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Abstract

Nonlinear resistive networks can be characterized by the equation
f(f) -y where f(-) is a continuous piecewise-~linear mapping ofclzn
into itself. The n-dimensional Euclidean space is divided into a finite
number of regions, and, in each region say region Rm, we can express f
by J(m) x + w(m) where J(m) is a constant nxn Jacobian matrix and Y(m)
is a constant n-vector. In this paper we obtain the following results:
If all the Jacobian determinants in the unbounded regions have the same
sign, the equation f(x) = y has at least one solution and an algorithm is
developed, which obtains one or more solutions in a finite number of
steps. The work represents a generalization of early work by Fijisawa,
Kuh and Ohtsuki and relaxes the condition imposed on the function. For

example, in the bounded regions, the Jacobian matrices can be singular and

the sign of Jacobian determinants can be arbitrary.
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I. Introduction

Most electrical engineers are familiar with the technique of piecewise-~
linear approximation of a nonlinear function. For example, in the
analysis of a simple electronic circuit, diode characteristics can be
represented by continuous, linear segments. This often gives considerable
insight to the problem, and, as a result, yields quick solution. During
the past decade, major advances have been made on the analysis of general
nonlinear resistive networks based on the piecewise-linear approach [1]-[16].
Because of the generality of the approach and the specific results, we
believe that piecewise-linear analysis will become useful not only in
nonlinear networks but also in many related fields such as structural
analysis, flow networks, mathematical economics, numerical integration
and nonlinear system problems in general.

Consider a nonlinear network or system which is characterized by

the equation
f(x) =y 1)

where f maps the real n-dimensional Euclidean spaceclgn into itself.

X 1s a point inCIBn and represents a set of chosen variables of a given
network or system and y is an arbitrary point inclan and represents the
input. By specifying f as a continuous, piecewise-linear function, we can

express f as follows:

f(x) = g(m) x + Y(m) ,m=1,2,...,% (2)

(m)

is a constant nxn matrix (called Jacobian matrix for

(m)

where J

convenience) and w is a constant n-vector, both defined in region Rm'



The whole spaceCIQn is divided into a finite number (£) of polyhedral
regions by a finite number of hyperplanes. A typical boundary hyper-

plane in the x-space can be characterized by the following equation:

gT x = constant (3)

where n is the normal vector of the hyperplane. The continuity of f
imposes an important constraint between Jacobian matrices in neighboring

regions, namely:

J_J'=S?T (4)

-~ ~

where J and J' are Jacobian matrices of neighboring regions R and R',
respectively, sharing the common boundary defined by the normal vector n,
and ¢ is an arbitrary constant n-vector. Thus ¢ ET is a dyad and it
turns out that eq. (4) represents a key property of a continuous, piecewise-
linear function.

In previous work, necessary and sufficient conditions for f to be
a homeomorphism have been established. A continuous function f is said
to be homeomorphic from<12n onto itself if and only if the equation
f(x) = y has a unique solution for all y- Fujisawa and Kuh [7 ] have
shown that if f is homeomorphic then the algorithm due to Katzenelson
always converges, thus the solution can be found for any input y. Further-
more, Fujisawa, Kuh and Oktsuki [ 5] have demonstrated that as long as
all Jacobian determinants det f(i), i=1,2,...% have the same sign (the
property is referred to as the "sign condition") there exists at least
one solution to the equation g(g) =y and the Katzenelson algorithm also

converges. Nevertheless, the "sign condition" on Jacobian determinants



is a rather severe restriction for many problems. In this paper, we
shall deal with continuous, piecewise~linear functions which do not
obey the "sign condition" in general. Moreover, singular Jacobian
matrices will be allowed. We shall develop the condition under which
solutions of eq. (1) exist and can be obtained.

A related problem is also treated in the present paper. Recall that
Katzenelson's algorithm depends on the tracing of a solution curve in
the x-space. When the solution curve reaches a multiple boundary, called
a corner, where more than two regions meet, Fujisawa and Kuh have
introduced a perturbation method to by-pass the corner. The method works
if the given function satisfies the "sign condition" on the Jacobian
determinants. It turns out that for a general function, a new look at
the corner problem is essential. In this paper we have developed a
general theory to handle the corner problem.

In order to make the present paper reasonably self-contained, we will
first review briefly the Katzenelson algorithm in Sec. 2. The dynamic
behavior of the solution curve is next discussed when the "sign condition"
constraint is removed. What is crucial in this case is to ensure that
the solution curve in the x-space always crosses a boundary which
separates two regions having Jacobian determinants with opposite signs.
The technique used is a generalization of that first introduced by Kuh and
Hajj [2]. Two simple examples are given to illustrate several diffi-
culties of the problem when the "sign condition" is not satisfied.

In Section 3 we develop the general theory first with two assumptions,
namely: the solution curve never hits a corner and all Jacobian matrices

are nonsingular. We find that under the more relaxed condition that, in



all unbounded regions, the Jacobian determinants have the same sign, one
or more solutions exist and can be obtained by tracing the solution
curve. It should be pointed out that the condition is not as restrictive
as it seems because most physical systems behave like a passive element
when any of its variables becomes unbounded, which implies that the
Jacobian determinants in the unbounded regions are all positive.

In Section 4, we deal with the corner problem by means of a new
perturbation method. The basic result is that, theoretically, an initial
point can always be picked in the x-space for which the solution curve
does not hit any corners. Computationally, it gives a method to perturb
the solution curve if the solution curve hits a corner.

In Section 5, we discuss in detail the problem of singular Jacobian
matrices and show how to handle the problem. The method depends on the
result of Section 4.

With the results of Sections 4 and 5, we can finally state a general
theorem of solving piecewise-linear equations. Our algorithm will lead
to one or more solutions if the piecewise-linear function has the property

that all Jacobian determinants in the unbounded regions have the same

sign.

II. Dynamic behavior of solution curves

The basic problem is to obtain one or more solutions of eq. (1) for
a given input Z* where £ is continuous and piecewise linear. If all
Jacobian determinants have the same sign, the Katzenelson algorithm always
converges and can be illustrated by means of Fig. 1. We first choose an

arbitrary initial point in the x-space, say X, in region RO' In RO’ the

0
equation which characterizes eq. (1) is



We may use eq. (5) to compute the image Yo = g(go)

Yo ° :.I(O) %o * w(

~

(6)

Denote the line segment joining Yo and Z* in the y-space by Ly. The
problem is then reduced to one of determining a continuous curve in the
x-space, starting with Xy which is the inverse image of Ly' The curve
is called the solution curve in the x-space. The beginning point is X
and the end point of the solution curve is the solution g*. Thus we only
need to trace the solution curve to obtain the solution g*.

Let us take a look at the properties of the solution curve. The

portion of the solution curve which lies in R0 is determined by

§0(A) = x5 + A d, (7

where

&
and A = 0 is a parameter. If go(l) happens to be in RO, then 30(1) = x
is the desired solution. The line segment joining X and ¥O(l) is the

solution curve and the algorithm terminates. If otherwise, the value of

A has to be determined such that §0(A) lies on the boundary of R Denote

0.
1= §O(Ao) and Y, = f(f ). The line

such a value of A by A, and define x

0

segment joining x, and x. is then the first portion of the desired solution

0 1

curve. The next step is to extend the solution curve beyond Xy into region

Rl.

Assuming that xl lies on a simple boundary hyperplane, between the



(0

two regions R0 and R,, Fujisawa and Kuh proved that if det J and

det J(l)

have the same sign, the solution curve in the x-space will
*
indeed enter R1 as y, moves forward y through e We have next in

region Rl’ the solution curve

I
o

>
(M) =x +1d ; A (9)

where
*
g, =1V gy (10)

Since the total number of regions is finite, the method will converge
eventually to a solution g* which is the inverse image of Z*' The crucial
point here is that the solution curve will never reenter a region which
has already been traced. This is due to the fact that all Jacobian
matrices are nonsingular, and the proof is simple. Suppose that the

solution curve enters region R, at x, and leaves it at x, 1 and that the

h| ] Jj+

curve later reenters the same region at X, as shown in Fig. 2. Clearly

the three points X5 ¥ and X do not lie on a line. Therefore the two

j+1

vectors X,

341 - §j and X gj are linearly independent, whereas their

images under linear mapping J (1 x + g(j) are both constant multipliers

%
of y - Yo and hence are linearly dependent. This contradicts the
@3)

*
assumption that J is nonsingular.

It should be noted that x ) may lie on more than one boundary

1= %Qg

as shown in Fig. 3, or stated in another way, 22 is at a corner. We shall

postpone the discussion of the corner problem until Section 4. Meantime,

*It whould be noted that we only need the nonsingularity of Jacobians to
prove this result. This does not rule out the situation that a solution
curve in a region can be retraced, which implies that a region is reentered
at x.. It will be seen later that when the Jacobian determinants have
diffdrent signs, a modified algoritim can lead to a cyclic solution curve.

e



we assume that the solution curve will not hit any cormers.

If we remove the condition that all Jacobian determinants have the
same sign, the problem becomes much more complicated. Let us consider
the solution curve in the x-space which transverses in region R starting
from x;, and along the direction gj. The solution curve reaches the

3

point x at the boundary which separates region R and region R'. In

j+1
[ 7] Fujisawa and Kuh derived the following equation

det Jn  J =det J'n J' (11)

This equation prescribes completely the local behavior of the soltuion
curve at §j+1’ and thus the strategy of our algorithm. The proof of
boundary crossing in the x-sapce for the case that the Jacobian
determinants have the same sign is essentially based on eq. (11). Further-
more, eq. (11) also suggests what we should do for the case in which the
Jacobian determinants of neighboring regions have opposite signs. With
reference to Fig. 4, assume that the Jacobian determinants of J and J'
have opposite signs. The solution curve in the x-space has been traced
from x, in region R along the direction d

and reaches x on the simple

A 3
boundary between R and R'. In the y-space, the corresponding points yj

§+1

and y are marked. In order to force the solution curve in the X-space

~j+l

into region R', we must reverse the direction of traversing at yj+1

*
away from y as shown in Fig. 4. The proof of this together with the case
which has determinants with same sign is given in Lemma 1 below, stated

in a fairly general form.

Lemma 1 The solution curve will enter the region R' at x and traverse

X541

region R' along the direction d 1 given by either (i) or (ii):

i+



@ d... =31

*
941 T < Y “Yi4) if

@ ¢ = g’l(g*-gj) and (det J) (det J') > 0, or

(b) gj = —J—l(z*-gj) and (det J) (det J') < 0;

1) d,,=-J"tg-

341 Y Vi) i

-1, *
(a) 91 =J l(y -yj) and (det J) (det J') < 0, or

®) 4y =- 3@y -y, and (et 1) @et I') > 0.

Proof: Since the solution curve reaches §j+1

5 > 0 where n is the normal vector at §j+1

Furthermore, the solution curve will enter and traverse R' if and only if

T
n §j+1 > 0. Suppose Zj and ¥j+1 are represented by the following equations

on the boundary from gj,

we have ng of the hyperplane.

*
Yj—yO+uj (¥-¥0)11>Uj>0

5
Vi1 = Yo * ¥y Vo 1> My > 0
then

*
T oy T B9

* *
Y~ ¥ = Qo) @ ~Yo)

The proof then follows immediately from eq. (11). It is important to note,
from lemma (1), that if (det J) (det J') < 0, we must reverse the
direction of traversing at yj+l in the y-space along Ly in order to make

T T

n 93 and n gj+l both positive.

From the computation point of view, the simplified statement given in



the following lemma is more useful.

Lemma 2. 1f X is an interior point of the region Ro then gj is given by

-1 .
@ 39 (5"-y;) if (det 19y et 3@y 5 0, or

-1 .
(1) -g@ (Z*‘Yj) 1f (et 39y (@et 3@y < 0.

Proof: Since x, is an interior point of R

0 0°
-1
- 50 *_
do = J G -¥g)
It follows, from Lemma 1, that
@™t » @ )
91 =J (y —yl) if (det J*77) (det JV°) > 0, or
@t # @ (0)
dl = -J (y —yl) if (det J 7/ )(det J*7) < 0.

We want to prove this lemma by induction. First assume that the lemma is

true for the j-1lth region, that is,

-1 .
= g(j'l) (y*-yj_l) and (det Q(J_l)) (det J(O)) > 0 or

. -1 s
d = _4(3"1) (Y*_yj-l) and (det J(J_l)) (det J(o)) < 0.

-1
- (3 *_
g =2 G4 -yy) if
G-n7t () (3-1)
=J (y -yj_l) and (det J'77) (det J ) > 0or

From Lemma 1, we have d

(a) gj_l

-1
(b). gj-l = -g(j—l) (y*—gj_l) and (det J(j)) (det J(j-l)) < 0.

Thus if (det gm) (det 4(0)) >0, clearly

-10-



et 397y (@er 39V (et 3G (ger 3@y 5 0

-1
we conclude d, = g(j) (y*—yj) if (det g(j)) (det J(O)) > 0.

3 4
Thus (i) is proven. Using the same argument, we can prove (ii). The
advantage of Lemma 2 is that we only need to look into a new region and
compare its Jacobian determinant with that of the initial region.

The above algorithms take care of the solution curve at a local
point on the boundary when Jacobian determinants have different signs.
On the other hand the global behavior of the solution curve needs to be
investigated. It turns out that if we do not have additional properties
imposed on the continuous piecewise linear function the equation £(x) =y
may not have a solution. Furthermore, the algorithm of tracing a solution
curve may not work even if soluctions do exist. Before we derive the
main result in the following section, which imposes further conditions on
f and guarantees the convergence of the algorithm, we will present two
examples to illustrate two possible difficulties which have not been
encountered up to now.

Example 1. Consider a continuous, piecewise-linear function £

specified by the following equations with the regions shown in Fig. 5.

a1 >
In R1 y = x " det g = 1.
~ -2 1
— -
[~ h
1 1 (2)
In Rz, y = x = det J =1
- L 0 1
1 0
In R3, y = X R det 9(3) = -]
- 0o -1

-11-



In R 5 det 4(4) = 1.

g
]
»

4’

Since the problem is simple, it is possible to determine the complete
mapping of the 2-dimensional space. The mapping 26122) is shown in
Fig. 5 in the X-space in order to have a better understanding of the
problem at hand. Note the overlapping in the second quadrant of the
Z-space. Thus for eacy y in the second quadrant, there exist three
solutions which lie in RZ’ R3 and R4 of the x-space.

1
%
Let us assume that the given input vector is y =( ) and we wish

1
1
to find the solution of the equation £(x) = . We choose arbitrarily
_1 T\ 1
the initial point X0 = )in region R3. Yo is calculated to be ).
-1 ~ 1

* ;
A line segment is drawn from Yo to y as shown in Fig. 5. Following the
algorithm just described, we obtain the first segment of the solution

curve in the x-space. It is given by

go(k) = X% +21d » 0<A<

0
where
-1, 3/2
do = 19 Vo) = ( )
v 2
and Ao represents the maximum value of A for which x () is in R3. AO is
0 0
=« (L - -
found to be 1/3 and X, = 150(3) _l)’ v, f(:_cl) _;_) . The next
3
region is identified as R4' Since (det 4(3)) (det g(4)) < 0, in order

#
to enter R4, we traverse in the y-space from y, away from y . The

-12-



=1 1

(4)

direction d, is given by Lemma 2, -J

1 ). The second

v -y
y -y =
SR ST

segment of the solution curve is xl(k) =.x, 1 Agl, A > 0. It enters R4

1
as shown in the figure, but will not reach any boundary hyperplane. Thus
the algorithm fails to find a solution. Of course, as we can see, in the
y-space, Z* is never reached. Instead, the curve will pass by Yo and
become unbounded.

Example 2. Consider the continuous, piecewise-linear function given

by the following, together with the regions indicated in Fig. 6a.

1 0
In R y = X, det g(l) = -1
% 2 -1
1 0
In R2 y = X, det g(z) =1
R 2 1
0 1
In R3 y = X, det g(a) =1
- -1 4
0 1 5
In R, y = ):54- ),detg(4)=l
- -1 2 15
10
In R5 y = ) , det J(S) =3

In R

1
|
NN TS
= o -
N w N
S—— S~
3]
+

et
W

"
+ .
o
v
-
[=%
(1)
rt
{1
~~
(=2}
o
|
H

'—l
N
U‘\_/
A ]
[=%
(]
(4
[
~
~
~
|
w
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2 1 5
In R.8 y = ( x + ( > , det J(S) = 4.5
2

.5 3.5/ ° 12.5

In R9 y = X, det g(g) =1
- 0 1
1 0
In R y = X, det J(lo) = -1
W= = o ¢ =1 ”

The images of these regions in the y-space are shown in Fig. 6b. Again
it is noted that there is an overlapping in the y-space as shown by the

shaded area. For every y in this area, there exist multiple solutions.

7
*
Let us consider the given input vector y = ( ) . Suppose that X,

- 10

-4
is chosen to be ( ) in R7. Yo is found to be <-8 ). The solution curve
_5 o
-5

*
corresponding to Ly = {yly = Yo + A (y -yo)}, can be traced by the algorithm

13
*
given in this section. It is found that the solution x = )in four
- 2

steps as shown in the figure. Next, suppose that . is chosen to be

-2 4
go through with our algorithm, we find that the solution curve is a cyclic

1 1
< )in Rl, then Yo =< )which happens to be in the shaded area. If we

curve shown in Fig. 6a. The corresponding traversing in the y-space is
marked. Thus y* can never be reached. This example points out that a
solution curve in the x-space can reenter a region previously traversed
and form a cyclic curve when Jacobian determinants have different signs.
It should be noted that this does not contradict the early statement and
proof since the region is reentered at the same point gj and the solution

curve is retraced. Thus the choice of initial point is of primary

w1&=



importance in order to avoid the situation as illustrated.

III. The main result

The main purpose of this paper is to obtain conditions not as
restrictive as the "sign condition," yet under which a convergent algorithm
can be developed to obtain one or more solutions of piecewise-linear
equations. In this connection, the two examples give us considerable
insight as to the nature of the conditions we are looking for. First let

us present the following lemma concerning existence of solutions.

Lemma 3. Let f£(+) maps fromCDn into “R™ be continuous and piecewise-
linear. Let the Jacobian determinants of all unbounded regions have the
same sign, then there exists a constant M > 0 such that

(1) there exists at least one solution to the equation f(x) = y

if Iyl > M, and

(ii) there exists no solution in any bounded regionms.

Proof The proof follows from that given in Appendix 1 of [ 5]. Since
g is continuous, the image of the union of all bounded regions is contained
in a ball B(O,Ml) in the y-space. Suppose (i) is not true, then there
exists an unbounded boundary hyperplane between féqén) and<qén/f61?n).
However, f is a local homeomorphism at any point on this simple boundary
hyperplane since the determinants of Jacobians of all unbounded regions
have the same sign. This is the desired contradiction. Therefore,
M > Ml > 0 exists such that both (i) and (ii) are true.

The condition (ii) of this lemma is of primary importance in
developing a convergent algorithm. Let us assume that the initial point

x. 1s chosen such that ly | > M as given in Lemma 3, where x, is an interior
~ 20 - ~0

0

-15-



point of a region. Since there are no other solutions of f(x) = Yo in

any bounded region, in traversing from Yo to X*’ we are certain that the
curve will not come back to Yo and go beyond Yo Thus if we assume that
the solution curve does not hit any corners, the solution curve cannot
become cyclic. Since regions previously entered cannot be reentered and
since the total number of regions is finite, we conclude that the following

algorithm will converge in a maximum of & steps where % is the total

number of regions.

Algorithm I
Step 1: Choose x,, an interior point of R, such that “you > M, where

M is defined in Lemma 3. Set j = 0.

Step 2: Compute Qj according to Lemma 2.

Step 3: Compute ¥j+1 = %y + kj gj, ¥j+1 = §(§j+1) where Aj > 0 is the
maximum value such that {x(A) = xy + ng, 0<2A j_Aj} is in Rj'

3 * *
Step 4: If J(J) gj =y -y, and Aj >1, then x = gj + gj is a solution.

Stop.

Step 5: Otherwise, identify region Rj+1'

Set j = j + 1 and go to Step 2.
To conclude, we state the following theorem:

Theorem 1: Algorithm I will find a solution in finite number of steps if

(i) All Jacobian matrices are nonsingular,

(11) the determinants of Jacobian matrices in all unbounded regions
have the same sign, and
(iii) the solution curve does not hit any corners.
It is possible to modify the algorithm slightly so that once a
solution is found, the algorithm will continue from that point to find

-16-



other solutions without choosing a new initial point. The details will
not be given here.

In the next two chapters we will deal with, first, the corner
problem, and then the problem involving singular Jacobian matrices.

We will remove the conditions in (i) and (iii) of Theorem 1.

IV. The corner problem.

This section is devoted to the study of the corner problem. First,
we will give an example to illustrate one possible difficulty which arises
when the solution curve hits corners. Next we will study whether it is
possible to choose the initial point so that the solution curve will never
hit any corners. Intuitively, we can see that this is always possible
since there are only finite number of corners. Furthermore, since
corners are at places where hyperplanes meet; therefore, if we deal with
a two dimensional space, for example, boundary hyperplanes are straight
lines and corners are points. Clearly, it is possible to choose an initial
point in the x-space such that the solution curve avoids all corners.

This is proven in this section for the general case.

Let us first review the problem at hand. When a solution curve
reaches a corner, the previous algorithm cannot determine the next region
to be entered. Suppose that, by means of a perturbation technique, we
can determine the next region to be entered, we can then use the corner
as the next starting point to continue the tracing of the solution curve

in the proper region.

Example 3. Let the continuous, piecewise-linear function be defined by

the following equations with the regions shown in Fig. 7.

-17-



1 0

In Rl y = X det Qil) =1
- 0 1
1 0

In R2 y = X det {(2) =1

N
=

In R (3

b

+
T

1

o N
S———

[= N

1]

rt

1y

I

N

- -~

(%]
IR ]
]
T~ S P P P TN
N N
[ ol o

-2
In R, y = x + det J(G) = =2
- 2 -1/ ° 0 h
1 0
InR, y-= x det 33 = 1
- 2 -1
1 0
In R6 y = X det J(6) = -1

o
1
-

N
o
\_/\__/\__/\_/\./\_/

~

-2 3
%
Let the input vector be y = < >, and the initial point be . ==< )
=2

4 2 2
in R,. Thus y, = X, and y, can be calculated to be and 5
3 =0 7 ~1 71 0 4

respectively. We use a parallel perturbation and find R2 as one possible
next region. Therefore we start with X and use the equation for R2 to

determine the next portion of the solution curve. x, and y, are found to

2

0 0
be,< >and ( >, respectively. Thereafter, the solution curve traverses
1 1

2

R1 and R6 and R.5 successively and returns to the point X = ( ). And,
0

once again R2 is found to be a possible region to be entered. Thus a

cyclic solution curve emerges. Actually, for this problem no solution

-18~



.
* -2 >

exists for the input y. = . This example points out nevertheless an

important property. When a—iolution curve hits a corner, it can become

cyclic although the initial point Xg is not on the cyclic portion of the

solution curve. This could not have happened if the solution curve never

hits a corner.

In the following, we will demonstrate that it is indeed possible to
choose an X for which the solution curve never hits any corners. As
indicated in Section 1, a boundary hyperplane can be represented as
Hx = {glng = v}, where n is the normal vector to the hyperplane and vy is
a constant. A corner is a subset of the intersection of two or more
hyperplanes in the x-space. Suppose that the Jacobian matrices are non-
singular, the image of any boundary hyperplane of region R is a hyper-
plane Hy in the y-space. The image of a cormer in the x-space is a subset
of the intersection of two or more hyperplanes in the y-space. For
convenience, the image of a boundary hyperplane in the x-space is called

a boundary hyperplane in the y-space. Similarly, the image of a corner in

the x-space is called a corner in the y-space. Thus in the y-space,

Hy = {ylpTy = q} and a corner can be represented as a subset of
Cy = {ylgTy = Q}, where P is an nx2 matrix and Qa 2-dimensional vector.

Also, for convenience, we transfer the coordinate of Z* to be at the
origin, hence, we are dealing with the equation f(x) = 0. The purpose of
the development to follow is to locate a straight line Ly = {le = na}
where a is a unit vector and y is a positive parameter, such that Ly does
not intersect any corners in the y-space. Thus the solution curve in
the x-space corresponding to Ly will not meet any corners. Since a corner
is represented by a subset of Cy’ we need to find a vector h such that

gTy =0 for all y € cy. Thus if 13T§ #0, Ly defined by {y|y = na} will

-19-



not intersect Cy. It is obvious that h can always be determined because
Cy is contained in Sp(Cy), the span of Cy which is an (n-1) dimensional
subspace assuming that Cy does not contain the origin. Since the number
of corners is finite, we expect that a can be found by induction. This

result is stated below as a theorem.

Theorem 2: Let S = {Cyi}N be the set of corners in the y-space. Suppose
i=1 N
that the origin is not contained in the union of Cyi's, then there exists

a unit vector a for which Ly = {y]y = pa} does not intersect Cyi for all

-~

i.

Proof: First we need to characterize a unit vector h; corresponding to
Cyi such that b:Z = 0 for all y € Cyi. This can be done easily. Since
Cy; = {¥|F§Z = 91}, Sp(Cyi) is an (n-1) dimensional subspace. Let
Yfi). ggi), ey Zéfi constitute a basis for Sp(Cyi), which can be

determined. Then h; is defined by the following

(1)T)
1

y(i)T
%2 _ T -
. bi =0 and Pi Pi 1 (12)

()T
L !n—l J

Next we need to construct the unit vector a from hi’ i=1,2,...,N.

This, we will do by induction. Let a, =h It is obvious that pigl # 0.

= -1°
Suppose that h?ai # 0 for 1 < j < i, we want to show that a,,q can be
computed for which hT # 0 for 1 < j < (i+l). There are two cases to

?3 2441

be considered:



(1) 131+1 a, # 0, we simply define a4 = 3y~

(11) b':]l:.-i-l a, = 0, we perturb a; to obtain 3 according to

B T Y o
where

b§+1 v$o

Furthermore, the magnitude of y should be small enough so that it does

not concel the effect of previous perturbations, if any. Let

m = min |11T ~i| (14)
g Y

M= max lhT h, .| (15)
L By By
:iii+l

We define
a,,.=a, +5=h K>1 (16)
~i+l ~1 2MK ~i+1 -

It is easy to see that h§ an # 0 for 1 < j < i+l. Premultiplying the

above equation by pJ'],:, we obtain

T T T

_ m
Bygm "t o ta un
For j = itl, b?&l 341 is clearly positive. For 1 < j < i,
T T __m T m m
Ihy agpql 2 [0y a5] ~ g By byl 2m-gpM>5>0 (18)

=21~



Since the total number of cornmers is N which is finite, we have

demonstrated that ay can always be obtained such that

hT éN #0 for 1<j=<N (19)

~3
Thus the unit vector a = w;gw has the property that Ly = {y]y = na} does
not intersect any corners.~ This completes the proof of theorem 2.

From the computational point of view, it is certainly impractical
to compute a according to the suggested procedure. Since it is not a
frequent event that the solution curve will hit a corner, we should only
carry out a perturbation if and whén the soltuion curve hits a corner.
Thus if a corner represented by Cy; = {zlgz y =

m

perturb the vector a by a small vector y = MK bi where bi is perpendicular

91} is hit, we need to

to the subspace spanned by Cyi.
With this, we have overcome the corner problem. The condition (iii)
given in Theorem 1 that the solution curve does not hit any corners has

therefore been justified.

V. Singular Jacobian Matrices

As seen from the development of various results so far, the assumption
of the nonsingularity of all Jacobian matrices plays a major role. For

example, without this assumption , the direction dj in region R, cannot

3

be defined by our algorithm; furthermore, the solution curve can reenter
a region which has been traversed previously. This fact can be illustrated

as follows: Intuitively, when we encounter a region Rj with singular

() S d, = 0. This

J
implies that in the y-space yj+1 = yj, that is, the solution curve

Jacobian J s we may wish to choose d, according to J

traverses in the x-space across region R, via d, when in the y-space the

3

-22~



image stands still. Obviously, we run into difficulty in that there may
exist more than one vector which satisfies the equation “I (j)g j = 0. Then,
as shown in Fig. 8, if gl and g are two such vectors which both satisfy
the equation, the solution curve can indeed reenter region R 5 and become

cyclic. Before pursuing to the the development, we again illustrate with

an example the complication involved.

Example 4. Consider the continuous, piecewise-linear function as follows

1 1
Ian y = det .I(l) =0
) 1 1
-1 1
In R2 y = p.S det .;[(2) =0
- -1 1
-1 -1
In R3 y=( )g det \](3)=0
- -1 -1
1 -1
In R y = X det J(4) =0
SR R i
1 1 0
% ' (5% 5
In R5 Z—<__2_ __];>15 +<5> det J =12
3 4
-1 1 0
In R y = x + det J(6) =
6 P 1/~ - 4
0 “4 5
-1 2 0
In R y = x + det J(7) -
7 o4 0 _9 ]~ 5 4
4

=5



1
-z 1 4
InR8 y = ( - )3-*- ) det .}(8)=%
* o T, | 0
9
2 1 4
In Ry Y=<1i >§+( ) det 79 2
- = g 0 ) :
5
1 -1 0
In R, y = x i ) det 79O =g
b a4 2 6
1 1 0
In R11 y = 1 x + det J(ll) =-%
- -1 % 6

The regions in the x-space are shown in Fig. 9a, the images in the y-space

are shown in Fig. 9b. It is seen that the four regions R R2, R3, and

1!
R4 into which singular Jacobian matrices are mapped become a straight line
in the y-space. The solution curves corresponding to three different

cases are shown. Note specially that the solution curve in x-space

2

corresponding to any point on the line segment {yly = U » 0 <u <1}
- 2
is a closed curve going through regions Rl’ R2, R3 and RA'

There are two methods to overcome this problem. The first one is
to perturb the Jacob;an matrices which are singular such that the
perturbed function is sufficiently close to the original function, yet
contains no singular matrices. This method will not be given in this paper.
We shall present in this section the second method in which we prove that
it is always possible to choose an initial point in the x-space such that
the solution curve will be noncyclic and furthermore will not reenter a
region previously traversed. It turns out that the key to this approach

is to distinguish between singular Jacobians which are of rank (n-1) and

Qs



those with rank less than (n-1).

Let a singular region be a region whose Jacobian is:eingular. If
the rank of J for region R is (n-1), there exists a vector p such that
ETQ = (0. Consequently, the image of R is a subset of the hyperplane
Tg = gTw} because y = J x + ¥ and BTX = ng + gTy = ETy. On the

-

tyle
other hand, if the rank of J is (n-2) or less, there exist at least

two vectors p, and Py gi P, # 0, such that gi J and gg J are both zero.
Let P = (gl,gz) and 1.5 (gl,ngrg. The -image of R is then a subset of
{Xlng = 9} which behaves exactly like a corner. This suggests that

we can use the result of the previous section to deal with those
singular regions which are of rank (n-2) or less. All we need to do is
to ensure that Ly in the y-space does not intersect with any singular
regions whose Jacobians are of rank (n-2) or less. Theorem 2 shows that
this can always be done. Therefore, we shall persue immediately to the
case in which 511 singular Jacobian matrices are of faﬁk (n-1). First,

we need to understand some basic properties of singular Jacobian matrices

in connection with continuous, piecewise-linear functions.

Lemma 4. Let the rank of J for region R be (n-1). Let Ly = {y|y = pa, u > 0}
intersect the image of region R under the mapping £, £(R). Then either
(1) Ly intersects f(R) at one and only one point, or (ii) Ly is a subset

of an (n-1) dimensional subspace which contains £(R).

Proof: Suppose that Ly intersects f(R) at two points, namely: Y1 = 413

T T
Yy = Uy a, ¥y # Hos then there eixsts a vector B such that g ?1 =P Yy

~ - o~

This implies pTg = 0 since Hy # Moo Therefore, Ly is a subset of the

subspace {y|pTy = 0} which contains £(R). This completes the proof.

~ o~ o~
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In the two dimensional case, this lemma is illustrated by Fig. 10.
Note that £(R) is a line segment, thus it either intersects an Ly which
connects to the origin or is a subset of an Ly.

Let us consider the case in which Ly is a subset of an (n-1) dimensional
subspace which contains f(R). Obviously, we can treat this case like
the corner problem, since it is always possible to find an Ly which does
not intersect the image of such a region. Therefore, we are left with the
remaining case that Ly hits a singular region of rank (n-1) at precisely
one point. The following lemma tells us that, for this case, there is
a unique direction d in R for which J d = 0, and furthermore the solution

curve will not reenter this region afterwards.

Lemma 5. Let the Jacobian J of region R be of rank (n-1). Let

-~

Ly = {yly = pa, ¥ > 0} intersect f(R) at one and only one point. Let

the solution curve in the x-space enter R at %y and leave R at ¥j+1’

17 gj o Agj where J d. = 0. Furthermore, the solution curve

3

in the x-space cannot reenter region R through a point other than gj and

then §j+

i41°

Proof: Suppose that the solution curve reenters region R at x , then

k’

and ¥, are not on

1<

=J~j+y=‘!§j+1+g=‘!§k+g‘ Sincel‘j’§j+1
a straight line, (§j_§k) and (§j+1_§k) are linearly independent. But
g‘§j~§k) = 0 and g(§j+1_§k) = 0 imply that the rank of J is less than

(n-1). Thus X cannot exist and d, is the only vector which satisfies the

b
equation J gj = g(§j+1—§j) = 0. This completes the proof.
The final item is to investigate the property of boundary crossing

in the x-space when a singular region is reached. In this connection,

-26= .



it is important to present the following lemma:

Lemma 6. Let J and g' be nxn matrices, and

J'=J+cnl (20)

o

mn

If det J # 0 and det J' = 0, then the rank of J' is (n-1).

Proof: Suppose that the rank of J' is equal to or less than (n-2), then

T

= 1!
J'd 1

there exist two vectors, 91 and 92’ such that g'gl d, = 0 and d 42 = Q.

From eq (20), and the above we obtain

]
o
I
ey
-
+
¥
13-}
o,

[
[~ N
f
=)
]
tey
[= N
+
T
-}
Lo,

Since J is nonsingular, J

o
Q.
-
a
¥
o
»
2]
o
=}
Q
=
1
N
©
2]
o
ot
=
[}
[
o
o
@
=]
o
=
n,
)
[a}
(1

non-zero. Let

Again, from eq. (20) and the above, we have

~ TA a
' - =

I 91 Jd, +cmnd, =Jd, +¢c

J! & -3 d. ¥ c nTa =J & +c

2 %2 T2 T2 T E TS ¥ ST
Therefore J él =J §2’ which implies that él = éz. This contradicts
T
91 92 =0

From this. lemma, we know that a singular region with rank (n-1l) is
entered from a regular region and departs to a regular region. Let us

consider the solution curve in the x-space traversing through regions R,

=27~



R' and R", respectively as shown in Fig. 11. We assume that regions R
and R" are regular and region R' is singular with a Jacobian J' of

rank (n-1). The portion of the solution curve in region R as indicated
by the vector d is determined by Lemma 2. When the boundary point §j+1
is reached, d' is determined according to J'd' = 0. The next boundary
point is reached at gj
The image for the portion of solution curve in region R' is a single

+2° where the solution curve enters region R".
point zj+1 = f(x +1) = ¥j+2 = g(§j+2). The solution curve then start
from ¥j+2 and d" is again determined by Lemma 2. This concludes the

discussion on singular matrices.

VI. Conclusion
In conclusion, we present a summary of our results in terms of the

following theorem and algorithm.

Theorem 3. Let §(°) be a continuous, piecewise-linear function which

mapsclzn 1nto<12“.

m)

f(x) = J(m) x + w( s, m=1,2,...,8.

Let g(m)

in all unbounded regions be nonsingular, and furthermore, their
determinants all have the same sign. Then algorithm II below leads to

*
a solution of f£(x) = y for any given y in a finite number of steps.

Algorithm II.

Step 1: Use Algorithm I to trace the solution curve.
Step 2: If the solution curve hits a corner or a singular region whose
image is a subset of an (n-1l) dimensional subspace in the y-space, use

the perturbation method as given in Section 4 to find a new initial point.

-28~



Go to step 1.
Step 3: 1If the solution curve hits a singular region other than those
given above, the direction d is defined by J d = 0. Go to Step 1.

With some minor modification, it is possible to continue the tracing
of the solution curve once a solution is obtained. This enables us to
obtain multiple solutions. However, this in no way guarantees that all
solutions can be found. It is still an open question to obtain the

conditions under which all solutions can be determined.
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Fig. 1.

X -space y - space

Yo

~y

The solution curve in the y-space is on the straight line conmecting
N
y and y . The solution curve in the x-space is a continuous

~ ~

piecewise-~linear curve.

-32-



X - space y - space

Xi+|

~

Fig. 2. The solution curve in the x-space will not reenter a region

whose Jacobian is nonsingular.
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Fig. 3. The solution curve in the x-space reaches a corner.
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Fig. 4. The solution curve in the y-space reverses direction, i.e.,

*
moves away from y .
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Region II Region 1
-1/2
t X &
/7'»-|/3
Xo 1]
Region TI Region IV
)
—

Fig. 5. The solution curves go to infinity without finding a solution.
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#9 #2

Fig. 6. (a) Solution curves in the x-space starting from different

initial points. One of them is cyclic.



a ] | |
/./fj\ /‘\#4—’/

Fig. 6. (b) Solution curves in the y-space.
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~

Fig. 7.

Cyclic solution curve through a corner.
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Fig. 8. Cyclic solution curve through a region whose Jacobian

is singular.

=40~



#6 #5

Fig. 9.

(a) The x-space is divided into eleven regions.

of all bounded regions are singular.
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AN /
o

#9

#10

Fig. 9. (b) Images of 1l regions in the y-space.
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#6 #5

# 1l

Z

\‘\/

#7 #10

#8 #9.

Fig. 9. (c) Solution curves through singular regions.
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Ly={yly=ug, uelR'}

y - space

H={y|pTy=q}
/ F(R)

or f(R) x Cy : corner in the y-space

Fig. 10. Intersections of a straight line passing through the origin in
the y-space and the images of regions whose Jacobian are

singular.
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y-space

X - space

Fig. 11. Solution curves going through a region whose Jacobian has rank

n-1.
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