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Abstract 

Nonlinear resistive networks can be characterized by the equation 

f(x) = y where f(·) is a continuous piecewise-linear mapping of~n 

into itself. Then-dimensional Euclidean space is divided into a finite 

number of regions, and, in each region say region R , we can express f 
m ~ 

by J(m) x + w(m) where J(m) is a constant nxn Jacobian matrix and w(m) 

is a constant n-vector. In this paper we obtain the following results: 

If all the Jacobian determinants in the unbounded regions have the same 

sign, the equation f(x) • y has at least one solution and an algorithm is 

developed, which obtains one or more solutions in a finite number of 

steps. The work represents a generalization of early work by Fijisawa, 

Kuh and Ohtsuki and relaxes the condition imposed on the function. For 

example, in the bounded regions, the Jacobian matrices can be singular and 

the sign of Jacobian determinants can be arbitrary. 
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and the Joint Services Electronics Program Contract F44620-71-C-0087. 
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I. Introduction . 

Most electrical engineers are familiar with the technique of piecewise-

linear approximation of a nonlinear function. For example, in the 

analysis of a simple electronic circuit, diode characteristics can be 

represented by continuous, linear segments. This often gives considerable 

insight to the problem, and, as a result, yields quick solution. During 

the past decade, major advances have been made on the analysis of general 

nonlinear resistive networks based on the piecewise-linear approach [1]-[16]. 

Because of the generality of the approach and the specific results, we 

believe that piecewise-linear analysis will become useful not only in 

nonlinear networks but also in many related fields such as structural 

analysis, flow networks, mathematical economics, numerical integration 

and nonlinear system problems in general. 

Consider a nonlinear network or system which is characterized by 

the equation 

(1) 

where f maps the real n-dimensional Euclidean spaceCRn into itself. 

~is a point in~n and represents a set of chosen variables of a given 

network or system and! is an arbitrary point inSRn and. represents the 

input. By specifying ! as a continuous, piecewise-linear function, we can 

express f as follows: 

f(x) = J(m) x + w(m) , m = 1,2, ••• ,1 (2) - - -
where ~(m) is a constant nxn matrix (called Jacobian matrix .for 

convenience) and w(m) is a constant n-vector, both defined in region R • 
m 
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The whole space~n is divided into a finite num~er (i) of polyhedral 

regions by a finite number of hyperplanes. A typical boundary hyper-

P.lane in the ~-space can be characterized by the following equation: 

T n x = constant (3) 

where ~ is the normal vector of the hyperplane. The continuity of ! 

imposes an important constraint between Jacobian matrices in neighboring 

regions, namely: 

J - J' T = c n (4) 

where J and J' are Jacobi~ matrices of neighboring ,regions Rand R', 

respectively, sharing the common boundary defined by the normal vector ~' 

and. c is an arbitrary constant n-vector. T Thus c n i~ a dyad and it 

turns out that eq. (4) represents a key property of a continuous, piecewise-

linear function. 

In previous work, necessary and sufficient conditions for ! to be 

a homeomorphism have been established. A continuous function ! is said 

to be homeomorphic fromCRn onto itself if and only if the equation 

f(x) = y has a unique solution for ally. Fujisawa and Kuh [7] have 
.... .... - ... 

shown that if ~ is homeomorphic then the algorithm due to Katzenelson 

always converges, thus the solution can be found for any input ~· Further-

more, Fujisawa, Kuh and Qktsuki [51 have demonstrated that as long as 

all Jacobian determinants det J(i), i = 1,2, ••• 1 have the same sign (the 

prop~rty is referred to as the "sign condition") there exists at least 

one solution to the equation f(x) = y and the Katzenelson algorithm also - - -
converg~s. Nevertheless, the "sign condition" on Jacobian determinants 
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is a rather severe restriction for many problems. In this paper, we 

shall deal with continuous, piecewise-linear functions which do not 

obey the "sign condition" in general. Moreover, singular Jacobian 

matrices will be allowed. We shall develop the condition under which 

solutions of eq. (1) exist and can be obtained. 

A related problem is also treated in the present paper. Recall that 

Katzenelson's algorithm depends on the tracing of a solution curve in 

the ~-space. When the solution curve reaches a multiple boundary, called 

a corner, where more than two regions meet, Fujisawa and Kuh have 

introduced a perturbation method to by-pass the corner. The method works 

if the given function satisfies the "sign condition" on the Jacobian 

determinants. It turns out that for a general function, a new look at 

the corner problem is essential. In this paper we have developed a 

general theory to handle the corner problem. 

In order to make the present paper reasonably self-contained, we will 

first review briefly the Katzenelson algorithm in Sec·. 2. The dynamic 

behavior of the solution curve is next dis~ussed when the "sign condition" 

constraint is removed. What is crucial in this case is to ensure that 

the solution curve in the !-space always crosses a boundary which 

separates two regions having Jacobian determinants with opposite signs. 

The technique used is a generalization of that first introduced by Kuh and 

Hajj [ 2 ]. Two simple examples are given to illustrate several diffi­

culties of the problem when the "sign condition" is not satisfied. 

In Section 3 we develop the general theory first with two assumptions, 

nam~ly: the solution curve never hits a corner and all Jacobian matrices 

are nonsingular. We find that under the more relaxed condition that, in 

-4-

----·-----. -----



all unbounded regions, the Jacobian determinants have the same sign, one 

or more solutions exist and can be obtained by tracing the solution 

curve. It should be pointed out that the condition is not as restrictive 

as it seems because most physical systems behave like a passive element 

when any of its variables becomes unbounded, which implies that the 

Jacobian determinants in the unbounded regions are all ' positive. 

In Section 4, we deal with the corner problem by means of a new 

perturbation method. The basic result is that, theoretically, an initial 

point can always be picked in the x-space for which the solution curve 

does not hit any corners. Computationally, it gives a method to perturb 

the solution curve if the solution curve hits a corner. 

In Section 5, we discuss in detail the problem of singular Jacobian 

matrices and show how to handle the problem. The method depends on the 

result of Section 4. 

With the results of Sections 4 and 5, we can finally state a general 

theorem of solving piecewise-linear equations. Our algorithm will lead 

to one or more solutions if the piecewise-linear function has the property 

that all Jacobian determinants in the unbounded regions have the same 

sign. 

II. Dynamic behavior of solution curves 

The basic problem is to obtain one or more solutions of eq. (1) for 

a given input y* where f is continuous and piecewise linear. If all - -
Ja~obian determinants have the same sign, the Katzenelson algorithm always 

converges and can be illustrated by means of Fig. 1. We first choose an 

arbitrary initial point in the ~-space, say ~O in region R0• In R0, the 

equation .which characterizes eq. (1) is 

-5-

-·---------------·----·----· --------



f(x) = J(O) x + w(O) = y {5) 

We may use eq. (5) to compute the image lo = !<~0) 

y • J(O) x + w(O) (6) 
-0 - -0 -

* Denote the line segment joining !o and ! in the y-space by L • 
- y 

The 

problem is then reduced to one of determining a continuous curve in the 

!-space, starting with ~O' whic~ is the inverse image of Ly. The curve 

is called the solution curve in the x-space. The beginning point is ~O 

* and the end point of the solution curve is the solution ! . Thus we only 

* need to trace the solution curve to obtain the solution x • 

Let us take a look at the properties of the solution curve. The 

portion of the solution curve which lies in R0 is determined by 

where 

{7) 

> * and A= 0 is a parameter. If ~0 (1) happens to be in R0, then _!
0

(1) • ~ 

is the desired solution. The line segment joining !o and !o(l) is the 

solution curve and the algorithm terminates. If otherwise, the value of 

A has to be determined such that ~0 (A) lies on the boundary of R0• Denote 

such a value of A by AO and define ~l = ~0 (A0) and !l • :<~1). The line 

segment joining ~O and ~l is then the first portion of the desired solution 

curve. The next step is to extend the solution curve beyond ~l into region 

~· 
Assuming that x lies on a simple .boundary hyperplane, between the 

-1 

-6-

....... ---------------------------------···- --····---------- ---------------·-----·· -------------------- ----···-. ---·-- -- -----~--



two regions R
0 

and R1, Fujisawa and Kuh proved that if det J(O) and 

(1) 
det J have th~ same sign, the solution curve in the !-space will 

* indeed enter R1 as !o moves forward y through !l" . We have next in 

region R
1

, the solution curve 

> 
A 0 

where 

(1)-1 * 
d - J (y -y ) -1 - -1 

(9) 

(10) 

Since the total number of regions is finite, the method ~ill converge 

* * eventually to a solution ~ which is the inverse image of l : The crucial 

point here is that the solution curve will never reenter a region which 

has already peen traced. This is due to the fact that all Jacobian 

matrices are nonsingular, an~ the proof is simple. Suppose that the 

solution curve enters region Rj at ~j and leaves it at ~j+l and that the 

curve later reenters the same region at ~k as shown in Fig. 2. Clearly 

the three points !j' !j+l and ~ do not lie on a line. Therefore the two 

vectors ~j+l - ~j and ~ - ~j are linearly independent, whereas their 

images under linear mapping J(j) ! + ~(j) are both constant multipliers 

* of y - y and hence are linearly dependent. _o 
assumption that J(j) is nonsingular.* 

This contradicts the 

It should be noted that ~l = ~0 (A.0) may lie on more than one boundary 

as shown in ?ig. 3, or stated in another way, ~l is at a corner. We shall 

postpone the discussion of the corner probl~m until Section 4. Meantime, 

* It whould be noted that we only need the nonsingularity of Jacobians to 
prove this result. This does not rule out the situation that a solution 
curve in a region can be retraced, which implies that a region is reentered 
at x .• It will be seen later that when the Jacobian determinants have 
diff~rent signs, a modified algorithm can lead to a cyclic solution curve. 
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we assume that the solution curve will not hit any corners. 

If we remove the condition that all Jacobian determinants have the 

same sign, the problem becomes much more complicated. Let us consider 

the solution curve in the ~-space which transverses in region R starting 

from ~j and along the direction ~j· The solution curve reaches the 

point ~j+l at the boundary which separates region Rand region R'. In 

[ 7 ] Fuj isawa and Kuh derived the following equation 

det ~ ~T ~-l = det J' nT J,-l (11) 

This equation prescribes completely the local behavior of the soltuion 

curve at ~j+l' and thus the strategy of our algorithm. The proof of 

boundary crossing in the x-sapce for 'the case that the Jacobian 

determinants have the same sign is essentially based on eq. (11). Further-

more, eq. (11) also suggests what we should do for the case in which the 

Jacobian determinants of neighboring regions have opposite signs. With 

reference to Fig. 4, assume that the Jacobian determinants of J and J' 

have opposite signs. The solution curve in the x-space has been traced 

from ~j in region R along the direction gj and reaches ~j+l on the simple 

boundary between Rand R'. In they-space, the corresponding ·points !j 

and !j+l are marked. In order to force the solution curve in the ~-space 

into region R', we must reverse the direction of traversing at !j+l 

* away from y as shown in Fig. 4. The proof of this together with the case 

which has determinants with same sign is given in Lemma 1 below, stated 

in a fairly general form. 

Lemma 1 The solution curve will enter the region 

region R' along the direction gj+l given by either 
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J,-1 * (i) ~j+l - (! -!j+l) if 

(a) -1 * and (det J) (det J') > d - J <! -!j) 0, or 
-j 

(b) -1 * and (det ~) (det :!') d = -.J (y -y ) < 0; -j - -j 

(ii) -1 * 
~j+l = - J' (y -y.+l) if 

- -J 

(a) ~j 
-1 * = J (y -y.) and (det ~) (det t) < 0, or 

- - -J 

(b) ~j 
-1 * and (det J) (det J') > o. -- ~ <! -!j) 

Proof: Since the solution curve reaches !j+l on the boundary from !j' 

T 
we have p ~j > 0 where n is the normal vector at !j+l of the hyperplane. 

Furthermore, the solution curve will enter and traverse R' if and only if 

T 
~ ~j+l > o. Suppose y. and y.+l are represented by the following equations 

-J -J 

then 

The proof then follows immediately from eq. (11). It is · important to note, 

from lemma (1), that if (det J) (det :!') < 0, we must reverse the 

direction of traversing at ~j+l 

T T n d. and n d.+l both positive. 
- -J - -J 

in the y-space along L 
y 

in order to make 

From the computation point of view, the simplified statement given in 
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the following lemma is more useful. 

Lemma 2. 

(i) 

If ~O is an interior point of the region R0 then ~j is given by 

J{j)-l(y*-y) if (det J{j))(det J(O)) > 0 or 
_j - - ' 

-1 
-J{j) (y*-!j) if (det J{j)) (det J(O)) < o. (ii) 

Proof: Since ~O is an interior point of R
0

, 

It follows, from Lemma 1, that 

-1 
d • J{l) (y*-y) if (det J(l)) (det J(O)) > 
-1 - - -1 - -

0, or 

-1 
d = -J(l) (y*-y) if (det J(l))(det J(O)) 
-1 - -1 - - < o. 

We want to prove this lemma by induction. First assume that the lemma is 

true for the j-lth region, that is, 

{j-1)-l * (det .J:(j-l)) (det -I(O)) > 0 or ~j-l = -I (y -!j-l) and 

d = -J{j-l)-l(y*-y ) and (det J{j-l)) (det J_(O)) < 0. 
-j-1 - - _j-1 -

(" )-1 * 
From Lemma 1, we' have d • J J (y -y ) if 

-j - - _j 

{j-1)-l * {j) c 1) 
(a) gj-l • J (y -!j-l) and {det -I ) {det -I J- ) > 0 or 

{b) 

Thus if (det J {j)) (det -I (O)) > 0, clearly 

-10-
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(det J(j)) (det J(j-l)) (det J(j-l)) (det J(O)) > 0 

we conclude ~j = J(j)-l(y*-~j) if (det J(j)) (det J(O)) > 0. 

Thus (i) is proven. Using the same argument, we can prove (ii). The 

advantage of Lemma 2 is that we only need to look into a new region and 

compare its Jacobian determinant with that of the initial region. 

The above algorithms take care of the solution curve at a local 

point on the boundary when Jacobian determinants have different signs. · 

On the other hand the global behavior of the solution curve needs to be 

investigated. It turns out that if we do not have additional properties 

imposed on the continuous piecewise linear function the equation ~(~) = ¥ 

may not have a solution. Furthermore, the algorithm of tracing a solution 

curve may not work even if soluctions do exist. Before we derive the 

main result in the following section, which imposes further conditions on 

: and ~uarantees the convergence of the algorithm, we will present two 

examples to illustrate two possible difficulties which have not been 

encountered up to now. 

Example 1. Consider a continuous, piecewise-linear function ~ 

specified by the following equations with the regions shown in Fig. 5. 

y = [-1 1] X 

-2 1 
In~ det J(l) = 1. 

y•[: :] X 
det J(2) = 1 

y = [l OJ x 
0 -1 

det J(J) • -1 

-11-
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y = [ :: _: J X 
det J(4) = 1. 

Since the problem is simple, it is possible to determine the complete 

mapping of the 2-dimensional space. The mapping !(~) is shown in 

Fig. 5 in the y-space in order to have a better understanding of the 

problem at hand. Note the overlapping in the second quadrant of the 

y-space. Thus for eacy y in the second quadrant, there exist three 

solutions which lie in R2, R3 and R4 of ~he x-space. 

Let us assume that the given input vector is y" ~c:) and we wish 

the equation ~ (~9 = ( 
1

) • We choose 
1 -1 

(~:)in region R3• ~O is calculated 

to find the solution of arbitrarily 

to be(-:). the initial point ~O = 

* A line segment is drawn from !o toy as ·shown in Fig. 5. Following the 

algorithm just described, we obtain the first segment of the solution 

curve in the ~-space. It is given by 

where 

(3) -1 * (3/2) 
~o = J <Y -yo) = 

- - - 2 

and A represents the maximum value of A for which ~~(A) is in R3• Ao is 

found 

0 

to be 1/3 and 1!1 • ~0 (~) { i) • !1 • !<:!1> = t i) · The next 

region is identified as R4• Since (det ~{3)) {det ~(4)) < 0, in order 

* to enter R
4

, we traverse in the y-space from ~l away from ~ • The 
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(4) -1 * ( 1 ) direction ~l is given by Lemma 2, -J (y -y1) • • 
. - - -10 

The second 

segment of the solution curve is ¥1 (A) = ~l + Ag1, A~ 0. It enters R4 

as shown in the figure, but will not reach any boundary hyperplane. Thus 

the algorithm fails to find a solution. Of course, as we can see, in the 

* ~-space, ~ is never reached. Instead, the curve will pass by ~O and 

become unbounded. 

Example 2. Consider the continuous, piecewise-linear function given 

by the following, together with the regions indicated in Fig. 6a. 

In~ y = c _:) !t det -1(1) = -1 

(: :) 
• I 

.In R2 y = !t det J(2) = 1 

.. 
y- c :) In R3 ~' det J(3) = 1 
- -1 

In R4 
y = ( 0 

:) ! +(J. det J(4) 
- 1 

- -1 

In R5 
y .. c :) ~; (::). det J(5) 

- 3 

y- c :) ¥ + c:) ' detJ(6) = 1 

( 2 1.:) ~ + ( 
5 

),det ~(7 ) y"" = .5 
- 2.5 12.5 

-13-
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In RB y .. C~s 3~5) x+ c:.s) det J(8) = 4.5 

In R
9 

y = c :) ~' det J(9) = 1 

In R
10 y = (: 0) ~. det J(lO) 

- -1 
-1 

The images of these regions in the y-space are shown in Fig. 6b. Again 

it is noted that there is an overlapping in the y-space as shown by the 

shaded area. For every y in this area, there exist multiple solutions. 
- 7 

Let us consider the given input vector y* = ( ) . Suppose that ~O 

is chosen to be(~:) in R7• !o is found to-be (~:
0

). The solution curve 

* corresponding to Ly = {yly = ~O + A(~ -~0)}, can be traced by the algorithm 

given in this section. It is found that the solution~· = (l: )in four 

steps as shown in the figure. Next, suppose that ~O is chosen to be c: ) in R1, then !o • ( : ) which happens to be in the shaded area. If we 

go through with our algorithm, we find that the solution curve is a cyclic 

curve shown in Fig. 6a. The corresponding traversing in the y-space is 

* marked. Thus y can never be reached. This example points out that a 

solution curve in the ~-space can reenter a region previously traversed 

and form a cyclic curve when Jacobian determinants have different signs. 

It should be noted that this does not contradict the early statement and 

proof since the region is reentered at the same point ~. and the solution 
J 

curve is retraced. Thus the choice of initial point is of primary 
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importance in order to avoid the situation as illustrated. 

III. The main result 

The main purpose of this paper is to obtain conditions not as 

restrictive as t~e "sign condition," yet under which a ~onvergent algorithm 

can be developed to obtain one or more solutions of piecewise-linear 

equations. In this connection, the two examples give us considerable 

insight as to the nature of the conditions we are looking fo,r ! , First let 

us present the following lemma concerning existence of solutions. 

Le11111a 3. Let f ( •) maps from CQn into CRn be continuous and piecewise-

linear. Let the Jacobian determinants of all unbounde~ regions have the 

same sign, then there exists a constant M > 0 such that 

(i) there exists at least one solution to the equation !(~) = y 

if UyO ~ M, and 

(ii) there exists no solution in ~ny bounded regions. 

Proof The proof follows from that given in Appendix 1 of [ 5]. Since 

f is continuous, the image of the union of all bounded regions is contained 

in a ball B(O,M1) in the y-space. Suppose (i) is not true, then there 

exists an unbounded boundary hyperplane between f~) and CRn/!~n). 

However, ! is a local homeomorphism at any point on this simple boundary 

hyperplane since the determinants of Jacobians qf all unbounded regions 

have the same sign. This is the desired contradiction. Therefore, 

M > M
1 

> 0 exists such that both (i) and (ii) are true. 

The condition (ii) of this lemma is of primary importance in 

developing a convergent algorithm. Let us assume that the initial point 

-~0 is chosen such that 11!00 ~ M as given in Lemma 3, where ~0 is an interior 

-15-
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point of a region. Since there are no other solutions of !(~) = !o in 

any bounded region, in traversing from !o to y*, we are certain that the 

curve will not come back to ~0 · and go beyond ~o· Thus if we assume that 

the solution curv~ does not hit any corners, the solution curve cannot 

become cyclic. Since regions previously entered cannot be reentered and 

since the total number of regions is finite, we conclude that the following 

algorithm will converge in a maximum of t steps where t is the total 

number of regions. 

Algorithm I 

Step 1: Choose ~0 , an interior point of R0 , such that D!0U ~ M, where 

M is defined in Lemma 3. Set j = 0. 

Step 2: Compute gj according to Lemma 2. 

St~p 3: Compute !j+l = !j + ~j gj, !j+l = !(~j+l) where ~j > 0 is the 

maximum value such that {~(~) = ~j + ~~j' 0 ~ ~ ~ ~j} is in Rj. 

* Step 4: - y. and~._> 1, then x_ = x. + dj is a solution. 
-J J -J -

Stop. 

St~p 5: Otherwise, identify region Rj+l" Set j = j + 1 and go to Step 2. 

To conclude, we state the following theorem: 

Theorem 1: Algorithm I will find a solution ·in "finite number of steps if 

(i) All Jacobian matrices are nonsingular, 

(ii) the determinants of Jacobian matrices in ' all unbounded regions 

have the same sign, and 

(jii) the solution curve does not hit any corners. 

'It is possible to modify the algorithm ·slightly so that once a 

solution is found, the algorithm will continue from that point to find 

-16-
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other solutions without choosing a new initial point. The details will 

not be given here. 

In the next two chapters we will deal with, first, the corner 

problem, and then the problem involving singular Jacobian matrices. 

We will remove the conditions in (i) and (iii) of Theorem 1. 

IV. The corner problem. 

This section is devoted to the study of the corner problem. First, 

we will give an example to illustrate one possible difficulty which arises 

when the solution curve hits corners. Next we will study whether it is 

possible to choose the initial point so that the solution curve will never 

hit any corners. Intuitively, we can see that this is always possible 

since there are only finite number of corners. Furthermore, since 

corners are at places where hyperplanes meet; therefore, if we deal with 

a two dimensional space,for example, boundary hyperplanes· are straight 

lines and corners are points. Clearly, it is possible to choose an initial 

point in the ~-space such that the solution curve avoids all corners. 

This is proven in this section for the general case. 

Let us first review the problem at hand. When a solution curve 

reaches a corner, the previous algorithm ~annot determine the next region 

to be entered. Suppose that, by means of a perturbation te~hnique, we 

can determine the next region to be entered, we can then u~e the corner 
• I 

as the next starting point to continue the tracing of the solution curve 

in the proper region. 

Example 3. Let the continuous, piecewise-linear function be defined by 

the following equations with the regions shown in Fig. 7. 

-17-
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In~ y = G :) :I.E det J(l) • 1 
- -* 

y = c :) X det J(2) = 1 

y - c :) ¥ + ( -: ) det J(3) = 2 

y = c _:) ~ +c:) det J(6) .. -2 

* Let the input vector be y 

in R3• Thus !o ·(: )~ and !l 

det J(S) • -1 

det J(G) = -1 

= c:), and the initial point be ~O • (:) 

can be calculated to be ( : ) and (: ) , 

respectively. We use a parallel perturbation and find R2 as one possible 

next region. Therefore we start with ~l and use the equation for R2 to 

determine the next portion of the solution curve. x2 and y2 are found to 

beG )and G )• 

once again R2 is 

respectively. Thereafter, the solution curve traverses 

successively and returns to the point ~l ·(: )· And, 

found to be a possible region to be entered. Thus a 

cyclic solution curve emerges. Actually,_ for this problem no solution 
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exists for the input ~* -- ( --22 ) • This example points out nevertheless an 

important property. When a solution curve hits a corner, it can become 

cyclic although the initial point ~O is not on the cyclic portion of the 

solution curve. This could not have happened if the solution curve never 

hits a corner. 

In the following, we will demonstrate that it is indeed possible to 

choose an ~O for which the solution curve never hits any corners. As 

indicated in Section 1, a boundary hyperplane can be represented as 

H = {xlnTx = y}, where n is the normal vector to the hyperplane and y is 
X - - ... 

a constant. A corner is a subset of the intersection of two or more 

hyperplanes in the !-space. Suppose that the Jacoqian matrices are non-

s~ngular, the image of any boundary hyperplane of region R is a hyper-

plane H in the y-space. The image of .a corner in the ~-space is a subset 
y -

of the intersection of two or more hyperplanes in the y-space. For 

convenience, the image of a boundar~ hyperplane in t~e ~-space is called 

a boundary hyperplane in the y-space. Similarly, the image of a corner in 

the !-space is called a corner in the y-space. Thus in the y-space, 

Hy = {ylpTy = 

C = {yiPTy = 

q} and a corner can be represented as a subset of 

y - - -
Q}, where P is an nx2 matrix and Q a 2-dimensional vector. - - -

* Also, for convenience, we transfer the coordinate of y to be at the 

origin, hence, we are dealing with the equation !(!) = 0. The purpose of 

the development to follow is to locate a straight line L = {YIY = P!} 
y - -

where a is a unit vector and p is a positive parameter, such that L does y 

not intersect any corners in the y-space. Thus the solution curve in 

the ~-space corresponding to Ly will not meet any corners. Since a corner 

is represented by a subset of 

~Ty = 0 for all y E C • Thus 
- y 

C , we need to find a vector h such that 
y 

if hTa + 0, L defined by {YIY = p~} will 
- - y 

-19-
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not intersect Cy. It is obvious that ~ can always be determined because 

Cy is contained in Sp(Cy), the span of Cy which is an (n-1) dimensional 

subspace assuming that Cy does not contain the origin. Since the number 

of corners is finite, we expect that a can be found by induction. This 

re~ult is stated below as a theorem. 

Theorem 2: 
N 

Let S = {Cyi} be the set of corners in the y-space. 
i=l 

Suppose 

that the origin is not contained in the union of Cyi's, then there exists 

a unit vector a for which Ly = {yly = ~~} does not intersect Cyi for all 

i. 

Proof: First we need to characterize a unit vector ~i corresponding to 

T 
Cyi such that hi!= 0 for all! E Cyi. This can be done easily. Since 

Cyi • {!1!~! = ~i}' Sp(Cyi) is an (n-1) dimensional subspace. Let 

(i) (i) (i) 
!l , ! 2 , ••• , !n-l constitute a basis for Sp(Cyi)' which can be 

determined. Then hi is defined by the following 

(i)T 
!1 

(i)T 
!2 

(i)T 
!n-1 

T 
hi = 0 and ~i ~i = 1 (12) 

Next we need to construct the unit vector~ from ~i' i=l,2, ••• ,N. 

T 
This, we will do by induction. Let ~l = ~1 • It is obvious. that ~i~l + D. 

T 
Suppose that ~j~i + 0 for 1 ~ j ~ i, we want to show that ~i+l can be 

T 
computed for which ~j ~i+l ~ 0 for 1 ~ j ~ (i+l). There are two cases to 

be considered: 
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(i) T 
~i+l ~i ; 0, we simply define ~i+l = ~i· 

(ii) T 
~i+l ~i = 0, we perturb ~i to obtain ~i+l according to 

(13) 

where 

T 
' !ti+l v ; 0 

Furthermore, the magnitude of y should be small enough so that it does 

not concel the effect of previous perturbations, if any. Let 

(14) 

. ' (15) 

We define 

m 
~i+l = ~i + 2MK ~i+l K > 1 (16) 

It is 
T 

easy to see that ~j ~i+l ; 0 for 1 ~ j < i+l. Premultiplying the 

above 

For j 

T 
equation by h., we obtain 

-J 

hT = hT a + __!L hT h 
-j ~i+l -j -i . 2MK -j -i+l 

T = i+l, ~i+l !i+l is clearly positive. 

-21-
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Since the total number of corners is N which is finite, we have 

demonstrated that ~ can always be obtained such that 

T 
~j ~N >/: 0 for (19) 

~ 
Thus the unit vector a = U~D has the property that Ly = {yly = ~e} does 

not intersect any corners. This completes the proof of theorem 2. 

From the computational point of view, it is certainly impractical 

to compute ~ according to the suggested procedure. Since it is not a 

frequent event that the solution curve will hit a corner, we should only 

carry out a perturbation if and when the soltuion curve hits a corner. 

Thus if a corner represented by Cyi = {~l~i l = gi} is hit, we need to 

m 
perturb the vector ~ by a small vector v = ZMK ~i where ~i is perpendicular 

to the subspace spanned by Cyi. 

With this, we have overcome the corner problem. The condition (iii) 

given in Theorem 1 that the solution curve does not hit any corners has 

therefore been justified. 

V. Singular Jacobian Matrices 

As seen from the development of various results so far, the assumption 

of the nonsingularity of all Jacobian matrices plays a major role. For 

example, without this assumption , the direction d in region Rj cannot 
-j 

be defined by our algorithm; furthermore, the solution curve can reenter 

a region which has been traversed previously. This fact can be illustrated 

as follows: Intuitively, when we encounter a region 

according to 

R. with singular 
J 

J{j) d. = 0. This 
- -J 

Jacobian ~{j)' we may wish to choose ~j 

implies that in the ~-space ~j+l = ~j' that is, the solution curve 

traverses in the x-space across region Rj via ~j when in the y-space the 
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image stands s~i11. Obviously, we run into difficulty in that there may 

exist more than one vector which satisfies the equation ~(j)~j = 0. Then, 

as shown in Fig. 8, if ~l and ~2 are two such vectors which both satisfy 

the equation, the solution curve can indeed reenter region Rj and become 

cyclic. Before pursuing to the the development, we again illustrate with 

an example the complication involved. 

Example 4. Consider the continuous, piecewise-linear function as follows 

(-1 1) 
y = ~ 

- -1 1 

(

-1 
y .. 
- -1 

-1)~ 
-1 

( 

1 
y = 
- . 1 

-1)~ 
-1 

. (-1 
y = 
- 0 

In ~7 y = X+ (-1 2) ( 0) 
-- 0 -: - 5 

-23-

det J(l) • 0 

det -1(2) = 0 

det J(J) = 0 

det J(4) = 0 

det J(5) 5 
= 12 

det J~6) =-! 

det J(7) = : 

--- ---------------------------------------~----- -------------



In R8 
(-! j~+(:) y = 

-1 
det J(S) = ~ 

9 

_:)~ +(:) In R9 ! = (_1~ 

In RlO y = c: -:)~+(:) det .J(lO) = 1 

In ~l y = c: !)~+(:) det J(ll) = ~ 

The regions in the ;-space are shown in Fig. 9a, the images in the y-space 

are shown in Fig. 9b. It is seen that the four regions R
1

, R
2

, R
3

, and 

R4 into which singular Jacobian matrices are mapped become a straight line 

in the y-space. The solution curves corresponding to three different 

cases are shown. Note specially that the solution curve in ~-space 

corresponding to any point on the line segment lyly = •C), 0 ~ p < 1] 

is a closed curve going through regions R
1

, R2, R
3 

and R
4

• 

There are two methods to overcome this problem. The first one is 

to perturb the Jacobian matrices which are singular such that the 

perturbed function is sufficiently close to the original function, yet 

contains no singular matrices. This method will not be given in this paper. 

We shall present in this section the second method in which we prove that 

it is always possible to choose an initial point in the ~-space such that 

the solution curve will be noncyclic and furthermore will not reenter a 

region previously traversed. It turns out that the key to this approach 

is to distinguish between singular Jacobians which are of rank (n-1) and 

-24-
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those with rank less than (n-1) • . 

Let a singular region be a region whose Jacobian ~S ! singular. If 

the rank of~ for region R ~s (n-1), there exists. ~ Mector E such that 

T E .z • 0. Consequently, the ima_ge of R is a subset of the hyperplane 

I T T T T T T 
{¥ p y = p ~} because y = J ~ + ~ and p y = p ~ X + p ! = ~ W• On the 

other hand, if the rank of ~ is (n-2) or less, t~re ex~st at least 

T 
tw9 ve.ctors ~l and ~2 , ~l ~2 r/: 0,. such that 

T T 
~l ~ and ~2 J are both zero. 

T 
Let ~ = (~1,~2 ) and 9 = (~1 ,~2 ) !· The·image of R is t~en ~subset of 

{!I~T! • gl which behaves exactly like a corner. This s~ggests that 

we can use the result of . the previous section to deal w:J,.th -tho.se 

singular regions which ,are of rank (n-2) or less • . All we ~ed to do is 

to ensure that Ly in the y-space does not intersect with any singular 

regions whose Jacobians are of rank (n-2) or less. Theorem 2 shows that 

this can always be done. Therefore, we shall persue immediately to the 
1 I • •• ,i 

case in which ali singular Jacobian matrices are of rank (n-1). First, 

we need to understand some basic properties of singular· Jacobian matrices 

in connection with continuous, piecewise-linear functions. 

Lemma 4. Let the rank of ~ for region R be (n-1). Let Ly = {~~~ = ~~' ~ ~ 0} 

intersect the image of region R under the mapping f, f(R). Then either 

(i) Ly intersects !(R) at one and only one point, or (ii) Ly is a subset 

of an (n-1) dimensional subspace which contains ~(R). 

Proof: Suppose that Ly intersests ~(R) at_ two ,points, namely: : 1 = ~l~' 

T T 
~2 = ~ 2 !• ~l r/: ~2 , then there eixsts a vector· ~ such that ~ ~l = ~ : 2• 

T This implies p ~ = 0 since ~:1 r/:_ ~ 2 • Therefore-, Ly· is a subset of the 

subspace {ylpTy = 0} which contains !(R). This completes the proof. 
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In the two dimensional case, this lemma is illustrated"" by Fig. 10. 

Note that !(R) is a line segment, thus it either intersects an Ly which 

connects to the origin or is a subset of an Ly. 

Let us consider the case in which Ly is a subset of an (n-1) dimensional 

subspace which contains ~(R). Obviously, we can treat this case like 

the corner probl~m, since it is always possible to find an Ly which does 

not intersectthe image of such a region. Therefore, we are left with the 

remaining case that Ly hits a singular region of rank (n-1) at precisely 

one point. The following lemma tells us that, for this case, there is 

a unique direction ~ in R for which ~ ~ = 0, and furthermor-e the solution 

curve will not reenter this region afterwards. 

Lemma 5. Let the Jacobian J of region R be of rank (n-1). Let 

Ly = {yly = ~~' ~ ~ 0} intersect !(R) at one and only one point. Let - .. 
the solution curve in the !-space enter R at ~j and leave R at !j+l' 

then xj+l = x. + ~d. where J dj = 0. Furthermore, the solution curve 
- -J -J - -

in the x_-space cannot reenter region R through a point other than x. and 
-J 

!j+l" 

Proof: Suppose that the solution curve reenters region R at !k' then 

~ = J !j + ~ = J !j+l + ~ = J ~ + ~· Since !j' !j+l and~ are not on 

a straight line, (~j-~) and (~j+l-~) are linearly independent. But 

~~~j-~) c 0 and ~(~j+l-~k) = 0 imply that the rank of J is less than 

(n-1). Thus~ cannot exist and ~j is the only vector which satisfies the 

equation J d•. = J(x.+1-x.) = 0. This completes the proof. 
- -J - -J -J 

The final item is to investigate the property of boundary crossing 

in the x-space when a singular region is reached. In this connection, 

-26-
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it is tmportant to present the following lemma: 

Lemma 6. Let J and J' be nxn matrices, and .... 

T 
J' = J + c n (20) 

If det J I 0 and det J' = 0, then the rank of J' is (n-1). 

Proof: Suppose that the rank of J' is equal to or less than (n-2), then 

T there exist two vectors, ~l and ~2 , such that J'21 = J'92 = 0 and 2122 = 0. 

From eq (20), and the above we obtain 

T 
J' dl - 0 = J d + c ~ ~1 ~ ~ -1 - - -

.T 
J' d ·= 0 ·= J d + c ~ _d2 -2 - ~2 ~ -

T T Since J is nonsingular, J 91 and J 92 are non-zer.o, thus p 91 and p g
2 

are 

non-zero. Let 

,.. I T ,. 
~1 = ~1 ~ ~1 and ~2 

Again, from eq. (20) and the above, we have 

J' 
,.. T" ,.. 

~1 = J ~1 + c n ·d = J ~1 + ~ · ~1 - ~ -1 

,.. ,.. : T"' ,.. 

~2 ~2 ... J ~2 + £ ~ ~2 = J ~2 + £ 

A A A A 

Therefore J ~l = J ~2 , which implies that ~l = ~2 • This contradicts 

T 
~1 ~2 = o. 

From th~s . lemma, we know that a singular region with rank (n-1) is 

entered from a regular region and departs to a regular region. Let us 

consider the solution curve ·in the x-space traversing through regions R, 
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R' and R", respectively as shown in Fig. 11. We assume t;hat. regions R 

and R" are regular and region R' is singular with a Jacobian J' of 

rank (n-1). The portion of the solution curve in region a as indicated 

by the vector ~ is determined by Lemma 2. When the boundary point ~j+l 

is reached, d' is determined according to ~·~· = 0. The next boundary 

point is reached at ~j+2 ' where the solution curve enters region R". 

The tmage for the portion of solution curve in region R' is a ~ingle 

point !j+l = !(~j+l) = !j+2 = ~(~j+2). The solution curve then start 

from ~j+2 and ~" is again determined by Lemma 2. This concludes the 

discussion on singular matrices. 

VI. Conclusion 

In conclusion, we present a SU111J118ry of our results in · terms of the 

following theorem and algorithm. 

· ' 

Theorem 3. Let !(•) be a continuous, piecewise-linear funct~on which 

maps ~n into ~n. 

f(x) = J(m) x + w(m) m • 1,2, ••• ,1. 

Let J(m) in all unbounded regions be nonsingular, and furthermore, their 

determinants all have the same sign. Then algorithm II below leads to 

* a $Olution of ~(!) = y for any given y in a finite number of steps. 

Algorithm II. 

Step 1: Use Algorithm I to trace the solution curve. 

Step 2: If the solution curve hits a co~er or a singular region whose 

image is a subset ·of an (n-1) dimensional subsp~ce in the y~space, use 

the perturbation method as given in Section 4 to find a new initial point. 
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Go to step 1. 

Step 3:· If the solution curve hits a singular region other than those 

given . above, the direction~ is defined by~~= 0. Go ' to Step 1. 

With some minor modification, it is possible to continue the tracing 

of the solution curve once a solution is obtained. This enables us to 

obtain multiple solutions. However, this in no way guarantees that all 

solutions can be found. It is still an open questi~ to obtain the 

conditions under which all solutions can be determined. 
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Xo ,..., 

Fig. 1. 

... 

x- space y- space 

y* ,..., 

y2=f(x2) ,..., ,..., ,...., 

x* 
y,=,!}x,) ,..., ,...., 

,..., 

Yo ,..., .. 

The solution curve in the y-space is on the straight line connecting 

* y and y . The solution curve in the x-space is a continuous 

piecewise-linear curve. 
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x- space y- space 

Fig. 2. The solution curve in the x-space will not reenter a region 

whose Jacobian is nonsingular. 
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'-· -

... 

.·. 

Fig. 3. The solution curve in the x-space reaches a corner. 
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Fig. 4. The solution curve in they-space reverses direction, i.e., 

* moves away from y 
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.......__ ________________ _ 
----------------------------·-·~--

Region II Region I 

-112 

-1/3 

Region m 

Fig. 5. The solution curves go to infinity without finding a solution. 
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#8 

#7 

I 
~ 

Fig. 6. 

---· ----------------------

#9 #2 

#3 

#4 

#6 #5 

(a) Solution curves in the x-space starting fro~ different 

initial poin~s. One of them is cyclic. 
-·- ·------------ -·--- .. -·-·· 
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#8 

I 
t---i 

#9 

v 
//~ I 0 I 

~\ / Y/ I . ... . 
. . . 

X I ·· I 
I~ I · 1 

/II I I 
/ I I 

4 1 · I 
/ /#6 K___ 
/.I·~ I =#4 

I I *s"--' 
/ I 1 . 

I I 
I . 
I . 

I 
I 
I 
I. 

I 
I 

. I 
I 
I 
I 
I 

I 
I 

y* #3 ,..., 

Fig. 6. (b) Solution curves in the y-space. 
-- · --- - --
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-2/3 

Fig. 7. Cyclic solution curve through a corner. 
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.. 

I ' 

J d I= 0 
"'"' 
J d2 = 0 
"'"' 

Fig. 8. Cyclic solution curve through a region whose Jacobian 

is singular. 

I I 
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' 

:#6 :#5 

4 

#II 

#7 
7 

#10 

#8 #=9 

Fig. 9. (a) The x-spaGe is divided into eleven regions. The Jacobians 

of all bounded regions are singular. 
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I 
t----t 

Fig. 9. (b) Images of 11 regions in the y-space. 
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#6 #5 

#II 

#7 #10 

#8 #9 ~ 

Fig. 9. (c) Solution curves through singular regions. 
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Ly = {y I y = u! , u f rR I } 

y -space 

·, 

or f ( R) 
"' Cy : corner in the y- space 

Fig. 10. Intersections of a straight line passing through the origin in 

the y-space and the images of regions whose Jacobian are 

singular. 
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x- space y-space 

d' 
~ 

Fig. 11. Solution curves going through a region whose Jacobian has rank 

n-1. 
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