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Abstract

This paper presents a new algorithm for the independent components analysis (ICA)
problem based on efficient entropy estimates. Like many previous methods, this algorithm
directly minimizes the measure of departure from independence according to the estimated
Kullback-Leibler divergence between the joint distribution and the product of the marginal
distributions. We pair this approach with efficient entropy estimators from the statistics
literature. In particular, the entropy estimator we use is consistent and exhibits rapid
convergence. The algorithm based on this estimator is simple, computationally efficient,
intuitively appealing, and outperforms other well known algorithms. In addition, the esti-
mator’s relative insensitivity to outliers translates into superior performance by our ICA
algorithm on outlier tests. We present favorable comparisons to the Kernel ICA, FAST-
ICA, JADE, and extended Infomax algorithms in extensive simulations.

1. Introduction

We present a new independent components analysis (ICA) algorithm, RADICAL. Empir-
ical results indicate that it outperforms a wide array of well known algorithms. Several
straightforward principles underly the development of RADICAL:

1. Since ICA is, by definition, about maximizing statistical independence, we attempt
to directly optimize a measure of statistical independence, rather than a surrogate for
this measure.

2. We avoid explicit estimation of probability densities as an intermediate step. Indeed,
given the formulation of the objective function, density estimation (even implicitly)
is entirely unnecessary.

3. Since our objective function involves one-dimensional entropy estimation, we employ a
well-known1, consistent, rapidly converging and computationally efficient estimator of

1. Although the estimator we use (Vasicek (1976)) has been extensively analyzed in the statistics literature,
it appears to be relatively unknown in the machine learning community.
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entropy which is robust to outliers. For this task, we turned to the statistics literature,
where entropy estimators have been studied extensively (c.f. Beirlant et al. (1997)).

4. As the optimization landscape has potentially many local minima, we eschew gradient
descent methods. The fact that the estimator is computationally efficient allows for
a global search method. The properties of the ICA problem allow extension of this
technique to higher dimensions in a tractable manner.

Attention to these principles led to the Robust, Accurate, Direct ICA aLgorithm (RADI-
CAL) presented here.

The paper is organized as follows. We begin by setting up the problem and discussing
aspects of the contrast function originally proposed by Comon (1994) which can be simplified
to a sum of one-dimensional marginal entropies (c.f. Kullback (1959)). In Section 2, we
discuss entropy estimates based on order statistics. One method in particular satisfies our
requirements, the m-spacing estimator (Vasicek, 1976).

This entropy estimator leads naturally to a simple ICA algorithm, a two-dimensional
version of which is described in Section 3. We follow this with a discussion of complexity
and experimental results for the two-dimensional problem. In addition to working for a
wide variety of possible source distributions, we demonstrate that RADICAL has excellent
robustness to the presence of outliers. In Section 4, we extend the algorithm to higher
dimensional problems, with experiments in up to 16 dimensions. We discuss additional
details of the algorithm and discuss why the complexity is still manageable, even using our
exhaustive search approach.

1.1 Linear ICA and KL divergence

As articulated by Comon (1994), independent components analysis (ICA) or alternatively
blind source separation as applied to instantaneous linear mixtures considers the generative
model of random observations

X = AS. (1)

Here X ∈ <C and S ∈ <D are random vectors, and A ∈ <C×D is a fixed but unknown
(hence the term blind) mixing matrix. Typically, at a minimum, one assumes that

1. the mixing matrix A has full rank,

2. the components of S are mutually independent, and

3. C ≥ D.

Condition 2 is equivalent to the statement that the joint density of the components of S
can be expressed as a product of the marginals:

p(S1, · · · , SD) =
D∏

i=1

p(Si). (2)

Additionally, here we shall restrict ourselves to the case where C = D (i.e. A is square)
without loss of generality. The goal is to recover (in some sense) the sources and perhaps
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the mixing matrix via a transformation W on observations of X, that is

Y = WX (3)
= WAS (4)
= BS. (5)

Given the minimal statement of the problem, it has been shown (Benveniste et al., 1980,
Comon, 1994) that one can recover the original sources up to a scaling and permutation
provided that at most one of the underlying sources is Gaussian and the rest are non-
Gaussian. Upon pre-whitening the observed data the problem reduces to a search over
rotation matrices in order to recover the sources and mixing matrix in the sense described
above (Hyvärinen, 2001, Bach and Jordan, 2002). We will assume henceforth that such
pre-processing has been done.

While the problem statement is fairly straightforward with a minimum of assumptions
it has been well studied, resulting in a vast array of approaches. Some of the more notable
approaches can be roughly grouped into maximum likelihood based methods (Pham et al.,
1992, Pearlmutter and Parra, 1996), moment/cumulant based methods (Comon, 1994, Car-
doso and Souloumiac, 1996, Cardoso, 1999b, Hyvärinen, 2001), entropy based methods (Bell
and Sejnowski, 1995, Hyvärinen, 1999), and correlation based methods (Jutten and Herault,
1991, Bach and Jordan, 2002).

Many approaches start the analysis of the problem by considering the contrast function
(Comon, 1994)

J(Y ) =
∫

p(y1, · · · , yD) log
p(y1, · · · , yD)

p(y1)p(y2)...p(yD)
dµ (6)

= KL

(
p(y1, · · · , yD)||

D∏
i=1

p(yi)

)
(7)

=
D∑

i=1

H(Yi)−H(Y1, · · · , YD). (8)

Here dµ = dy1dy2 · · · dyD and H(Y ) is the differential entropy (Shannon, 1948) of the con-
tinuous multi-dimensional random variable Y . The right side of (6) is the Kullback-Leibler
divergence (Kullback, 1959), or relative entropy, between the joint density of {Y1, . . . , YD}
and the product of its marginals.

The utility of (6) for purposes of the ICA problem has been well documented in the liter-
ature (c.f. Comon (1994), Lee et al. (1999a)). Briefly we note that for mutually independent
random variables Y1, Y2, ..., YD we have:

J(Y ) =
∫

p(y1, y2, ..., yD) log
p(y1, y2, ..., yD)

p(y1)p(y2)...p(yD)
dµ (9)

=
∫

p(y1, y2, ..., yD) log 1 dµ (10)

= 0. (11)

Since this quantity will be 0 if and only if all of the variables are mutually independent, we
take (6) as a direct measure of mutual independence.
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As a function of X and W it is easily shown (c.f. (Cover and Thomas, 1991, Bell and
Sejnowski, 1995, Hyvärinen, 2001)) that

J(Y ) =
D∑

i=1

H(Yi)−H(X1, . . . ,XD)− log (|W |) . (12)

In particular, the change in the entropy of the joint distribution under linear transformation
is simply the logarithm of the Jacobian of the transformation. As we will assume the X’s
are pre-whitened, W will be restricted to rotation matrices (i.e. log (|W |) = 0) and the
minimization of J(Y ) reduces to finding

W ∗ = arg min
W

H(Y1) + · · · + H(YD). (13)

The preceding development was necessary to bring us to the primary contribution of
this paper. The observations noted in the development are the collective contributions
of the cited authors. As has been noted (Hyvärinen, 1999), ICA algorithms consist of
an objective (contrast) function and an optimization algorithm. We adopt the previously
proposed objective criterion of (13) and present a means of both estimating its value and
optimizing the choice of W via a method which is reliable, robust, and computationally
efficient. These are the aspects of our proposed approach which will be the subject of the
rest of the paper.

Towards that end, we adopt a different entropy estimator to minimize (13). The entropy
estimator is almost identical to one described by Vasicek (1976) and others (c.f. Beirlant
et al. (1997) for a review) in the statistics literature. This class of entropy estimators has
not heretofore been applied to the ICA problem. As we will show, the use of this entropy
estimator has a significant impact on performance as compared to other ICA algorithms
and as discussed in the sections on experimental results. In addition, it has the following
desirable properties:

• It is consistent.

• It converges as the square root of N , the number of data points, and is asymptotically
efficient.

• It is computable in O(N log N) time.

In the next section, we present a detailed discussion of the entropy estimator and its prop-
erties.

2. Entropy Estimators for Continuous Random Variables

There are a variety of ICA algorithms that minimize (13) to find the independent com-
ponents (e.g. Comon (1994)). These algorithms differ mostly in how they estimate the
entropy of the one-dimensional marginal variables. Hyvärinen (1997), for example, devel-
oped a new entropy estimator for this purpose. RADICAL also uses entropy minimization
at its core, and as such must estimate the entropy of each marginal for each possible W
matrix. RADICAL’s marginal entropy estimates are functions of the order statistics of
those marginals.

4



2.1 Order statistics and spacings

Consider a one-dimensional random variable Z, and a random sample of Z denoted by
Z1, Z2, ..., ZN . The order statistics of a random sample of Z are simply the elements of
the sample rearranged in non-decreasing order: Z(1) ≤ Z(2) ≤ ... ≤ Z(N) (c.f. Arnold
et al. (1992)). A spacing of order m, or m-spacing, is then defined to be Z(i+m) − Z(i), for
1 ≤ i < i + m ≤ N . Finally, if m is a function of N , one may define the mN -spacing as
Z(i+mN ) − Z(i).

The mN−spacing estimator of entropy, originally due to Vasicek (1976), can now be
defined as

ĤN(Z1, Z2, ..., ZN ) =
1
N

N−mN∑
i=1

log
(

N

mN
(Z(i+mN ) − Z(i))

)
. (14)

This estimator is nearly equivalent to the one used in RADICAL, which is discussed below.
To see where this estimator comes from, we first make the following observation regarding
order statistics. For any random variable Z with an impulse-free density p(·) and continu-
ous distribution function P (·), the following holds. Let p∗ be the N -way product density
p∗(Z1, Z2, ..., ZN ) = p(Z1)p(Z2)...p(ZN ). Then

Ep∗[P (Z(i+1))− P (Z(i))] =
1

N + 1
, ∀i, 1 ≤ i ≤ N − 1. (15)

That is, the expected value of the probability mass of the interval between two successive
elements of a sample from a random variable2 is just 1

N+1 of the total probability (which
by definition must be equal to 1.0). This surprisingly general fact is a simple consequence
of the uniformity of the random variable P (Z). P (Z), the random variable describing the
“height” on the cumulative curve of a random draw from Z (as opposed to the function
P (z)) is called the probability integral transform of Z (c.f. Manoukian (1986)). Thus, the
key insight is that the intervals between successive order statistics have the same expected
probability mass.

Using this idea, one can develop a simple entropy estimator. We start by approximating
the probability density p(z) by assigning equivalent masses to each interval between points
and assuming a uniform distribution of this mass across the interval3. Defining Z(0) to be
the infimum of the support of p(z) and defining Z(N+1) to be the supremum of the support
of p(z), we have:

p̂(z;Z1, ..., ZN ) =
1

N+1

Z(i+1) − Z(i)
, (16)

2. The probability mass of the interval between two successive points can also be thought of as the integral
of the density function between these two points.

3. We use the notion of a density estimate to aid in the intuition behinid m−spacing estimates of entropy.
However, as we stress below, density estimation is not a necessary intermediate step in entropy estimation.
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for Z(i) ≤ z < Z(i+1). Then, we can write

H(Z) = −
∫ ∞

−∞
p(z) log p(z)dz (17)

(a)≈ −
∫ ∞

−∞
p̂(z) log p̂(z)dz (18)

= −
N∑

i=0

∫ Z(i+1)

Z(i)

p̂(z) log p̂(z)dz (19)

= −
N∑

i=0

∫ Z(i+1)

Z(i)

1
N+1

Z(i+1) − Z(i)
log

1
N+1

Z(i+1) − Z(i)
dz (20)

= −
N∑

i=0

1
N+1

Z(i+1) − Z(i)
log

1
N+1

Z(i+1) − Z(i)

∫ Z(i+1)

Z(i)

dz (21)

= − 1
N + 1

N∑
i=0

log
1

N+1

Z(i+1) − Z(i)
(22)

(b)≈ − 1
N − 1

N−1∑
i=1

log
1

N+1

Z(i+1) − Z(i)
(23)

=
1

N − 1

N−1∑
i=1

log
(
(N + 1)(Z(i+1) − Z(i))

)
(24)

≡ Ĥsimple(Z1, ..., ZN ). (25)

The approximation (a) arises by approximating the true density p(z) by p̂(z;Z1, ..., ZN ).
The approximation (b) stems from the fact that in general we do not know Z(0) and Z(N+1),
i.e. the true support of the unknown density. Therefore, we form the mean log density esti-
mate using only information from the region for which we have some information, ignoring
the intervals outside the range of the sample. This is equivalent to assuming that outside
the sample range, the true density has the same mean log probability density as the rest of
the distribution.

2.2 Lowering the variance of the estimate

The estimate (25) has both intuitive and theoretical appeal4, but it has relatively high
variance since while the expectation of the interval probabilities (15) is 1

N+1 , their variance
is high. The upper left plot of Figure 1 shows the distribution of values obtained when
we divide a random 1−spacing by its expected value. Clearly, these values are widely
distributed around the ideal value of 1.

4. The addition of a small constant renders this estimator weakly consistent for bounded densities under
certain tail conditions (Hall (1984)).
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Figure 1: Histograms showing the variability of the probability mass of m-spacings, as a
function of m. Each plot shows, for a particular m, the ratio of a set of random
m-spacings to their expected values. When m = 1 (upper left plot), the prob-
ability mass of the m-spacings is widely distributed. Already for m = 2 (upper
right), the ratio is substantially more concentrated around its expected value of
1. For m = 10 (lower left), the m-spacings’ probability masses are almost always
within a factor of three of their expected values. For m = 100 (lower right), the
probability mass of the m-spacings is highly consistent. This behavior is a simple
consequence of the law of large numbers and the uniformity of the distribution
obtained through the probability integral transform.
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This problem can be mitigated, and asymptotically eliminated completely, by consider-
ing m−spacing estimates of entropy, such as

Ĥm−spacing(Z1, ..., ZN ) ≡ m

N − 1

N−1
m

−1∑
i=0

log
(

N + 1
m

(Z(m(i+1)+1) − Z(mi+1))
)

. (26)

By letting
m →∞,

m

N
→ 0, (27)

this estimator also becomes consistent (Vasicek (1976), Beirlant et al. (1997)). In this work,
we typically set m =

√
N .

The intuition behind this estimator is that by considering m-spacings with larger and
larger values of m, the variance of the probability mass of these spacings, relative to their
expected values, gets smaller and smaller. This behavior is illustrated in Figure 1. Each plot
shows, for a different value of m, the distribution of the ratio between random m-spacings
and their expected value. The upper left plot shows that for m = 1, this distribution is
distributed very widely. As m grows, the probability mass for each m-spacing concentrates
around its expected value.

Such plots, which are functions of the probablity mass of intervals defined by order
statistics, have the same form for all probability distributions with continuous cumulative
distribution functions. That is, the form depends only on the value of m and not at all on
the probability law. This is again a consequence of the uniformity in distribution of the
probability integral transform for any (impulse-free) density.

A modification of (26) in which the m−spacings overlap5:

ĤRADICAL(Z1, ..., ZN ) ≡ 1
N −m

N−m∑
i=1

log
(

N + 1
m

(Z(i+m) − Z(i))
)

, (28)

is used in RADICAL. This is equivalent asymptotically to the estimator (14) of Vasicek
(1976). Weak and strong consistency have been shown by various authors under a variety
of general conditions assuming (27). For details of these results, see the review paper by
Beirlant et al. (1997). Perhaps the most important property of this estimator is that it is
asymptotically efficient, as shown by Levit (1978).

It is interesting to remark that while (25) and (26) have a natural correspondence to
density estimates (if we ignore the region outside the range of the samples), there is no
trivial correspondence between (28) and a density estimate. We are thus solving the entropy
estimation problem without demanding that we solve the density estimation problem6.

We note that Pham (2000) defined an ICA contrast function as a sum of terms very
similar to (26). However, by choosing m = 1 as was done in that work, one no longer
obtains a consistent estimator of entropy, and the efficiency and efficacy of (26) as an ICA
contrast function appears to be greatly reduced. In particular, much of the information
about whether or not the marginals are independent is ignored in such an approach.

5. Allowing the m-spacings to overlap reduces the asymptotic variance of the estimator.
6. For those who are skeptical that this is possible, we suggest that it is no different than estimating the

variance of a random variable without estimating its density.
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3. RADICAL in Two Dimensions

Given that we have an entropy estimate in hand, we now discuss its application to op-
timizing Equation (13). We first discuss aspects of the estimator in the context of the
two-dimensional ICA problem. Later we will extend the optimization method to multiple
dimensions. Two issues which arise and which must be dealt with are local minima and
what we will refer to as “false minima”. The first issue is intrinsic to the optimization
criterion and appears difficult to address without adopting an exhaustive search strategy.
The second is a function of the estimator and will motivate a smoothing approach. We ad-
dress these issues by way of some canonical examples before proceeding to a more detailed
discussion of the algorithm.

3.1 Canonical empirical examples

We use three canonical examples- separation of (1) two uniform densities, (2) two double-
exponential densities, and (3) two bi-modal Gaussian mixture densities - in which we ex-
amine 150 equally spaced rotations of the data between 0 and 90 degrees. Each of these
examples illustrates various aspects of the estimator and the optimization procedure.

Consider Figure 2 which shows some results from separating a mixture of two uniform
densities. Figure 2(a) shows the results over 100 Monte Carlo trials in which N = 250 and
m = 16 ≈ √

250. As can be seen, the mean estimate (over 90 degrees of rotation) is fairly
smooth with a clear global maximum at 45 degrees and a minimum at 0 degrees rotation
(or equivalently 90 degrees). However, not surprisingly, any one trial has several false local
minima and maxima. In Figure 2(a), for example, the individual trials which exhibited the
largest positive and negative deviation from the average (for any single angle θ) over all
trials are overlaid on the average result. Similar figures for the other two cases are shown
in Figures 3(a) and 4(a), although local minima and maxima (over individual trials)) are
not as severe in these cases.

In particular, false minima can become quite severe when the sample size is small. They
are a consequence of the fact that the m-spacings estimator makes no prior smoothness as-
sumptions (e.g. limited spatial frequency) regarding the underlying densities. Consequently,
for small sample size there exist rotations (instances of W ) for which portions of the data
spuriously approximately align, producing an artificial spike in one of the marginal distri-
butions. This is most easily understood by considering the case in which m, the number of
intervals combined in an m-spacing, is equal to 1. In this case, for any value of N there are
many rotations (O(N2) of them, in fact) which will cause two points to align exactly, either
vertically or horizontally. This causes the 1−spacing corresponding to these two points to
have width 0 in one of the empirical marginal distributions, which in turn gives this inter-
val an average logarithm of −∞. This results in a marginal entropy estimate of −∞ for
this particular rotation of the data. The entropy estimator has no evidence that there is
not, in fact, an impulse in the true marginal density which would legitimately indicate a
negatively infinite entropy, so it is not a fundamental flaw with the estimator. Rather, it is
a consequence of allowing arbitrarily peaked implicit marginal estimates. While this issue
becomes less of a problem as N and m grow, our empirical findings suggest that for the
densities considered in this paper (see Figure 6), it must be addressed to achieve optimal
performance at least while N ≤ 2000.
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(a) (b)

(c) (d) (e)

Figure 2: RADICAL for a mixture of two uniform densities: (a) The thick solid curve is
the mean estimate of Equation (13) over 100 Monte Carlo trials with no data
augmentation. The dotted curves indicate plus or minus one standard deviation,
while the thinner (less smooth) curves are the two trials which had the largest
positive and negative deviation from the mean respectively. (b) is exactly the
same as (a) except that the data set was augmented with R = 30 and a smoothing
factor of σr = 0.1 was used. (c) is one realization of the original sources with no
rotation, (d) with 25 degrees rotation, and (e) with 45 degrees rotation. Axes of
rotation are overlaid on the plots.
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(a) (b)

(c) (d) (e)

Figure 3: RADICAL for a mixture of two double-exponential densities: (a) The thick solid
curve is the mean estimate of Equation (13) over 100 Monte Carlo trials with
no data augmentation. The dotted curves indicate plus or minus one standard
deviation, while the thinner (less smooth) curves are the two trials which had
the largest positive and negative deviation from the mean respectively. (b) is
exactly the same as (a) except that the data set was augmented with R = 30 and
a smoothing factor of σr = 0.1 was used. (c) is one realization of the original
sources with no rotation, (d) with 25 degrees rotation, and (e) with 45 degrees
rotation. Axes of rotation are overlaid on the plots.
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(a) (b)

(c) (d) (e)

Figure 4: RADICAL for a mixture of two bi-modal densities: (a) The thick solid curve is
the mean estimate of Equation (13) over 100 Monte Carlo trials with no data
augmentation. The dotted curves indicate plus or minus one standard deviation,
while the thinner (less smooth) curves are the two trials which had the largest
positive and negative deviation from the mean respectively. (b) is exactly the
same as (a) except that the data set was augmented with R = 30 and a smoothing
factor of σr = 0.1 was used. (c) is one realization of the original sources with no
rotation, (d) wth 25 degrees rotation, and (e) with 45 degrees rotation. Axes of
rotation are overlaid on the plots.
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To address this problem, we consider a smoothed version of the estimator. We attempt
to remove such false minima by synthesizing R replicates of each of the original N sample
points with additive spherical Gaussian noise to make a surrogate data set X ′. That is, each
point Xj is replaced with R samples from the distribution N(Xj , σ2

rI), where R and σ2
r

become parameters of the algorithm. We refer to this as augmenting the data set X. Then
we use the entropy estimator (28) on the augmented data set X ′. R was chosen to have a
value of 30 for most of the experiments in this report. Results of this modification to the
estimator are shown in Figures 2(b), 3(b) and 4(b). While not completely eliminating the
problem of local minima and maxima, the results over the worst two trials are significantly
smoother.

After reducing the effect of false minima on the optimization of W , we must still address
legitimate local minima, the best example of which is shown in Figure 4 where a rotation
of 45◦ is a true local minimum of the objective function. For two-dimensional source sep-
aration, taking advantage of the fact that W (θ) is a one-dimensional manifold, we do an
exhaustive search over W for K values of θ. Note that we need only consider θ in the inter-
val [0, Pi

2 ], since any 90 degree rotation will result in equivalent independent components.
In all of our experiments, we set K = 150. Importantly, it turns out that even in higher
dimensions, our algorithm will remain linear in K (although polynomially more expensive
in other respects), so it is relatively inexpensive to do a finer grain search over θ if desired.
Complexity issues will be discussed in more detail below.

3.2 The ICA algorithm

RADICAL is a very simple algorithm. Assuming that our observed data have already been
whitened, there are really only two remaining steps. The first is to generate an augmented
data set X ′ from X by the procedure described in the previous section. The second is
to minimize the cost function (13), which we do by exhaustive search. Various aspects of
RADICAL are summarized in Figure 5.

There are four parameters with which we experimented informally in our early ex-
periments. The first parameter m, determines the number of intervals combined in an
m−spacing. As stated above, we chose m =

√
N for all of our experiments, which guaran-

tees the asymptotic consistency of our procedure as long as none of the marginal densities
have impulses. When condition (27) is satisfied, the entropy estimator will be consistent
and should perform well for large N . For small N , performance can be improved by choos-
ing m according to the particulars of the distribution, but since the distribution is unknown
in general, we avoided this and chose a fixed rule for m as a function of N for all of our
experiments.

A second parameter is the number of points R used to replace each original point Xj

when creating the augmented data set. The value of R can be made smaller for large N , and
as N and m get large enough, point replication is entirely unnecessary, since the optimization
landscape will eventually become smooth (to within the resolution of the search algorithm).
However, at N = 4000, the largest value with which we experimented, point replication was
still necessary. The experiments in this paper all used a value of R = 30, irrespective of the
original sample size N .
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Algorithm: RADICAL, two-dimensional version.
Input: Data vectors X1,X2, ...,XN , assumed whitened.
Parameters: m: Size of spacing. Usually equal to

√
N .

σ2
r : Noise variance for replicated points.

R: Number of replicated points per original data point.
K: Number of angles at which to evaluate cost function.

Procedure: 1. Create X ′ by replicating R points with Gaussian noise for each
original point.

2. For each θ, rotate the data to this angle (Y = W (θ) ∗X ′)
and evaluate cost function.

3. Output the W corresponding to the optimal θ.
Output: W, the demixing matrix.

Figure 5: A high-level description of RADICAL for the two-dimensional ICA problem.

Next we examine σ2
r , the variance of the R added points for each of the N points Xj .

As expected, from informal testing, we found that performance was somewhat better if
we allowed the variance to shrink as N grew. However, performance was relatively robust
to the choice of this parameter and we chose only two different values of σr for all of our
experiments. For N < 1000, we set σr = 0.35 and for N >= 1000, we halved this value,
setting σr = .175.

The only remaining parameter for RADICAL in two dimensions is K, the number of
rotations at which to measure the objective function. In informal experiments, we tried
values of 50, 100, 150, and 250. There was no noticable improvement in performance after
for K > 150, even for N = 4000 and the higher dimensional tests. Of course, with N large
enough, one could benefit to some extent by increasing K. Since in two dimensions, the
error metric (see below) is proportional to the difference in angle between the estimated θ
and the optimal θ, it is easy to see that asymptotically, the expected error is a function of
K and is approximately

1
2

π
2

K
=

π

4K
. (29)

For K = 150, this asymptotic expected error is approximately 0.005, a number small enough
so that this is only a minor contribution to the total error (see experiments) for values of
N considered here. Since both the two-dimensional and higher-dimensional versions of
RADICAL are linear in K, it is relatively inexpensive to increase the resolution of the
exhaustive search.

3.3 Algorithmic complexity

An upper bound on the algorithmic complexity of RADICAL in two dimensions is fairly
straightforward to compute. There are a number of opportunities for speedup which we
will leave for future work. We will assume for this analysis and for the higher dimensional
case discussed later that D, the dimension, is less than N , the sample size.

We assume that the data has been whitened to begin with. Whitening the data is
O(D2N). In two dimensions, we will treat D as a constant, so this gives us O(N).
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Augmenting the data set with R noisy copies of each point is just O(NR). Let N ′ = NR
be the size of the augmented data set. Rotation of the augmented data points to an
angle θ by matrix multiplication is at most O(D2N ′), but again for fixed D, we can call
D2 a constant, so this reduces to O(N ′). In two dimensions, our estimator requires two
one-dimensional sorts, which will take time O(N ′ log N ′) and two sums over at most N ′

spacings, which is O(N ′). Thus, evaluating the objective function once, which involves
matrix multiplication, sorting, and summing, takes time O(N ′) + O(N ′ log N ′) + O(N ′) =
O(N ′ log N ′). Note that m, the spacing size, does not enter into the complexity of evaluating
the objective function.

We repeat this procedure K times in our exhaustive search. This gives us an up-
per bound of O(KN ′ log N ′) for the minimization of the objective function. For the
whole algorithm, including whitening, we then have O(N) + O(KN ′ log N ′) = O(N) +
O(KNR log(NR)) = O(KNR log(NR)) as the final complexity for the two-dimensional
algorithm. As mentioned previously, it should be possible to reduce R to 1 for large N , so
technically, we can claim that RADICAL is O(KN log N). However, for moderate and low
values of N , we must still choose R > 1, and so we include it in our complexity analysis.

3.4 Experiments in two dimensions

To test the algorithm experimentally, we performed a large set of experiments, largely drawn
from the comprehensive tests developed by Bach and Jordan (2002). Our tests included
comparisons with FastICA (Hyvärinen and Oja (1997)), the JADE algorithm (Cardoso
(1999a)), the extended Infomax algorithm (Lee et al. (1999b)), and two versions of Kernel-
ICA: KCCA and KGV (Bach and Jordan (2002)).

For each of the 18 one-dimensional densities shown in Figure 6, and which were normal-
ized to have zero mean and unit variance, the following experiments were performed. Using
a density q(·), N points were drawn iid from the product distribution q(·)q(·). The points
were then subjected to a random rotation matrix A to produce the input X for the algo-
rithm7. We then measured the “difference” between the true matrix A and the W returned
by the algorithm, according to the well-known criterion, due to Amari et al. (1996):

d(A,W ) =
1

2D

D∑
i=1

(∑D
j=1 |bij |

maxj |bij| − 1

)
+

1
2D

D∑
j=1

(∑D
i=1 |bij |

maxi |bij | − 1

)
, (30)

where bij = (AW−1)ij .
Table 1 shows the mean results for each source density on each row, with N = 250,

the number of input points, and 100 replications of each experiment. The best performing
algorithm on each row is shown in bold face. Note that RADICAL performs best in 10
of 18 experiments, substantially outperforming the second best in many cases. The mean
performance in these experiments is shown in the row labeled mean, where RADICAL
has lower error than all other algorithms tested. The final row of the table represents
experiments in which two (generally different) source densities were chosen randomly from

7. Alternatively, we could have applied a random non-singular matrix to the data, and then whitened the
data, keeping track of the whitening matrix. For the size of N in this experiment, these two methods
are essentially equivalent.
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(a)   k= Inf (b)   k= 3.00 (c)   k= −1.20

(d)   k= 6.00 (e)   k= 6.00 (f)   k= 1.11

(g)   k= −1.68 (h)   k= −0.74 (i)   k= −0.50

(j)   k= −0.53 (k)   k= −0.67 (l)   k= −0.47

(m)   k= −0.82 (n)   k= −0.62 (o)   k= −0.80

(p)   k= −0.77 (q)   k= −0.29 (r)   k= −0.67

Figure 6: Probability density functions of sources with their kurtoses: (a) Student with
three degrees of freedom; (b) double exponential; (c) uniform; (d) Student with
five degrees of freedom; (e) exponential; (f) mixture of two double exponen-
tials; (g)-(h)-(i) symmetric mixtures of two Gaussians: multimodal, transitional
and unimodal; (m)-(n)-(o) symmetric mixtures of four Gaussians: multimodal,
transitional and unimodal; (p)-(q)-(r) nonsymmetric mixtures of four Gaussians:
multimodal, transitional and unimodal. This figure and code to sample from
these distributions was generously provided by Francis Bach, UC Berkeley.
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pdfs FastICA Jade Imax KCCA KGV RADICAL
a 8.9 7.5 56.3 6.6 5.7 5.6
b 10.2 9.3 61.8 8.4 6.2 7.0
c 4.4 3.1 18.4 4.7 4.3 2.4
d 11.8 10.0 61.1 13.1 11.6 12.6
e 8.1 7.4 67.7 3.7 3.1 1.7
f 7.9 5.5 12.4 3.6 3.3 2.0
g 3.9 2.9 18.1 3.1 2.9 1.4
h 11.1 8.2 27.2 10.8 8.4 12.1
i 18.5 16.7 37.6 25.2 23.2 27.0
j 12.2 12.8 50.5 3.1 3.0 1.7
k 14.1 10.3 30.2 6.1 5.2 5.5
l 22.6 16.4 39.2 10.6 8.7 11.7
m 8.2 6.9 29.5 14.8 12.3 1.9
n 11.4 9.7 32.1 16.3 9.7 3.9
o 8.7 6.8 23.7 13.0 9.4 8.6
p 9.9 6.7 29.1 7.7 6.0 2.6
q 35.8 32.0 39.1 12.4 9.4 5.3
r 13.0 9.5 27.7 9.7 7.2 8.9

mean 12.3 10.1 36.8 9.6 7.8 6.8
rand 10.7 8.5 29.6 8.3 6.0 5.8

Table 1: The Amari errors (multiplied by 100) for two-component ICA with 250 samples.
For each pdf (from a to r), averages over 100 replicates are presented. For each
distribution, the lowest error rate is shown in bold face. The overall mean is
calculated in the row labeled mean. The rand row presents the average over
1000 replications when two (generally different) pdfs were chosen uniformly at
random among the 18 possible pdfs.
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pdfs FastICA Jade Imax KCCA KGV RADICAL
a 4.4 3.7 1.8 3.7 3.0 2.1
b 5.8 4.1 3.4 3.7 2.9 2.7
c 2.3 1.9 2.0 2.7 2.4 1.2
d 6.4 6.1 6.9 7.1 5.7 5.3
e 4.9 3.9 3.2 1.7 1.5 0.9
f 3.6 2.7 1.0 1.7 1.5 1.0
g 1.8 1.4 0.6 1.5 1.4 0.6
h 5.1 4.1 3.1 4.6 3.6 3.7
i 10.0 6.8 7.8 8.3 6.4 8.3
j 6.0 4.5 50.6 1.4 1.3 0.8
k 5.8 4.4 4.2 3.2 2.8 2.7
l 11.0 8.3 9.4 4.9 3.8 4.2
m 3.9 2.8 3.9 6.2 4.7 1.0
n 5.3 3.9 32.1 7.1 3.0 1.8
o 4.4 3.3 4.1 6.3 4.5 3.4
p 3.7 2.9 8.2 3.6 2.8 1.1
q 19.0 15.3 43.3 5.2 3.6 2.3
r 5.8 4.3 5.9 4.1 3.7 3.2

mean 6.1 4.7 10.6 4.3 3.3 2.6
rand 5.1 4.1 6.8 3.1 2.0 2.1

Table 2: The Amari errors (multiplied by 100) for two-component ICA with 1000 samples.
For each pdf (from a to r), averages over 100 replicates are presented. The overall
mean is calculated in the row labeled mean. The rand row presents the average
over 1000 replications when two (generally different) pdfs were chosen uniformly
from random among the 18 possible pdfs.
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the set of 18 densities to produce the product distribution from which points were sampled.
1000 replications were performed using these randomly chosen distributions. For these
experiments, RADICAL has a slight edge over Kernel-ICA, but they both significantly
outperform the other methods.

Table 2 shows an analogous set of results for larger data sets, with N = 1000. Again,
RADICAL outperforms the other algorithms for most densities. However, Kernel-ICA
outperforms RADICAL by a small margin in the randomized experiments.

3.5 Robustness to outliers

Figure 7 shows results for our outlier experiments. These experiments were again replica-
tions of the experiments performed by Bach and Jordan (2002). Following Bach and Jordan,
we simulated outliers by randomly choosing up to 25 data points to corrupt. This was done
by adding the value +5 or -5 (chosen with probability 1/2) to a single component in each of
the selected data points. We performed 100 replications using source distributions chosen
uniformly at random from the 18 possible sources.

It can be seen that RADICAL is uniformly more robust to outliers than all other methods
in these experiments, for every number of outliers added.

4. RADICAL in D dimensions

Clearly RADICAL will be more useful if it can be applied in higher dimensions than D =
2. While projections and rotations of high dimensional data present no challenge, one
might worry that our objective function is difficult to minimize, especially since our entropy
estimator is not differentiable. It is known all too well that exhaustive search in more than
a few dimensions is infeasible, as its complexity is O(ND), where N must be large to insure
accuracy.

It turns out, however, that for the ICA problem, the minimization can still be ap-
proached in an “exhaustive” manner. Successive minimizations along different pairs of
dimensions works well. That is, we can recast the D−dimensional ICA problem as a series
of two-dimensional ICA problems, which we can solve well. Empirically, we show that for
dimensions as high as 16, RADICAL on average outperforms or performs similarly to all
other algorithms against which we tested it.

4.1 Jacobi rotations

To find the D−dimensional rotation matrix W ∗ that optimizes (13) in D dimensions, we
use Jacobi methods such as those used to solve symmetric eigenvalue problems (see Golub
and Loan (1996)). The basic idea is to rotate the augmented data X ′ two dimensions at a
time using what are known as Jacobi rotations8 . A Jacobi rotation of angle θ for dimensions

8. Jacobi rotations are also known as Givens rotations.
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Figure 7: Robustness to outliers. The abcissa displays the number of outliers and the
ordinate shows the Amari error.
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p and q is defined as:

J(p, q, θ) =




1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · cos(θ) · · · − sin(θ) · · · 0
...

...
. . .

...
...

0 · · · sin(θ) · · · cos(θ) · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1




, (31)

where the sines and cosines appear on the pth and qth rows and columns of the matrix.
Since a Jacobi rotation leaves all components of an D-dimensional data point Xj unchanged
except for the pth and qth components, optimizing our objective function (13) reduces to a
two-dimensional ICA problem for each distinct Jacobi rotation.

Algorithmically, we initialize Y to our augmented data set X ′, and our rotation matrix
W to the identity matrix. After optimizing our objective function for a pair of dimensions
(p, q), we update Y :

Ynew = J(p, q, θ∗)Y, (32)

keeping track of our cumulative rotation matrix:

Wnew = J(p, q, θ∗)W. (33)

Note that since each Jacobi rotation affects only two components of Y , this is an O(22NR) =
O(NR) operation. Thus, full scale D−dimensional rotations need never be done (all at
once). This is discussed further below.

There are D(D − 1)/2 distinct Jacobi rotations (parameterized by θ), and performing
a set of these is known as a sweep. Empirically, performing multiple sweeps improves our
estimate of W ∗ for some number of iterations, and after this point, the error may increase or
decrease sporadically near its smallest value. The number of sweeps S becomes an additional
parameter for multi-dimensional RADICAL. We found that S ≈ D provided good results
for all of our multi-dimensional experiments.

4.2 Complexity of RADICAL in D dimensions

The complexity of RADICAL in D dimensions is again straightforward. Starting with the
whitening of the data, we must now spend O(D2N) time on this step. Of course, we can
no longer legitimately treat the dimension D as a constant. Producing the augmented data
set X ′ now becomes an O(DNR) procedure, but this will be dominated by other terms.

A single sweep through D(D−1)/2 Jacobi rotations produces a complexity increase by a
factor of O(D2) for a total sweep complexity of O(K(D2)N ′ log N ′). Recall that N ′ = NR
is the size of the augmented data set. The number of sweeps necessary for convergence
is difficult to predict, but it seldom exceeded the dimension D. Including the number of
sweeps in the complexity gives O(SK(D2)N ′ log N ′).

It should be pointed out that this complexity analysis includes the optimization, so it
should be compared against the total run time of other algorithms, not simply the time to
evaluate the objective function.
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Algorithm: RADICAL, D-dimensional version.
Input: Data vectors X1,X2, ...,XN , assumed whitened.
Parameters: m: Size of spacing. Usually equal to

√
N .

σ2
r : Noise variance for replicated points.

R: Number of replicated points per original data point.
K: Number of angles at which to evaluate cost function.
S: Number of sweeps for Jacobi rotations.

Procedure: 1. Create X ′ by replicating R points with Gaussian noise for each original
point.

2. For each of S sweeps (or until convergence):
a. For each of D(D − 1)/2 Jacobi rotations for dimensions (p, q):

i. Perform 2-D RADICAL optimization, returning optimal J(p, q, θ∗).
ii. Update Y according to Ynew = J(p, q, θ∗)Y .
iii. Update W according to Wnew = J(p, q, θ∗)W .

3. Output final W .
Output: W

Figure 8: A high-level description of RADICAL for D dimensions.

dims N #repl FastICA Jade Imax KGV RADICAL
2 250 1000 11 9 30 5 6

1000 1000 5 4 7 2 2
4 1000 100 18 13 25 11 6

4000 100 8 7 11 4 3
8 2000 50 26 22 123 20 11

4000 50 18 16 41 8 8
16 4000 25 42 38 130 19 15

Table 3: Results for experiments in higher dimensions. The table shows experiments for
dimensions two through 16. The number of points used for each experiment is
shown in the second column and the number of experiment replications performed
to obtain the mean values at right is given in the third column. KGV is Kernel-
ICA using the kernel generalized variance. Note that RADICAL performed best
or equal to best in all but one experiment.

4.3 Results for D dimensions

Table 3 presents results of experiments for multiple dimensions. In each experiment for
dimension D, D (generally) different densities were selected at random from the set of 18
densities discussed above. Again this data was randomly rotated, and the task was to
recover the independent components. Notice that RADICAL is either the best or second
best performer in each case, performing better than all other algorithms in four of seven
experiments.
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5. Conclusions

We have presented a novel algorithm, RADICAL, for independent component analysis.
Our approach was predicated on several principles. First, direct estimation of entropy
obviates the need for density estimation as an intermediate step. Second, over the space of
smooth densities there are unavoidable local minima in the commonly used K-L divergence
based optimization landscape. This necessitated in some respects a global search over
the parameter space in order to achieve good convergence properties over a broad set of
source densities. Toward that end we employed a variant of the nonparametric entropy
estimator of Vasicek (1976) which is both computationally efficient and robust. In addition,
our algorithm is easily used in higher dimensions. Empirical results were reported for a
significant number of 2-D separation problems, 2-D separation with outliers, and a range
of multi-dimensional separation problems. Our empirical results demonstrated comparable
or superior results (as measured by the Amari error) to a large number of well known
algorithms.

While these initial results are promising, there is still room for improvement in the
algorithms as presented from both a computational and theoretical perspective. On the
computational side, we take no advantage of local changes in sorting order due to local
changes in rotation. Consequently, the application of standard sorting algorithms for such
scenarios would be expected to greatly reduce the computational complexity of the analysis.
From the theoretical perspective we presented a smoothed variant of the Vasicek estimator.
Smoothing was accomplished via Monte Carlo techniques which might be avoided entirely
(also reducing the computational complexity) by considering alternative methods for biasing
the entropy estimate for smooth densities. Such will be the focus of our future efforts.
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