close operations on stream
objects that have not been read or written to for a
certain length of time. Such streams could be consid-
ered resource leaks; they should be closed as soon as
the application has finished using them. This query
was inspired by “Best Practice 8” in an IBM white
paper [18]. This query requires some extensions to
PTQL not described in detail in this paper:

– “startRealTime” and “endRealTime” fields that
record actual wall clock timestamps for events, in
milliseconds

– Simple arithmetic expressions (+)

– String pattern matching expressions (= )̃

– Simple negation: the ability to specify that a
query variable have no matches in order for the
rest of the tuple of records to satisfy the query
(NEGATIVE)

SELECT close.receiver0

FROM MethodInvocation rw,

NEGATIVE MethodInvocation norw,

MethodInvocation close

WHERE close.methodName = ’close’

AND close.implementingClass =˜ ’org.apache.*’

AND rw.methodName =˜ ’read|write’

AND rw.implementingClass =˜ ’org.apache.*’

AND norw.methodName =˜ ’read|write’

AND norw.implementingClass =˜ ’org.apache.*’

AND rw.receiver = norw.receiver

AND rw.receiver = close.receiver

AND rw.endTime < norw.endTime

AND norw.endTime < close.startTime

AND close.realStartTime > rw.realEndTime + 10000
We constrain the search to Apache stream classes
because applying it to basic Java streams causes



public class A {

B b;

//...

void doTransaction() {

get global lock;

MethodDescriptor X = new MethodDescriptor(

this,

null, /* no arguments */

1 /* method id for doTransaction */

);

xs.add(X);

release global lock;

try {

b.y();

} catch (Throwable e) {

get global lock;

xs.delete(X);

release global lock;

throw e;

}

get global lock;

xs.delete(X);

release global lock;

}

}

public class B {

//...

void y() { //method y is unchanged

sleep();

}

void sleep() {

get global lock;

MethodDescriptor Z = new MethodDescriptor(

this,

null, /* no arguments */

2 /* method id for sleep */

);

output query results for Z;

release global lock;

}

}

Figure 9: Optimized instrumented code for example
from Section 1

reentrancy problems for the Partiqle runtime support
library.

• CompareToReflexive searches for Comparable objects
o which return nonzero from a call to o.compareTo(o).

• CompareToAntisymmetric searches objects x and y
such that the sign of x.compareTo(y) 6= minus the sign
of y.compareTo(x). Because Partiqle currently lacks a
“sign” function, we map this to three queries covering
the cases where x.compareTo(y) < 0, = 0, or > 0. The
first case is the one we report results for here.

• CompareToTransitive searches for objects x, y and
z whose compareTo methods violate transitivity.
Currently PTQL requires this query to be split
into two queries: one where all of x.compareTo(y),
y.compareTo(z) and z.compareTo(x) are all non-
negative and at least one is positive (without loss of
generality, we take x.compareTo(y) to be positive),
and one were they are all non-positive and at least
one (x.(compareTo)(y)) is negative. Furthermore, to
ensure there is a post-dominator node each of those
queries needs to be split into three cases, depending
on which compareTo method call is constrained to be
last. We report results for the query covering the case
where x.compareTo is positive and called last.

4.3 Overhead of Instrumentation
We measured the baseline performance of our benchmarks
without instrumentation and compared them to the per-
formance when instrumented for each of the queries. We
recorded the wall-clock running time of each run, and also
the heap memory high-water mark (measured by sampling
Java’s System.totalMemory() - System.freeMemory() ev-
ery 500 milliseconds). The experiments were carried out on
an unloaded 2.4 GHz Pentium IV with 1.5GB of memory,
running IBM’s JDK 1.4.0 on Red Hat Linux 7.3.

Table 2 shows the runtime overhead as a ratio of the runtime
with instrumentation to the runtime without instrumenta-
tion. Table 3 shows the memory overhead as a ratio of the
memory high-water-mark with instrumentation to the high-
water-mark without instrumentation. jess and javac took
too long on a couple of the queries and had to be terminated.
More work is required on these benchmarks, in particular,
to optimize the speed of query processing.

These results show that, with the exception of a few out-
liers, the overheads are acceptable. Jitter in the results —
especially where the instrumented code runs faster or in less
space than the uninstrumented code — seems to be due to
changes in the garbage collection or JIT behaviour, which
can be sensitive to small changes in program behaviour (es-
pecially for small and short-lived benchmarks as most of
ours are).

4.4 Effects of Optimizations
Figure 10 shows the time overheads on Tomcat with full
optimization on, with admission checks turned off (i.e., we
assume that the admission checks always succeed without
executing them), and with the post-dominator node turned
off (so records are queued up and all processed at the end of



Query db compress lisp jscheme Mips raytrace mtrt mpeg jack jess javac tomcat
HashCodeConsistent 0.97 1.00 1.00 1.00 1.00 0.91 1.00 1.00 1.00 1.06 2.23 5.35
EqualButInequalHash 1.81 0.97 1.00 1.12 1.01 1.00 0.92 1.00 3.86 — — 4.65
InequalButEqualHash 3.40 0.97 1.00 1.08 1.00 0.91 0.92 1.00 28.44 — 68.14 1.70
StringConcats 1.00 0.97 1.00 1.17 1.15 1.00 1.00 1.00 1.97 1.12 160.40 46.91
DelayedClose 0.97 0.97 1.00 1.08 1.00 1.00 1.00 1.00 0.95 1.05 0.97 1.17
CompareToReflexive 1.01 1.00 1.00 1.00 1.00 0.92 1.00 1.00 1.00 1.06 0.97 0.96
CompareToAnti 1.03 0.97 1.00 1.08 1.00 0.92 1.00 1.00 0.95 1.05 1.03 0.97
CompareToTransitive 0.98 0.97 1.00 1.03 1.00 0.92 0.92 1.00 1.00 1.00 0.97 1.00

Table 2: Runtime Overhead

Query db compress lisp jscheme Mips raytrace mtrt mpeg jack jess javac tomcat
HashCodeConsistent 1.02 1.09 1.05 0.88 1.00 0.93 0.75 1.01 0.86 1.08 5.51 2.41
EqualButInequalHash 1.96 1.09 1.43 1.07 1.00 0.94 0.86 1.01 2.52 — — 2.06
InequalButEqualHash 46.15 1.09 1.04 1.05 1.00 1.01 0.93 1.01 202.49 — 29.83 9.35
StringConcats 1.10 1.09 1.37 1.32 1.50 0.92 0.72 1.22 4.35 2.02 8.98 16.97
DelayedClose 1.18 1.06 1.18 0.93 1.01 1.00 0.97 1.00 0.97 0.76 1.01 2.78
CompareReflexive 1.20 1.02 1.15 1.00 1.02 1.03 0.87 1.00 0.85 1.01 1.01 1.07
CompareAnti 1.00 1.00 1.01 0.98 1.00 0.97 0.73 1.00 0.95 1.08 0.99 0.89
CompareTransitive 1.16 1.06 1.02 0.86 1.01 0.84 0.92 1.00 0.94 1.09 1.01 0.89

Table 3: Memory Overhead

the program run) but admission checks on. Figure 11 shows
the corresponding memory overheads.

These results show that most of the time the post-dominator
makes little difference in time, that it is essential for one
query, but really hurts StringConcats! We also see that
surprisingly, using the post-dominator increases measured
memory usage — surprising because the post-dominator is
supposed to allow us to discard records from tables. Profiles
show that this increased memory usage is due to our query
evaluator’s intensive traversals of Java collections, which re-
quire the allocation of a very large number of iterators. (For
example, before Tomcat has served a single page, Partiqle
has already allocated over 1GB of iterators.) When partial
query results are being computed frequently at the post-
dominator’s program point, enormous amounts of memory
are being allocated — and quickly collected — but the vir-
tual machine’s GC heuristics are allowing the heap to grow
quite large before collection. Without the post-dominator,
at the end of the program we need to traverse more records,
but only once, so the cost of the iterators is greatly amor-
tized.

We believe that the high time overhead for StringConcats

induced by the post-dominator is related to this problem.
The massive and frequent allocation of short-lived iterators
seems to interfere with the operation of the VM and slow
down the application severely. Obviously a high priority for
future work is to overhaul the query evaluator for high speed
and minimal allocation.

The results also show that admission checks generally
make a small improvement in time, but in some cases
(StringConcats) they lead to a large improvement in space.

4.5 Query Results Found

Our queries discovered several interesting program be-
haviours. When Partiqle detects a query result being pro-
duced at a post-dominator node, it produces a stack trace
for the current event to aid diagnosis. (The usefulness of
these stack traces in diagnosing faults is one advantage of
using post-dominators to output results incrementally in-
stead of post-mortem.) These issues could have been found
with custom dynamic analysis or even in some cases sim-
ple static analysis; however, writing PTQL queries is an
extremely quick way to look for new kinds of behaviours.

• Applying StringConcats to the jack benchmark
found a classic poorly-performing String concatena-
tion loop. Unfortunately the loop is in the heart of
the jack lexer: jack builds tokens by appending one
character at a time to a String! This is O(n2) in the
length of the tokens. Despite jack being an extremely
well-studied benchmark, we are not aware of anyone
previously having reported this bug.

• Applying HashCodeConsistent to tomcat found
a situation in the Xerces XML parser where
org.apache.xerces.validators.common.CMStateSet

objects were returning different hashCodes
at different times. It turns out that
org.apache.xerces.validators.common.DFAContentModel

has an algorithm that looks like this:

CMStateSet newSet = null;

HashMap states = new HashMap();

for (...) {

if (newSet == null) {

newSet = new CMStateSet();

} else {

newSet.clear();

}



Figure 10: Runtime Overheads For Tomcat

Figure 11: Memory Overheads For Tomcat



...

if (...) {

... = states.get(newSet);

}

if (...) {

states.put(newSet, ...);

newSet = null;

}

}

So objects referenced by newSet are used for lookups
interleaved with mutations, but once the objects are
put into the states as keys, the objects are no longer
mutated. This code is correct, but very subtle.

• Applying StringConcats to tomcat

found performance bugs in classes
org.apache.catalina.util.xml.XmlMapper and
com.ibm.security.util.ObjectIdentifier.

XmlMapper handles SAX XML parsing events. It
has a String field body. The SAX parser
calls XmlMapper.characters repeatedly to signal
that new body characters have been parsed.
XmlMapper.characters appends them to the body us-
ing

body = body + new String(buf, offset, len);

This can lead to parsing taking time O(n2) in the
length of the body text. This bug persisted in the
XMLMapper source until the whole package was obso-
leted.

The method ObjectIdentifier.toString builds a
string representation for an ObjectIdentifier by con-
catenating the string representation of each member
of an array of components; the string is accumulated
in a String object. This bug is potentially seri-
ous since ObjectIdentifier.toString appears to be
called when security certificates are parsed, which hap-
pens when classes are loaded from signed JAR files.
The bug is still present in the latest available version
of the IBM JDK.

5. RELATED WORK
There are four main branches of related work: program mon-
itors, systems that “guess” large numbers of predicates and
return those that were true during program execution, as-
pect oriented programming systems, and other instrumen-
tation and trace query engines.

5.1 Program Monitors
The monitoring and checking (MaC) framework [12, 11]
monitors a running program and looks for violations of a
formal specification. It automatically inserts instrumenta-
tion based on a description of interesting events (in PEDL)
and a high level specification of undesirable concordances of
events (in MEDL). Should the running program violate its
specification, MaC raises an alarm.

In a similar vein, Roşu and Havelund [9] describe a system
to check the conformance of a program’s execution to a spec-
ification in linear temporal logic (LTL). The atomic proposi-
tions of their logic are events; formulae are interpreted over

finite sequences of events (i.e. program traces). Examples
of events seem to include function calls, reads and writes to
variables, and lock acquires and releases.

Whereas these systems are concerned with decision prob-
lems with boolean answers, Partiqle is concerned more gen-
erally with data collection and thus operates on and returns
sets of data. Counting the number of times an event occurs
or inspecting variations in method arguments or durations
are natural with PTQL. Furthermore, PTQL supports con-
straints on data values, which do not fit naturally into any
framework which compiles to finite automata. Queries that
look for groups of method calls on the same object are natu-
ral when examining object-oriented programs. Others have
argued that even with their limited expressiveness, temporal
logic formulas are hard to understand [6].

5.2 Predicate-Guessing Systems
DIDUCE [8] instruments Java programs to track invariants
at various program sites. The violation of an invariant, es-
pecially one that had been true many times, yields a warn-
ing and a relaxation of the monitored invariant. Deviations
from the norm often indicate bugs or interesting facts about
program execution.

Liblit et al. [15] instrument programs to use random sam-
pling of program points to gather small parcels of data from
a large user base. Statistical analysis correlates certain ob-
servations with program failure, giving the developer insight
into what situations elicit bugs.

Daikon [7] intensively instruments programs to discover
likely invariants.

We view these systems as complementary to Partiqle. While
Partiqle provides sparse instrumentation to answer specific
questions, these systems monitor entire programs and look
for interesting invariants or gather information about pro-
gram failures.

5.3 Aspect-Oriented Programming Systems
AspectJ [10] is an aspect-oriented extension to Java. By
defining pointcuts and advice, one can add functionality to
a Java program that cross-cuts the class hierarchy. PTQL
and Partiqle solve the more specific problem of instrument-
ing a Java program to execute a query over its program
trace. An aspect to implement a PTQL query would have
to contain a point cut (with advice) for each item in the
FROM clause of the query. It would be up to the programmer
to choose suitable runtime data structures, manage them,
and optimize. PTQL’s declarativeness allows it to choose
efficient data structures and perform optimizations.

5.4 Trace Query Engines
Most similar to Partiqle is a the program monitoring and
measuring system (PMMS) by Liao and Cohen [14, 13]. Like
Partiqle, PMMS compiles a high level query language over
program traces to program instrumentation. Our contribu-
tions over PMMS are in the sophistication of our implemen-
tation and optimizations, the application to Java (including
handling of threads and objects, not addressed by PMMS),
a more complete implementation, and much more thorough



evaluation. In terms of our vocabulary, PMMS has a timing
graph but does not use inference rules to infer additional
edges for the graph. PMMS has a form of post-dominator
but it is restricted to an “interval event” (method invoca-
tions) that entirely enclose all other relevant events.

The Hyades project [2] is developing a data model for traces
of Java programs. The data model is expressed in the Eclipse
Modelling Framework [1] and therefore one can write queries
in terms of this data model using the Object Constraint Lan-
guage [5]. We initially tried to use OCL over the Hyades
model as the query language for our work. However, the
Hyades model is oriented towards “implicit time”: for ex-
ample, one specifies directly that a method invocation called
another method invocation, rather than specifying temporal
relationships between start and end events. We discovered
that for complex queries, it was much easier for both the
query engine and us as query writers to deal directly with
explicit timestamps as much as possible. Furthermore OCL
is a rich language, for example including functions, and we
would have had to extend it with transitive closure, mak-
ing it a good deal more complex than PTQL. It should be
possible to translate some subset OCL queries into PTQL,
however.

6. FUTURE WORK
PTQL and Partiqle are just a first step. There are many ar-
eas for improvement in the performance and expressiveness
of the system.

As mentioned in Section 4.2, we have already begun extend-
ing the query language. Obvious candidates for extensions
include:

• New fields, such as real-time timestamps.

• New event types, such as field read and write events,
lock acquire and release events, thread start and stop
events, and breakpoint events (execution of particular
program instructions), with new fields associated with
these events (e.g., for breakpoint events, access to local
variables).

• New table types, such as a table that gives access to
heap contents.

• Arithmetic.

• The ability to execute arbitrary expressions, possibly
including even calls to (side effect free) methods in the
program.

• Negation and, more generally, subqueries (i.e., queries
with quantifiers not at the top level).

• Aggregation, e.g., SELECT SUM(x) WHERE .... This
would provide more opportunities for optimizations.

We can also improve the implementation significantly. One
priority is to replace the current query evaluator, which is a
form of interpreter, with a compiler generating specialized
evaluation code for each query. This also involves replacing
the generic record structures we use for all method invoca-
tions and objects with customized records containing exactly

the fields needed by the query. We also need to generate ex-
actly the indexes needed to evaluate the query efficiently.
This work is already under way.

Another obvious improvement would be to add the ability
to evaluate multiple queries at once in a single program run.
This would be easy to do naively, but optimizations are pos-
sible where queries can share data.

We would like to extend the optimizations so that there is no
need or benefit for query authors to add constraints to break
symmetry or ensure the existence of a post-dominator node.
Our system should automatically turn a single general query
into the union of several more constrained queries. Similarly,
our system should automatically introduce tracking of ob-
ject lifetimes when that can be used to prune intermediate
tables.

With profiling, we can gather data about the selectivity of
predicates and other useful information for improving query
evaluation. Many techniques from the world of databases
can probably be imported and profitably applied.

There seem to be many opportunities to employ static
analysis to further reduce overhead. For example, in the
example of “can doTransaction call sleep?”, a context-
sensitive static call graph could be used to deduce that a
particular call site of doTransaction can never in turn in-
voke sleep, and therefore we can safely call a specialized
instrumentation-free copy of doTransaction. In general,
any analysis that can statically determine the value of some
part of the query with respect to a given program could be
useful for reducing overhead.

Another rich area for exploration is adding support for
approximate query evaluation via sampling. Sampling is
widely used to make expensive dynamic analyses tractable,
but it requires considerable care to use correctly. A general
framework for computing approximate answers to PTQL
queries would be extremely powerful and useful. Again,
techniques from databases seem to be applicable.

7. CONCLUSION
We have described PTQL, a language for writing expressive,
declarative queries about program behavior, and Partiqle, a
system for compiling PTQL queries into light-weight instru-
mentation on Java programs. Using PTQL and Partiqle
avoids the complexity and code maintenance problems of
manual instrumentation.

We demonstrate that Partiqle is efficient enough to run in-
teresting queries on real world Java programs and that our
optimizations are crucial to achieving this performance.
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