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A NEW APPROACH TO OVERCOME THE OVERFLOW PROBLEM 

IN COMPUTER-AIDED ANALYSIS OF NONLINEAR RESISTIVE CIRCUITS 

Leon 0. Chua and Niantsu N. Wang 

Department of Electrical Engineering and Computer Sciences 
and the Electronics Research Laboratory 

University of California, Berkeley, California 94720 

ABSTRACT 

This paper is addressed to the so-called overflow problem commonly 

encountered in the computer simulation of nonlinear resistive circuits 

containing rapidly varying nonlinearities such as exponentials 

found in the models of diodes and transistors. A novel approach which 

makes use of the arc-lengths of the nonlinear characteristic curves as 

the variables of iteration is proposed. It is proved, under rather mild 

conditions, that the arc-length approach not only overcomes the overflow 

problem, but also leads to a more rapid rate of convergence. Moreover, 

it is proved that for most practical diode-transistor circuits, the 

region of convergence associated with the arc-length approach enlarges 

rapidly as the number of diodes and transistors increases. Hence in so 

far as choosing the initial guess is concerned, the advantage for using 

the arc-length approach over the conventional approach increases with the 

size of the network. Extensive numerical experiments confirm the superi-

or convergence property of this approach even for circuits which violate 

the sufficient conditions invoked by the rigorous ~athematical proofs. 

Research sponsored by the U.S. Navy Electronic System Command, 
Contract N00039-71-C-0255 and NSF Grant GK-32236Xl 
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Although the approach is applicable to a much wider class of nonlinear 

networks, particular emphasis is focused on diode-transistor networks in 

this paper. 

I. INTRODUCTION 

The overflow problem often encountered in computer-aided transistor 

circuit analysis is best illustrated by considering the simple diode 

circuit shown in Fig. 1 (a). The diode is characterized by the equation 

i = I (ev/VT - 1) ~ i(v) (1) 
s 

where typically the saturation current I ; lo-13 A and the thermal s 

voltage VT ~ kT/q is approximately 0.026 V at room temperature. The 

network equation of the circuit is given by 

f(v) ~ i(v) + ~ - ~ = 0 (2) 

and the Newton-Raphson algorithm for solving (2) is: 

k+l k f(vk) 
v v 

f' (vk) 
(3) 

k = 0, 1, 2, ... 

where f'(vk) ~ df(vk)/dv; vk being the k-th iterate, and in particular, 

0 v is the initial guess. Convergence property of (3) depends heavily 

on the initial guess v0 . A clever choice of v
0 

can affect the rate of 

convergence significantly. On the other hand, since VT is very small, 

ev/VT increases rapidly with v. For v > 19 V, i(v) is extremely large 

and overflow problems occur in evaluating (3) on most computers. In 

table 11 we summarized the rates of convergence corresponding to differ-

ent values of E and R. 
0 

For comparison, we always started at v = 0 V. 

As shown in column 4 of the table, convergence became extremely slow for 

large values of E and small values of R. For E > 15 V and R < 1 Ohm, 
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for example, the Newton-Raphson algorithm fails due to overflow. Several 

approaches have ·been proposed to overcome this problem: 

(1) Source Stepping ([1]). We start from a particular input with a 

known solution and then change the input step by step toward the desired 

input. At each step we compute the solution using the solution corres-

ponding to the previous input as the initial guess. Finding a proper 

step size at each cycle is a fairly difficult problem and the whole 

process is very time-consuming. 

(2) Step-Size Modification ([2], [3]). At each iteration we introduce 

an appropriate step-size k factor A > 0 into (3); namely, 

k+l k 
v = v 

k 
Ak f(v ) 

f' (vk) 

k The value of A is usually chosen by some intricate scheme in order to 

k k+l . h" bl eep v w1t 1n some reasona e range. This method has severe drawbacks. 

First of all, since the main purpose of this approach is to guarantee 

k the convergence of the algorithm, the value of A needed for overcoming over-

flow may not be desirable for guaranteeing convergence. Secondly, the 

k schemes for computing an appropriate A are rather time-consuming. 

(3) Voltage-Current Switching. Since ldv/dil is small whenever ldi/dvl 

is large, this approach suggests repetitive switching between voltages 

and currents as the independent variables. Unfortunately, the conver-

gence of this approach is questionable. 

(4) Pre-set Bounds ([4], [5]). Since one often has some idea of the 

magnitudes of v and i associated with practical circuits, this approach 

consists of setting a-priori bounds for them. k Whenever the computed v 

1 All numerical examples in this paper are obtained from the CDC 6400 
computer. 
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exceeds this bound, a new value is chosen. Not only is the effect of 

this approach on convergence extremely difficult to establish, it also 

defeats partly the purpose of computing the derivatives. 

As we have seen the preceding approaches are computationally 

inefficient and are ad hoc in nature in the sense that they often work 

only for some special class of problems. To overcome the preceding 

objections, a novel approach using the arc-lengths of the v - i curves 

as the variables to be solved is proposed in this paper. For example, 

as will be shown in Section III, the diode characteristic can be des-

cribed by v = v(p) and i = !(p) where p is the arc-length of the v - i 

curve starting from the point v = i = 0. For comparison, the functions 

f(v), f(p) and v(p) for the diode are shown in Fig. 2 along with their 

derivatives. In terms of the arc-length p, (2) and {3) become 

f(p) = t<P> + ~ v(p} - ~ = o 

and 

k+l 
p 

k = 0, 1, 2, ... 

(4) 

(5) 

respectively. Notice that since both ldt/dpl < 1 and ldv/dpl < 1 in 

Fig. 2, the function f(p) satisfies a global Lipschitz condition and (5) 

converges much faster than (3). Moreover, the overflow problem never 

occurs here. The superior convergence property of this approach can be 

seen by comparing the last two columns of Table 1. 

-4-
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Table 1. Comparison of the rate of convergence of the Newton-Raphson 
algorithm with "diode voltage" and "arc-length" as the respective 
variables of iteration. Precision: 8 digits after the decimal 
point. 

E R v Iterations Iterations 

(V) (ohms) (V) on voltage on arc-length 

1 1 .84887700 12 4 

1 103 .68811353 18 10 

2 1 .90047502 49 4 

10 .1 1.0149600 over 250 5 

For comparison, we plot both f(v) and f(p) in Figs. 1 (b) and (c) 

corresponding to E = 2 V and R = 1 ohm. For arc-length approach the 

iterates {pk} almost hit the solution in one step. 

To prove that the preceding desirable properties associated with 

the arc-length interation are true for a large class of nonlinear 

circuits, we carry out an analysis of the network equations in terms of 

arc-lengths in Sections II and III. In Section IV we investigate proper-

ties of the Jacobian matrices associated with the Newton-Raphson 

algorithm applied to network equations. The formal proof that our 

approach overcomes overflow problem is given in S~ction V under rather 

general settings. The superior convergence property of the arc-length 

approach is established in Section VI for the Newton-Raphson algorithm. 

Finally, the assertions in the preceding sections are illustrated by 

several examples in Section VII. It must be emphasized that the ~ 

length approach, though particularly suited to diode nonlinearities, is 

useful for analyzing any network containing resistors characterized by 

-5-
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v - i curves with rapidly-varying nonlinearities. 

Finally, some remarks concerning notations: (1) We use lower-

case letters with subscripts for components of vectors. Thus v = 

t E n (v1 , v2 , ... , vn) ~;where t means transposition. All vectors are 

defined to be column vectors. We use upper-case letters for matrices 

in ~n X n. (2) Functions are denoted by "hats"' thus v = v(i) means 

that the variable v is computed via the function v(•) at i. (3) Since 

we shall use hybrid analysis to describe circuits, we use E and I to 

denote the sets of indices pertaining to voltage ports and current ports, 

respectively. Thus ik, k E E means the current associated with the 

"voltage port" k. (4) Finally, we define two kinds of norms. Let 

z = (z
1

, ... , zn)t E:Rn. The Jl.
1

-norm of z denoted by llzll, is defined 
n 

as llzll = L lz. 1. The Jl.
00

- norm of z, denoted by llzll
00

, is defined as 
i=l 1 

liz II 
00 

=max 
i 

{lz.l, i = 
1 

1, 2, ... , n} • t, [ ] E "1Dn x n Let A = a.. .m. 
1] 

The 

induced Jl.
1
-norm and Jl.

00
-norm of A are denoted by IIAII and IIAII

00
, respec-

tively. 
n 

It is well known that IIAII = max L 
j i=l 

n 

Ia .. 1 and 
1] 

=max L 
j=l 

I a .. 1. Hence, IIAII 
i 1J 

II. EQUATION FORMULATION VIA HYBRID ANALYSIS 

Throughout this paper we use hybrid analysis to formulate the 

network equations by extracting all nonlinear resistors and replacing 

them by voltage and/or current ports, as shown in Fig. 3 (a). The 

remaining n-port, which contains only linear resistors, linear controlled 

sources and independent sources, is then described by a hybrid represen-

tation. Not only is hybrid analysis particularly suited to the arc-

-6-
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length approach but it also offers many advantages over the more widely 

used nodal analysis; namely, (1) hybrid analysis can be applied to 

circuits containing both voltage-controlled and cu~rent-controlled 

elements, (2) hybrid analysis can handle all four types of linear con-

trolled sources while nodal analysis, strictly speaking, allows only 

voltage-controlled current-sources, (3) for circuits containing rela-

tively few nonlinear resistors, the system of nonlinear network equa-

tions obtained by hybrid analysis is of a much lower dimension than that 

obtained by nodal analysis, (4} in many cases, hybrid analysis pro-

vides the most convenient formulation for investigating theoretical 

properties, such as the existence and the uniqueness of solutions, of 

network equations. 

In the following, we describe the hybrid formulation briefly and 

state some important properties. For detailed discussions, see [6], 

[ 7 ] , and [ 9] • 

Theorem 1. ( [ 9]) 

A linear n-port G)t containing only positive linear resistors has a 

hybrid representation 

(6) 

where E and I pertain to voltage ports and current ports, respectively, 

if and only if the voltage ports do not form any loops and the current 

ports do not form any cut sets. 

The negative sign associated with the hybrid matrix in Eq. (6) is 

due to the reference sign convention shown in Fig. 3 (a). We state a 

few important properties of the submatrices in Eq . (6): 

-7-
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Pl. 

P2. HEE and HII are real symmetric, positive semidefinite or positive 

definite. Nullity of HEE (resp. HII) is equal to the number of indepen­

dent cut sets (resp. loops) consisting of voltage and/or current 

ports only. 

P3. Elements of ~I and HIE are bounded by 1 in magnitude. 

P4. Let H ~ [~E ~~ since H + Ht = LHEE 0 J H is at least 
HIE HII 0 2HII 

positive semidefinite. It is positive definite if and only if both 

~E and HII are positive definite. In particular, H is positive defi­

nite and hence is nonsingular if the voltage ports and the current ports 

do not form any loops or cut sets. Otherwise H is singular. 

In the general case where the n-port contains also linear control-

led sources and independent sources, under some mild conditions, the 

following hybrid representation can be generated efficiently by topo-

logical methods [6]: 

[ ~J + H [::] = 

s (7) 

where H is of the form defined in (6) and the source vector s accounts 

for the independent sources. If there are no controlled sources inside 

the n-port, H satisfies all properties Pl - P4, otherwise it is arbitrary. 

The port voltages and currents are related by the v - i characteristics 

of the nonlinear resistors: 

iE = iE(vE) and VI = vi(ii) (8) 

Notice that both iE(•) and vi(•) are diagonal functions, i.e., 

ik = ik(vk) is a function of vk only. From (7) and (8) we obtain 

-8-
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= 0 • (9) 

Equation (9) can be solved by many iterative methods, including the 

Newton-Raphson method to be investigated in detail in subsequent sections. 

Before we consider the solution of (9), however, let us investigate two 

important special cases associated with diode-transistor networks. 

Special Case 1. 

Consider a circuit containing diodes, transistors, positive linear 

resistors and independent sources. Replace each transistor by its 

Ebers-Moll model as shown in Fig. 4 (b). Extracting all diodes as 

voltage and/or current ports, and imbedding the linear controlled sources 

within the n-port'7, we obtain a hybrid representation given by (9). 

Notice again that iE(•) and v1 (•) are diagonal, i.e., ik = i(vk), k E E 

and v = v(i ), mE I, where i(•) is defined by (1) and v(•) = t-1 (•) m m 

whenever the inverse exists. 

Special Case 2. 
. 2 

Consider the same circuit in Special Case 1 but with no diodes • 

Extract each "diode-controlled source combination" as a voltage port as 

shown in Fig. 4 (c). Suppose the hybrid representation3 exists so that 

we have 

2 We exclude the diodes just for simplicity. In fact, each diode will 
add only a "1" along the diagonal of the matrix T defined below. 
3 In this case, it is the usual admittance representation of the associated 
n-port. Hence, in case 2, we will use the symbols G and G' to denote the 
short-circuit admittance matrix associated with the two n-ports '1 in 
Fig. 3 (a) and~' in Fig. 3 (b), respectively. 

-9-
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where the components of iE(•) are defined by (see Fig. 4 (c)) 

k = 1, 3, 5, .•. , n/2. Notice that in this case fE(•) is no longer 

diagonal. However, since there are no controlled sources inside the n-

port,71 ',matrix G' possesses all properties Pl- P4. Let G be the corres-

pending admittance matrix obtained by the method described in Special 

Case 1, it is obvious that 

G = T-l G' 

where 

T 

1 -a 
F 

1 

--:---- -~-l- --aF-~------ -~-----

_____ l_-aR __ ~ _I _______ I ____ _ 

I I I -----:------:--- ~-- -:-_:- --;j 
Although we will not use this model for computation, the relation 

G = T-l G' is useful for investigating properties of G. For example, G 

is nonsingular whenever G' is, and the singularity of G' can readily be 

checked by inspection of the associated network topology (see property 

P2). A circuit with its transistors replaced by this model is shown in 

Fig. 3 (b). Notice that~ does not contain any controlled sources. 

III. PARAMETRIC REPRESENTATION THE ARC-LENGTH APPROACH 

A curve in the v - i plane can be represented parametrically by 

v = v(p) and i = i(p) 

where pis called a parameter. In case the v-i curve is rectifiable [11]; 

-10-
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a condition satisfied by all v - i curves of practical interest, p can 

be chosen as the arc-length of the curve measured from an arbitrary point 

on the curve to the point (v, i). Observe that the parametric represen-

tation remains applicable even if the v - i curve of a resistor is neither 

voltage- nor current-controlled. In the following, we derive a few use-

ful properties of this representation: 

(1) (dt) 2 + (dv) 2 = 1, whenever the derivatives exist. 
dp dp 

Moreover, ldi/dpl 21 and ldv/dpl 21 for all pER. 

Proof. Since (dp) 2 
= (di) 2 + (dv) 2, (10) follows. 

(10) 

(2) A curve is completely specified by only one parametric equation and 

one point (v0 , i
0

) on the curve. 

Proof. From .(10) , we have 

i(p) and v(p) 

(3) The arc-length p can be comp~ted by either 

i v 
p(i) = J A + <:;, > 2 

di , or p(v) = J 
io vo 

Proof. Obvious from (10). 

(4) 11 Let dt/dv = x, then 

~~ lxl I dv I= 
1 

p = A. + X?- h + x
2 dp 

(dt ) 2 d ' 
dP' p + vO. 

A + <:!,> 2 
dv' (11) 

(12) 

and if the v-i curve is monotonically increasing, we have 

= X (13) 

Proof. By direct computation. 

-11-
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(5) 
11 

If we define x = dv/di, property (4) is still true with v and i 

interchanged. 

To illustrate the arc-length approach, consider a diode charac-

terized by (1). Since the v-i curve passes through the origin, it is 

convenient to choose (v0 , i
0

) = (0, 0). By (11) 

[ p-

where cl 

v 
p(v) = I 

0 
dv' Jv ;{ + 82 e2v'/VT 

0 

A + .{ + x2 } + ell VT{lo{ 1 

+ h + 

LvT{log ( 9 
) + l +92} is a constant. 

1 +A.+ 8
2 

dv' 

(14) 

Equation (14) defines x as an implicit function of p. Given p, we 

solve for x from (14) and then obtain v and i from 

v(x) VT log(x/8) and i(x) = V x - I . \ 
T s _ 

(15) 

Notice that since the v - i curve is strictly monotonically increas-

ing, x E (O,oo) and the right-hand side of (14) is a concave function 

of x. Hence, for each p, there exists a unique solution x(p). The 

Newton-Raphson iteration applied to (14) converges rapidly for small 

... 1 0 1n1t1a guesses x • In practice, we may simply assume different values 

of p and have the functions v = v(p) and i = t(p) tabulated and stored 

in the computer in the same way that a v - i curve may be stored as a 

table of points. This can be done easily because i(p) ~ p for large p 

4 See Appendix Al for the derivation. 

-12-
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and v(P); P for small p. The same table, with a simple modification, 

can be used for different values of VT corresponding to differen~ 

temperatures. (See Appendix A2 for details.) Let us now consider two 

examples. 

Example 1. 

Consider the class of circuits belonging to Special Case 1 of 

Section II. If we use the arc-lengths p as independent variables, we 

have from (9) 

- s = 0. (16) 

where ik = t(pk) and vk = v(pk), k E E U I. The functions t(•) and 

v(•) are defined by (14) and (15). See Fig. 4 (d). 

Example 2. 

Consider the same representation as in Special Case 2 of Section II. 

In this case we have ik = ik(pk, pk+l) ~ t(pk) - aF i(pk+l) and 

ik+l = ik+l(pk' pk+l) ~ i(pk+l)- ~ t(pk), etc. See Fig. 4 (e). 

IV. PROPERTIES OF THE JACOBIAN MATRIX. 

ASSOCIATED WITH THE NEWTON-RAPHSON ALGORITHM 

Let us now investigate and compare the solution of the network 

equations given by (9) and (16) by the Newton-Raphson method. Let f 

be a function from~n into~n, find a z* E~n such that f(z*) = 0. 

The successive iterates are computed by 

k = 0, 1, 2, ... (17) 

-13-
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k f1 k 0 
where J (z ) = af(z )/az is the Jacobian matrix of f and z is the z 

initial guess. Applying (17) to (9), we have 

where 

k = 0, 1, 2, 

f1 3f (vE, i 1 ) 
1v,i = 3(vE, i

1
) 

= 

0 

0 ', dv 
"--...!!. 
di 

n 

where D is a diagonal matrix because vE(•) and i 1 (•) are diagonal 

functions. Here E = {1, 2, ... m} and I= {m + 1, m + 2, ... n} . 

Applying (17) to (16), we obtain 

where dil 

dpl 
'',di 

m 
dP 

m 

dv
1 

dpl 
' ' .. dv 

m 
dp 

m 

+ H dim+l 

dpm+l 

(18) 

(19) 

(20) 

',, di 
n 

dp 
n 

dp 

(21) 

-14-
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Whether the sequences defined by (18) and (20) converge depends 

on both the initial guess and the behavior of the Jacobian matrix. 

For example, the sequence will not converge if the Jacobian matrix 

becomes singular at some k. In this section we establish a few impor-

tant properties of the Jacobian matrix. 

(1) Bounds for J 

Theorem 2. Let N be a circuit characterized by the hybrid eguation (16). 

Then J is bounded by 

(22) 

Proof. Let H = [hij] in (16). Then the j-th column vector J~ of Jp is 

given by 

and 

' ... 

, ... d~. dt. 
~+h ~ 
dp. jj dp. 

J J 

' ... 

' ... 

To be specific, let j E E we have 

IIJj n 
n d~ di. d~. 

= < I: l~j I> 1-J;-1 + l~+h .. ~l p 
k=l J pj JJ pj 

k#j 
dt. n d~. 

< 1~1 + ( I: lhk.l> 1~1 -
J k=l J j 

di. d~. 
< 1~1 + IIHU • 1~1 - dp. 

J J 

d~. t 
h ~] 

nj dpj 
j E E 

dt. t 
~] · E h . dp , j I. 

OJ j 

Since, (dt/dp) 2 + (d~/dp) 2 = 1, let !dtj/dp.l =cos S. and 
J J 

ld~./dp.l =sin e. where ·e. E [0, n/2]. Hence we have 
J J J J 

-15-
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It then follows from Appendix A3 that 

11 Jj 11 < AI H n 2 + 1 
p -

j E E. 

Similarly, IIJjD < AHII 2 + 1, j E r. 
p -

11J II < AlH11 2 + 1 . 
p -

ej E [o, 7T/2]. 

This proves that 

0 

Corollary. Consider the same circuit as in Theorem 2. Assume that 

(i) h .. > 0 for all j E E U I, (ii) all nonlinear resistors are mono­
JJ -

tonically increasing, then 

min {IIHjU, 1} < IIJ II. 
j - p 

where Hj denotes the j-th column vector of H. 

Proof. Since all nonlinear resistors are monotonically increasing, 

di ./dp_. > o and dv ./dp. > o 
J J- J ]-

for all j E E U I. Then IIJJP·u = (d!./dp.) 
J J 

+ 0Hjll (dv./dp.), j E E and 
J J 

IIJj II = 
p 

By Appendix A3, IIJjU >min 
p 

{ IIHj U , 1} 

(2) Singularly of the Jacobian Matrix 

(dv ./dp .> + 
J J 

jEEUI. 

IIHjll (d!./dp.), j E I. 
J J 

0 

In applying the Newton-Raphson method, we must ensure that the 

Jacobian matrices are nonsingular. Since 

Jp is nonsingular if both Jv,i and 3(vE, ii)/3(pE' PI) are finite and 

nonsingular. This is, however, not the only case. Jp can be nonsingular 

even if u(vE, ii)/3(pE' PI) is singular as can be seen from the equation 

dv/dP = (dv/di)(di/dP). Observe that di/dP = 0 implies dv/dP = 1. In 

many practical cases, for example, transistor circuits, where all non-

-16-
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linear resistors are strictly monotonically increasing~ the associated 

matrix a(vE~ ii)/3(pE~ pi) is always nonsingular. In this case, the 

singular points of J . and J are in one-to-one correspondence and the 
V~1 p 

following theorem gives a sufficient condition which ensures that Jp 

is non-singular. 

Theorem 3. Consider a circuit described by (9) and the associated 

Newton-Raphson iteration given by (18). Assume His nonsingular. Then 

Jv i (vE~ ii) is nonsingular if IIH-
1

U • max { jdik/dvkl, jdvm/diml; k E E~ 

mE I} < 1. 

Proof. From (19), Jv~i(vE' ii) = D(vE, ii) + H = H(l + H-l D(vE, ii)). 

~ince lln(vE~ ii) II = max {I dtk/dvk I, I d~m/diml; k E E, m E I} and Jv ,i (vE, ii) 

is nonsingular if IIH-
10 • lln(vE~ ii)ll < 1~ the theorem follows. 0 

Remark. In view of Theorem 3, J . is nonsingular if Dn(vE~ ii)II is 
V,1 

sufficiently small. This means that ldik/dvkl should be small for voltage 

ports and ldv /di I should be small for current ports. For example~ if 
m m 

we know the bias polarities of some transistors~ which is usually the case 

for many practical transistor circuits, then it is desirable to choose 

forward biased branches as current ports and reverse biased branches as 

voltage ports. 

Theorem 4. Consider a circuit characterized by (9~. Assume that (i) 

there are no controlled sources in the circuit; (ii) the nonlinear 

resistors do not form any loops or cut sets; (iii) all nonlinear resistors 

are monotonical+y increasing, then the Jacobian matrix Jv i(vE~ ii) defined 

by (19) is nonsingular for all (vE' i 1) E~n. 

5 The matrix (I+ A) is nonsingular if HAD < 1, see [10]. 

-17-
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Proof. 
t 

By (i), HIE=- REI; by (ii), both HEE and HII are real symmetric 

and positive definite. By (iii), D(vE, i 1) is positive semidefinite. 

Since J 
v,i + Jt . = 2([~E :I~+ D(vE, il:) J v,i 

is positive 
V,l. Q 

definite and is nonsingular. D 

The following two cases are of particular interest. 

Theorem 5. Consider a circuit characterized by (9). Assume that 

(i) H is positive definite6; 

(ii) all nonlinear resistors are monotonically increasing, then the 

Jacobian matrix Jv i(vE, ii) defined by (19) is nonsingular for all 

(vE, i
1

) E lRn. 

Since J . + Jt . = (H + Ht) + 2D(vE, ii) is positive definite 
V,l. V,l. 

Proof. 

by (i) and (ii), J . is positive definite and nonsingular. D 
v,l. 

Since singular points of J i and J are in one-to-one correspondence v, p 

if all nonlinear resistors are strictly monotonically increasing, we have 

Corollary. In Theorems 4 and 5 if all nonlinear resistors are strictly mono-

n 
tonically increasing, then J (pE' pi) is nonsingular for all (pE' p1 ) E~ . 

Remark. Observe that Theorems 4 and 5 still hold if H is 

positive semidefinite but all nonlinear resistors are strictly monotoni-

cally increasing. 

Theorem 6. Consider a circuit characterized by (16). Assume that 

(i) His column-sum diagonally dominant, i.e., h .. > 0, 

h .. > 
JJ 

n 

i:l lhijl 
if:; 

for all j E E U I; 

6 In fact, HE PO is sufficient, see [12] and [13]. 
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(ii) all nonlinear resistors are monotonically increasing, then the 

Jacobian matrix Jp(PE' pi) defined by (21) is nonsingular for all 

(pE' pi) ElRn. 

Proof_. From (21), JP(PE' pi)= D1 (pE' pi)+ H n2(pE, pi). By assumption, 

7 
(H, n1) E w0 and hence det Jp(PE' pi) = det (D1 + H n2) > 0 for all 

n 
( PE ' PI) E lR • 

V. THE OVERFLOW PROBLEM 

In most practical cases the arc-length approach is immune to the 

overflow problem. It is particularly suited to diode-transistor circuits. 

In order to appreciate the role played by the new variable arc-length, 

let us consider first the conventional approach and rewrite (18) into 

the form 

J (k) VE 
v,i [ j 

k+l 

ii 

It is standard practice to solve for (vE' ii)k+l by Gaussian elimination 

and back substitution. Since ldi/dvl and ldv/dil can be arbitrarily 

large, elements in J (~) can become extremely large. and overflow problem 
v' l. 

occurs. For example, the range of non-zero real constants in the CDC 

6400 computer is approximately l0-294 to 10+322 , this requires the 

components of v~ be less than 19 V if vE is a v~ltage vector across 

the transistor terminals. This problem can never occur if we use arc-

lengths as variables. From (20), 

7 See [13] for a detailed discussion of properties of matrices 
belonging to class w0 . 
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JP (k) ~:] Ml • JP (k) ~:] k (23) 

Since 11J pll is bounded by a constant for all (pE, pi) E lRn (Theorem 2), 

J (k) is well-defined for all k. 
p 

source of the overflow problem. 

There is, however, another possible 

In (20), elements of [J (k)]-l can be 
p 

extremely large even though IIJ (k)ll is bounded. This implies that over­
p 

flow problem could still occur -- though much less likely -- in the 

process of Gaussian elimination on (23). In this section we show that 

under certain conditions IIJ~1 (pE' pi)II is also bounded by a constant 

for all (pE' pi) EJRn. Obviously if this is to be the case, Jp(pE' pi) 

b · 1 f all (pE' pi) EJRn. must e nons1ngu ar or Before we present the 

theorems, let us consider a simple example which gives one an intuitive 

feeling on why the overflow problem can be overcome by choosing arc-

lengths as variables. 

Example. 

Consider the simple transistor circuit shown in Fig. 5 (a). The 

network equation is given by 

where 

o. 

G ~ [ .lOlOE-2 

-.1980E-6 

-.9901E-3] 

. 1980E-4 

(24) 

and s ~ 

[ 

.1198E-1J 

-.1369E-3 . 

-20-
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Referring to Figs -. 2 (c) and (e), we observe that for p < • 75, v(p) ;; p 

and i(p) ;; 0. On the other hand, for p > 1.25, i(p) ;; p + const. and 

v(p) increases very slowly with p. Therefore we can divide ~2 into 

regions as shown in Fig. 5 (c). On each hatched region f(p
1

, p2) is 

approximately an affine function, i.e., a linear function plus a 

constant, determined by matrix G and the particular affine approximations 

ik(pk) = pk + const and/or vk(pk) = pk + const. Hence, overflow 

problem can never occur within this region. We apply the Newton­

Raphson algorithm (20) to (24). Starting at p0 = (0, O)t, the iterates 

come close to the solution p* rapidly and the sequence {pk} converges to 

the solution with 9 digits of accuracy in 8 iterations. Notice that the 

initial guess p0 is not close to the solution p* = (.63715683, -7.0436303) 

(see Fig. 5 (c)). Nevertheless, {pk} converges rapidly. 

Though difficult to justify rigorously, no overflow has ever been 

observed even with an initial guess p0 located in the unhatched region. 

In any event, observe that the area occupied by the unhatched region 

is much smaller compared to that occupied by the hatched region. Hence, 

the probability of some iterate pk falling within the unhatched region 

is indeed quite small. 

We now ~erive rigorously some sufficient conditions which guarantee 

that J-l is bounded, thereby eliminating the only other source of the 
p 

overflow problem. 

Theorem 7. Consider a circuit satisfying the hypotheses of Theorem 5, i.e., 

(i) His positive definite8 , 

8 In fact, HE P is sufficient. See footnote 6. 
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(ii) all nonlinear resistors are monotonically increasing. 

Then ll1~1 (PE' PI)II exists and is bounded by a constant for all 

( PE' pi) E lR.n. 

Proof. It can be shown that 9 

n k
1 
.... k. 

= _E
0

[det H(k
1 

•••• k~)] II 
J= J k. 

]. 

sin 8k. II cos 
]. 

E E k E I 
i 

ek. II cos 
]. 

k E E 
k :f k. 

8k II sin 8k 
kEI 

]. 
k :f k. 

]. 

kl ..... k. 11 
where 1 < k < k < .•. < k <nand det H( J) = 1 for J. = 0. 

- 1 - 2 - - j - kl .•... kj 

Under the above conditions, by Appendix AS, there exists a constant 

a > 0 such that 

PI) >a for all (pE' pi) EJR.n. 

Since bp(PE' 

we have [10] 

P ) n < AHn 2 + 1 
I -

n 
for all (pE' pi) EJR , by Theorem 2, 

where S and a are constants. 0 

Theorem 8. Consider a circuit characterized by (16). Assume that 

(i) His strictly column-sum diagonally dominant, i.e., h .. > 0, 

n 
h. . > E I h .. I for all j E E U I. 

JJ i=l l.J 

i:fj 

(ii) all nonlinear resistors are monotonically increasing. 

Then J-1(pE' pi) exists and is bounded by a constant for all (pE' pi) EJR.n. 

9 See Appendix AS. 
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Proof. By definition of the induced norm of a matrix, 

From (21), 

t 
Jp(pE, Pr) 

sup 
z'/=0 

= 

cos e1+h
11

sin 

h12sin 

I 
I 
I 
I 

h1ncos 

z E]Rn 

1 1 

inf 

el h21sin el 

82 cos e2+h22sin e -2 
I 
I 
I 
I 

e 
I 

h2ncos e n n - -

where cos e . = dt ./ dp . and sin e . = dv. I dp . ' j E E u I. 
J J J J J J 

h 
1
sin - n 

- - h sin n2 
I 
I 
I 

sin e +h 
I 
cos n nn 

Without loss of generality, assume the infimum of IIJtzll occurs at p . co 

el 

82 

e n 

z with lzkl = 1. Now the absolute value of the k-th component of J~z is 

n 

.L hikzi) +sin ekl ' k E I. 
~=1 

(25) 

i~k 

where the+ signs arise because zk = 1 or -1. By (ii), ekE [0, ~/2]. 

By Appendix A3, the minimum of the right hand side of (25) is 

min {hkk -

we have 

n 
L ., hik I , 1} ~ y which is positive by assumption (i) • · So 

i=l 
i'/=k 

inf HJ~(pE' p1) zDco ~ y > 0 

HzH =1 
co 
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Hence IIJ-\p , p ) II < .! for all (pE, pi) E 1Rn. 
p E I - y 0 

Remark. It must be emphasized that the hypotheses required by Theorems 

7 and 8 are only sufficient conditions which guarantee that no overflow 

can occur. While it is difficult to derive weaker sufficient conditions 

analytically, no overflow problem has ever been encountered (except 

when J is singular) in all examples that we have so far analyzed using 
p 

the arc-length approach. 

VI. CONVERGENCE PROPERTIES 

We have already seen from the examples of Section I and Section V 

that the arc-length approach has superior convergence property over the 

other approaches. This is particularly significant for practical tran-

sistor and diode circuits. In all examples we have considered so far, 

the iterates generated by thP Newton-Raphson algorithm came close to the 

solution rapidly even though the initial guess was chosen far away 

from the solution. This is highly desirable from a comp~tational point 

of view because in general the success of Newton-Raphson algorithm is 

only guaranteed for initial guesses sufficiently close to ·the solution. 

In this section we make a comparison in the convergence property between 

10 the arc-length approach and the voltage approach for transistor and 

diode circuits. Our analysis is based on the following theorem. 

Theorem 9. ( [10]) Let f: 1Rn -+ 1Rn be twice continuously differentiable. 

0 n 0 0 0 Let z E1R , f(z ) f 0. Assume J (z ) = af(z )/az exists and is non­
z 

Singular. and 
k+l k k 

z = z + hz, k = o, 1, 2, ... 

10 We exclude current ports just for simplicity. 
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as defined by the Newton-Raphson algorithm. If there exists a neigh­

a borhood N
0 

of z such that 

(i) RJ (z') - J (z)H < L Hz• - zH for all z', z E N
0 z z z 

i.e., J satisfies a Lipschitz condition with a Lipschitz constant L 
?. z 

on N ; 
() 

(ii) [1/ (L H f (z0) II· DJ-1 cz0) 11 2-)] 
z z 

~ r > 2· 
"z - ' 

(iii) The ball B
0 

~ {z I Rz-z0
H 

r ~ {exp[-cosh-1
{z_; - 1)]} llh0 U, z z z 

~ rzlis contained in N0 , where 

k then the sequence z lies in B
0 

and 

converges to the solution z* such that f(z*) = 0. 

Remarks. {1) It can be shown [10] that the rate of convergence depends 

on ~ : the larger the ~ , the faster the rate of convergence. Now, let z z 

Vo and 0 b h · · · 1 · f 1 d 1 h p e t e ~n~t~a guesses ~n terms o vo tages an arc- engt s, 

respectively, i.e., v 0 = ~(p 0 ) and f(v0) = f(p 0). Then if LPIIJ-l(p 0 )11 2 

< L IIJ-1 (v0 )11 2 , ~ > ~ and the sequence {pk} converges faster than {vk}. v v p v 

(2) The set consisting of all z0 satisfying the conditions in Theorem 9 

is called a region of convergence. Suppose ~p > ~z· 

0 . 1 * 1 * 
< llh II, then by (iii) r < r . That is, p is closer top than v to v . - v p v 

Conversely, for a fixed distance from p * and v *, llv0 - v *11 must be smaller 

than llp 0 - p*ll in order to have v1 and pl within the same distance of their 

respective solutions. In other words, the region of convergence associated 

with the voltages is smaller than that associated with the arc-lengths. 

(3) It is generally difficult to estimate Rh0 R /llh0 11. Instead, we compare 
p v 

their upper bounds. Since h0 
= -J-1 (z0)f(z0), an upper bound Hh0 llof llh0 11 z z z z 

is llh0 11 = IIJ-1 (z0)11·11f(z0 )11 < siiJ (z0)11n-l ·llf(z0)11/ldet J (z0>1· It can z z - z z 

be shown (see Theorem 10) that llh0 R/Rh0
11 = (h+x2)n-l ~ (1/~), where 

v P m k=l 
lx

01
l =max{ lxkll and xk ~ dlk/dvk. As long as one diode is reverse-biased, 

k -- --
i.e., x. = 0 for some k, llh0 H < llh0 11. 

k p v 
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It is generally difficult to obtain the Lipschitz constant L for 
z 

J • However, we shall use the following lemma to find an upper bound: 
z 

Lemma. ([10]) Let f be defined as in Theorem 9. The Jacobian matrix 

J satisfies the Lipschitz condition 
z 

2 
n a f.(~) 

IIJ (z) 
z 

J (z')ll < (max max I I az ~z I) 
i,j ... l k j 

liz- z'll ~ L 
z 

nz - z I II 

and 

z -~EN k 
0 

(26) 

Applying (26) to (19) and (21), respectively, we obtain 

d
2f 

LV= max {1~1} (27) 
k dvk 

n 

L p = max 
k (28) 

where hk = j~l lhkjl. These are fairly tight upper bounds for Lv and Lp as 

described in [10]. To obtain the relationship between Lv and Lp , we 

substitute (13) into (28) and obtain, 

circuits. 

max 
k 

(29) 

We now compare the upper bounds of 

the class of transistor and diode 

12 Moreover, for all circuits we have analyzed, a conservative range of 

-4 -2 
values assumed by hk is given by hk - 10 to 10 • From (27) and 

11 We assume N
0 

is convex. 

12 This is true for most practical circuits where the values of resistors 
range from a few hundred ohms to megaohms. Notice that the dimension of 
hk is in mhos. The symbol"-" means "of the order of". 
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(29), L <max p-
k 

Since J = J p v 

{ll+hk~l} 
(1 + ~) 

:~ , it follows 

max 
k 

from (12) 

ll + hi X_q, I 
(1 + xi)2 

that det J p (P 0) 

0 n 
(1/l,{ + X~ ) • 

6. det J (v ) IT Furthermore, let x = max 
v k=l 

follows from (19) and (21) that OJ (v0)0 
v 

From (27) and (29) we obtain [10] 

and 

- X m 

m k 

= 

L 
v 

{xk}, 

where S is a constant. Let us now define the quantity 
2 2 

llJ (vo) un-1 } { IIJ (Po) gn-1 } 
6. - { v I-ll "' L S · L S ---'"-----

v ldet J (v0
) I P ldet J (p0 ) I ' 

v p 

then it 

henceforth called the convergence-region-enlargement ratio because it 

provides a quantitative measure of the enlargement of the region of 

convergence associated with the arc-length approach over that associated 

with the voltage approach. Observe that the higher the value of ll, the 

larger is the region of convergence of the arc-length approach as compared 

to that of the voltage approach. For ease of comparison, the following 

theorem provides a useful estimate for~= 

Theorem 10. The convergence-region-enlargement ratio ll can be estimated 

by 

-27-
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- L 
v 

2 . where the denominator (1 + x ) 1s understood to be repeated (n - 1) 
m 

times when evaluating the terms associated with the product operation 

TI. Comparing the last term with the first term we obtain the estimate 

for l.J. 0 

-4 -2 2 For practical circuits, h!l. - 10 to 10 , minimizing (1 + x!l.)/ 

11 + h!l. x!l.l with respect to x!l.' we obtain min [(1 + x~)/jl + h!l. x!l.j] -
x!l. 

1 2 n 2 2 
1/(1 + -4 hn) - 1. This means that l.J- TI [(1 + x) I (1 + xk)]. 

¥, k=l m 
kj!l. 

0 0 An inspection of Fig. 2 (b) shows that in a neighborhood of v or p 

containing the solution, x changes from 10-2 to 103 corresponding to 
m 

v changing from .Sv to .85v. Taking x = 10 for example, we find from 
m m 

above that ll - 10
2
N where N is the number of diodes which are reverse 

biased (xk ~ 0 if the k-th diode is reverse biased). The fact that ll 

increases exponentially with N is very significant. The more transis-

tors and diodes the circuit contains, the higher the ll and the more 

advantageous the arc-length approach over the voltage approach. We will 

now supplement the preceding analytical arguments with some geometrical 

interpretations with the help of the following examples. 
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Example 1. Consider the same circuit in Fig. 1 (a) with E = 1 v and 

R = 1 K. We plot the functions f(v) and f(p) in Fig. 6 using two sets 

of vertical scales. Notice that for large values of v and p (see Figs. 

6 (c) and (d)), f(v) is exponential while f(p) is almost a straight line. 

It follows that the iteration must converge much more rapidly in the latter 

case. 

Example 2. Consider the simple transistor circuit shown in Fig. 5 (a). 

We try four different initial guesses and plot the corresponding loci of 

the Newton-Raphson iterates in the v1 - v2 plane in Fig. 7 (a) and in 

the P1 - p2 plane in Fig. 7 (b). In both cases, the dotted lines pertain 

to the conventional voltage-variable approach while the solid lines 

pertain to the arc-length approach. For comparison purposes the loci in 

Fig. 7 (a) corresponding to the arc-length p
1 

and p
2 

are expressed in 

terms of voltages v
1

Cp
1

) and v2 Cp2). Similarly, in Fig. 7 (b), the loci 

corresponding to voltages v
1 

and v
2 

are expressed in terms of arc-lengths 

P1 Cv1) and P2Cv2). In the figure, heavy bold lines mean a group of 

points. An inspection of Fig. 7 (a) shows that the respective loci for 

the initial guess "I" converge to the solution in 15 iterations using 

the arc-length approach, and 102 iterations using the conventional 

approach. The conventional approach terminates prematurely due to 

overflow when the initial guess is chosen at points II, III and IV. 

On the other hand, the arc-length approach converges in 15, 8 and 10 

iterations respectively. The preceding observations are summarized in 

Table 2. 

-29-
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Table 2. Comparison of the convergence behavior in terms of voltages 

and arc-lengths for 4 different initial guesses. 

Initial Guess Iteration on Iteration on 

Poinl 
0 0 0 

v (J = ()(v ) Voltage Arc-length 
----- --

I (J, )) (1.1EJ7 ,1. 3E37) 102 15 

II (-3,3) ( -3, 1. 3E37) overflow after 15 
58 iterations 

III (-3,-3) (-3,-3) overflow after 8 
1 iteration 

IV (3,-3) (1. 3E37 ,-3) overflow after 10 
2 iterations 

The superior convergence property of the arc-length iteration 

exhibited in Table 2 can be explained intuitively upon noting that the 

Lipschitz constant Lp of Jp associated with the initial guess is 

extremely small (since x is either very large or very small) and the 
m 

function f(P) defined by (24) behaves like an affine function. Since 

the Newton-Raphson algorithm converges in one step for affine functions, 

k 
the sequence {p } approaches the solution P* rapidly. Finally, we 

remark that since the diode voltage in the Ebers-Moll transistor model 

in most practical transistor circuits seldom exceeds 0.7 volt, it is 

reasonable to always choose the origin (p~ = 0) as the initial guess 

when H is nonsingular and the point p~ = 0.6 for all k when H is 

singular. 
0 

In these cases, we are sure that both the initial guess p 

and the solution p* will lie in the same connected region where f(p) may 

be represented by an affine approximation. (See Fig. 5 (c)). 

VII. EXAMPLES 

We will illustrate the arc-length approach by a few examples. 

Whenever possible, the network equations will be solved by the Newton-
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Raphson method. When the Jacobian matrix becomes singular, we switch 

to the steepest descent method with Golden section search for approp-

riate step sizes. For comparison, we always start from the same initial 

guess All examples show rapid convergence and no over-

flow. We have also tried to solve the same problems using the conven-

tiona! voltage and current approaches but all iterations were terminated 

prematurely due to overflow. In the following examples, the precision 

is 8 digits after the decimal point. 

Example 1. Consider the circuit shown in Fig. 8 (a). The network 

equation is given by 

·where 

.1313E-3 -.lOOSE-3 .lOOSE-3 -.9272E-4 

H = .1512E-4 .2872E-4 -.2872E-4 .2650E-4 

.1225E-3 -.1367E-3 .1367E-3 -.1049E-3 

.1529E-4 -.1707E-4 .1707E-4 .2674E-4 

t 
[-.2704E-2 .1410E-3 -.2792E-2 • 4958E-4] • and s = 

Solution. vl = .61792024 v. v2 = -.13904286El v. 

v3 = .61765611 v. v4 = -.34968589El v. 

Number of iterations: 8. 

Example 2. Consider the voltage inverter shown in Fig. 8 (b). The 

circuit is characterized by the same equation as that in Example 1 with 
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.3369E-2 -.2403E-2 -.4713E-2 .0 .0 

.9082E-3 .4807E-4 .9425E-5 .0 .0 

H -.9425E-3 .9425E-3 .3365E-2 -.2403E-2 -.4713E-3 

-.9331E-3 .9331E-3 .9037E-3 .4807E-4 .9425E-5 

.o .o -.9425E-3 .9425E-3 .2903E-2 

.o .0 -.9331E-3 .9331E-3 . 9129E-3 

and 

s =[-.1642E-l -.4550E-2 -.1171E-l .1199E-3 -.1176E-l 

Solution. v2 = .63411683 v . vl = . 67036572 v. 

v3 • 15323978 v. 

v5 = • 67039247 v. 

Number of iterations: 9. 

v
4 

= -.48025058El v . 

v6 = .63383432 v . 

.0 

.o 

.o 

.o 

-.1941E-2 

.3883E-4 

.1210E-3]t 

Example 3. Consider the operational amplifier circuit shown in Fig. 8 (c). 

This circuit is characterized by 

i19<P19) + H vl9<Pl9) - s = 0 • 

v2o<P2o) 12o<P2o) 

. 
v22<P22) 122<P22) 

where H is a 22 x 22 matrix. Entries of H and s are listed in Appendix A6 • 

Solution. vl = • 62426857 v . v2 = -.34935916El v. 

v3 = • 61721934 v. v4 = -.15696097El v. 

v5 . 62985911 v. v6 -.86511997 v. 

v7 .63475472 v. VB -.36300723El v. 

v9 .63409094 v. vlO .64239200 v. 

-32-
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vll = -.34219597El v. v12 = .64239475 v. 

vl3 -.86217929 v vl4 = .63500900 v. 

vl5 = .63500900 v. vl6 = .60293795 v. 

vl7 -.20786375E-3v. vl8 .62404612 v. 

vl9 = -.16910235El v. v20 = -.29392223El v. 

v21 -.94820172El v. v22 = -.10174531E2 v. 

Number of iterations: 25. 

VIII. CONCLUDING REMARKS 

In this paper we have presented a new approach which overcomes the 

slow convergence and overflow problems commonly encountered in the 

computer analysis of circuits containing nonlinear resistors characterized 

by rapidly varying nonlinearities. Theoretically speaking, since arc­

lengths can be used to describe resistors which are neither voltage nor 

current controlled, ou~ approach is also more general than nodal 

analysis. Computationally, since the convergence properties can be 

improved greatly by appropriate assignment of voltage and/or current 

ports, our approach is generally superior to other methods. For 

practical diode-transistor circuits, the improvement in the rate of 

convergence of the arc-length approach over the conventional approach 

increases remarkably as the size of the circuit increases. Therefore 

the arc-length approach is particularly suited for analyzing practical 

large-scale electronic circuits. Finally, in this connection we would 

like to point out that even though the hybrid matrix is generally not 

as sparse as the nodal admittance matrix, it is usually of a much 

lower dimension and in many cases the hybrid matrix can be made sparse 
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by introducing "dummy ports". For example, consider the same circuit in 

Example 1 of Section VI. Introducing one more voltage port by connec­

ting a linear resistor with a very high resistance across nodes a and b 

as shown in Fig. 9, the hybrid matrix H becomes 

H 

.1980E-3 

-.3960E-5 

0. 

0. 

-.2000E-3. 

-.1750E-3 

.5001E-4 

0. 

0. 

.2233E-3 

o. 

o . 

. 3211E-3 

.4009E-4 

.3010E-3 

. o. 

0. 

-.2750E-3 

.5501E-5 

-. 2778E-3 

-.1750E-3 

.5001E-4 

.3211E-3 

.4009E-4 

.5243E-3 

which contains two blocks of zeros since port 5 cuts the circuit into 

two separate ports. Even though the saving in computation is not 

particularly remarkable for this simple circuit, it can become very 

significant for large circuits. 
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APPENDIX 

Al. Diode Characteristic as a Function of Arc-length 

It follows from the diode characteristic :f:(v) = I (e v/VT - 1) 
s 

-(' v/VT 11 11 that d1/dv = 8e = x, where 8 = Is/VT. Choosing (0,0) as the 

starting point of the arc-length p, we have 

P(v) 

A2. Temperature Modification 

Jv h + x2 dv 
0 

,J d~, where tan ~ = x 

Instead of solving for v and i as functions of p, we find relations 

between the normalized variables v/VT, i/VT and p/VT. From (14) and (15) 

and 

where 
11 cl 

C =- = z v 
T 

log X - log 8 and x - 8 (30) 

(31) 

-h + 8
2 

- log( 
8 

) . 
1 + h + 8

2 
(32) 

Choosing T
0 

= 298° K so that vT
0 

~ 0.026 v, we compute v/VT0 and 

i/VTo as functions of p/vTo and have them tabulated. Given P, it is 

easy to find v(p) and i(p) from the table. Notice that v/VTO' i/VTo 

-36-
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and P/VTo depend only on x and the constants c2 and 8 at T0 . Call these 

functions (of x) v/VTo• t/VTo• and ~/VTo respectively. In case the 

~ . f 11 f I O.OS(T-To) d V kT/ temperature T r T0 , 1t o ows rom s = Iso e an T = q 

0.08(T-T ) that 8 = Is/VT = 80 (T0/T)e 0 where the subscript 0 designates 

quantities associated with T
0

• Since e << 1, it follows from (32) 

c2 ~- 1- log(%) =- (1 +log 2). - log[e0 c~0)e0 • 08 (T-To)] 

T 
= c20 + [log(~) - 0.08(T- T0)] 

0 

13 that 

eo 
where c20 =- 1- log(z-). If we subtract equations (30), (31) and (32) 

at temperature T0 from the corresponding expressions at temperature T, 

we would obtain 

The following algorithm can now be given for computing the diode 

voltage and current at any temperature T: 

Step 0. Given T I T0 , compute VT, Is and e. 

Step 1. Given p, compute the normalized arc-length 

PN ~ "p/V 
To 

Step 2. Look up the table, find (v/VT0)(pN) and (i/VT0)(pN). 

Step 3. Compute 

13 

ro-----··---~----------

v(p) = VT[(v/VT0)(pN)- log (e/80)] and 

i(p) = VT[(i/VT0)(pN) - (8- e0)]. 
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Remarks. (1) The above procedure is based on the assumption that 

(2) Constants in the formulas should be precalculated once 

T is fixed. 

A3. A Lemma 

Let f(8) =a cos 8 + b sin 8; a~ 0, b ~ 0 and 8 E [0, n/2], 

then max f = ~2 + b 2 and min f min {a, b}. 

Proof. 
df 
d8 = - a sin 8 + b cos 8 = 0. 

Solving for 8, we obtain 

8 = 8M ~ tan-1 (~) and f(8M) = ~2 + b
2

• 

The value 8M gives obviously the unique maximum. The minimum occurs at 

8 = 0 or 8 = n/2. 

A4. 

The expression for det Jp (pE' pi) can be obtained by successive 

expansions along columns of Jp(pE, pi). The proof follows from direct 

computation and induction. For example, consider the simple case 

cos 8
1 

+ h
11 

sin 81 hl2 cos 82 

det Jp(p1 , p2) 

h21 sin 81 sin 82 + h22 cos 82 

hl2 cos 82 

sin 82 + h22 

hll 
sin 82 + 

h21 

-38-
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(det H) sin e
1 

cos e
2

. 

AS. 

We claim that det Jp(PE' pi) > a for some a > 0. The proof is 

straightforward but lengthy. Here we just use the simple case from A4 

to illustrate the point. 

Notice that 6. E [0, TI/2]. Minimizing the right hand side over 61, we 
J 

obtain the following expression with the help of A3: 

Minimizing over e2 again we obtain 

since H is positive definite. The case of higher dimensions follows 

by induction. 
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A simple diode circuit. (a) The circuit diagram; (b) The function 
f(v) _defined by Eq. (2) corresponding to E = 2v and R = 1 ohm. 
Starting at V 0 = 0, the sequence {vk} generated by Newton-Raphson 
iteration converges very slowly; after 49 iterations. (c) The 
function f(p) defined by (4) corresponding to E = 2v and R- 1 ohm. 
Starting at p 0 = 0, the sequence {pk} generated by Newton-Raphson 
iteration converges extremely rapidly, after 4 iterations. 



.......... -·--·--·-··------· ---4--···---------·------·-·-----------·---------~·--

i, A di/dv 

100 
1000 

aNvl 
---+00 

dv ------.... 
750 OS V-+00 

50 
500 

250 

v, v v 
0 0.5 0 0.5 

(a) (b) 

i,A di/dp 

2 i='l'lpl~ 

0.5 
dt(p) 
- <1 

dp 

0 2 p 
0 

p 

(c) (d) 

v, v dv/dp 

2 
dQ(p) 

v = Q(p} <I ....--
dp 

\ 0.5 

2 p 

(e) (f) 

Pig. 2 -13 Characteristics of a diode with I
8 

= 10 A and VT • .026 V. 
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Fig. 3. Linear resistive n-parts terminated by nonlinear resistors, diodes 
and transistors. (a) The ports are terminated by nonlinear resistors. 
(b) The transistors are replaced by diode-controlled source 
combinations so that~ ' does not contain any controlled sources. 
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Fig. 4. The Ebers.-Moll model of an npn bipolar junction transistor in 
various equivalent forms. 
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Fig. 5. A simple transistor circuit. (a) The circuit diagram; (b) The 
2-port obtained by extracting the nonlinear resistors (the diodes) 
as voltage ports. Notice that the port voltage and current are 
related by associated reference directions; (c) Regions of affine 
approximations of f(p). In each hatched region f(p) behaves like 
an affine function of p . 
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Fig. 6. Functions f(v) and f(p) for the simple diode circuit shown in 
Fig. 1 (a) corresponding to E = 1 v and R = 1 K ohm. (a) and 
(b) For small values of v and p, f(v) and f(p) resemble each 
other. (c) and (d) For large values of v and p, f(v) is 
exponential while f(p) is almost a straight line. 
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Fig. 7. Comparison of Newton-Raphson iterations between the voltage approach 
and the arc-length approach. The heavy bold segments indicate a 
group of poi~tskclustered near each other. Solid lines denote loci 
of iterates v(p ) in (a) and pk in (b). Dotted lines denote loci 
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denote actual position of a point while "triangles" t. denote remote 
points lying outside of the normal scale indicated. 
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A6. For Example 3 of Section VII 

The hybrid matrix H is 

• 15~!'E-o2 • 1 ;a~E-OI • J;8;E-DI 0. -.1~41E-el .1941£-BI e. .1941£-el 8. e. -.15~7~-e2 0. • !54;£-0~ 0. 0. e. e. e. D. e. 0. 8 • 
•• :;~9 .1£-0ol .lzJ.;E-OI .30CoC•OI 0. -.Jco;t-DI .lCDlC-01 e. .330JE·OI e. e. .JQJ•:·U4 0. -··~~=E-04 0. B. B. e. e. e. e. e. e . 
•• 15,~e-o2 •211 ;£-0I .~~o~E-01 -.11~.ae-o3 -.2121£-0I .2121t-OI e. .2121£-0I .1421~-n e. .a.~~~~-o1 ~. -.s ••. e-n1 o. -.1233E-o4 o. o. .7175£-03 -.1493E-D4 .2525E+D8 e. -.;:~~!;:-D2 
O. o. -.9ll91E-03 .9hl5E-Ol -.5011£-DJ .SOllt-OJ B. .SOll£-03 .1429"-05 B. -.1.:::~-a2 D. .l~lCE-0:! D. .2-l:"SE-04 0. 0. .14lSE-02 -.29~6£-04 -.sa~OE-tDO e. .!;CSt~-o2 
o. -.I~JIE·OI -.2~;:;<-DI .7oOIE•D3 .29~4£-01 -.29SDF.-DI .1414E-83 -.2964£-el •,1400E·83 .3360E-e2 .1~,~~-02 .3JCDE·02 -·~!~E-0~ .2475E-e4 • .a~Z6E•D4 .7872£-03 .99DIE-D4 -.14'l5E-02 .2%•;E-a4 -.sasat+ao -.~CDOE+8e •• 4;~~E•CD 
o. .l~t:lt•Ol •• u.a~£- 1H -.tS~OE·0-1 -.5 9'~ i.~E-lll .B7S:"E-Ol .2829£-03 .S9Zt.::E-03 .2901£-BS -.GE:BIE-04 -.2e~7vc-e.t -.6601£-04 .t.oJoE-C3 -.4950£-0& -.9;:.51£-06 -.1414£-04 -.193aE-85 .2S70E-04 -.59i:?C:-06 .lOJOE-01 .lOC:JE-Of .ss-::.:t:-C:! 
O .t~.!tE-Ol ,:07!E-01 -.7SO:E-Ol -,2:'l~E-Ol .:!747E-DI .2B29E·B3 ,2P(I"::£-Ol ,1400£-1)3 -.JJGCE-02 -.14!~r-cz •,llCt::E·c;,~ .G·Il:C-0~ ,24~GE·O~ -,·I?:GC-0·1 -,70~::£-03 -.93\llE-04 .1~::~~-02 -,2'J:•~C-04 .~aa:J~•OO .ICOOE+OI .~~:.:,;t:.~a 
o: • 3~ ti:3E-OI .4l4':1E-OI -.l52DE-D2 -.5~3JE-01 .S~bll;-01 .zaatE-83 .61 135-Dl .2BOIE•Bl -.E&OIE-02 -.2GiVE-C2 -.6i01E-02 .1:"~:£-:ll -.9SSIE-04 -.S2SIE-04 -.1414E-B2 -.19BOE-Ol .2370E-02 -.S!'i~E-04 , tOC\JE•OI •9'3::CE•Oa .S:O;"C:•t'l 
O 0 0. .142!'£·03 ,:! . 1;-r,r:-n~ -,:-;-.1r,r-CJ2 O. -.2·17r.r . n:t .1429£-IJ O. e. D. -.:.a:-st:-0:! 0. .Z4i5E-02 D. O. B. B. -.:;OilOE+OO 0. 5'=c, .. o:-.,.•~ 
_ 'tS-IfE·DZ : 15-ai'E-O~ .154:"£-0;! D. .EO:tt:E-02 -.B03C.f - 02 0, -.EO!.t:E-tl-2 D. .6501£·02 .2Sa:!E·C2 D. - •• ~!'"":~-0~ 0. e. o: 0. -.143~£-02 .z:;-::f.:£•04 e. e. 1 ' ..... " 
... 'J"G~·O:! ,J"il.aL-13:! ,31l94E-02 D. ,!'·IO~E-0:! -.~..10':(-0:! 0, -.!'41;1~(-02 0, ,£:;l~E-02 .~:,~~~-a2 0. -.I.:~CE-01 0, B. . e. 0, -.2870£-02 ,537~E-C4 0. a. a: 

: IS~!E-c2 -.lS.J~E·O;! -.t5Ji'E·D2 D. -.2291E-(.'12 .2291E-•)2 0. .22~1£-02 0, •,J:!ilaE-82 -.2S~2E·C2 ,:JJCCIE•02 .~.:;:;::-.£-_,~ •,2.a7SE•Ool -.:4i"SE-04 -.70l2E-Ol -.:J9DIE-e4 ,1435E-D2 -,Z,CGf-04 0. .SO\Jil£+CO .~CO:::SE•ZIJ 
.l~t.IE-DZ •• :;~9JE-a2 -.J~9<E·D~ o. -.II~~E-al .112~C-OI D. .11:·.~-a1 a. ..,&DIE-e2 -.~~6AE•IZ.-.&6~1£·04 .IJ:l"E-~1 -.435CE-a4 -.~95aE-04 -.loii4E-a2 -.19SDE·D3 .2B7ui:•D2 -.5972£-04 D. .ICOCi:+CI .IC~~o+ul 

D 0. 0. 0. .25DOE-D2 -.250~E-02 e. -.2S0·)•·04' e. e. e. 0. -.;:;~.:;:-u! .25auE·a2 a. 0. D. B. D. o. ••5aaoE+aa a . i 
a: a. D. o. .250llE-a2 -.2s~oe-o2 o. -.2500E-a2 a. a. e. o. -.=~·~••-J: a. .:sao<-02 o. e. D. . a. 0 • . D. -:so;:;:e·~J 
D. o. D. D. .151 3£ ·0~ -.1513£-02 B. -.1513£-02 8. e. 8. 0. -.1~13o-C2 D. D. .I414E·D2 .9982E+DB 0., D. 8 • D. D. 
D o. 0. D. .IS9CE-02 -.1590£-02 D. -.IS9BE-02 e. e. e. 0. •.1~'::·~: 0. O. .&.aooE-02 .1~00~+81 e. e. u. D. O 
O' O e. 0, -.2£MUE• O:! ,284CE-02 0. .28~CE-02 0. e, -.zB.:eE-12 0. .&2'.:~~-l': 0. 0. 8, 0, .28~£-02 344qE-OJ O O D' a: a: 0. D. -.27S:E-D2 .27E~i:-02 0. .270:E-D2 B. D. -.2722i:·e2 D. .2o6~£-0~ D. D. 0. D. .27B2E-02 :75aOE-a3 a: o: a: 
o. o. -.IDaDE+el .IDaDE+OI .IOOOE+DI -.IDOCi:+el D. -.IDDOE+OI a. e. .e. 0. D. • • O. e. 0. D. it. 0. o. o. a. 
o, Q, 0. D. .IUOIJE+DI -.IOUUi:.101 -.IOBOE+Bl D. 0, a. a. C. •,lC~Cc.""il• 0. 0. 0, D. 8. 8. O, c, B. 
o. e. .leaaE+el -.IDDD£+81 e. e. 8. D. -.leee£+81 e. I. 0. -.1~~~··~1 0. 0. 0. a. e. a. o. a. I. 

The source vector s is 

.t521E+CI 

.31211E+Ct 

.1681E+CC 

.IIOOt-el 
-.2832E+(C 

.5680E-C1 

.~.S;"2E+CC 

.568CE•C• 
- • .-,oOE·CI 
-.1168E+Cf 
-.1288E+CC 

.2368E-8 ! 
.1'53£E..<:r 

-.4000E-01 
- • ...,o~E-el 
-.2240£-01 
:...2240£-81 

.2'5ol8E-CI 

.2800E-CI 

•• a. 
a. 

r 
I 
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i 
I 
I 
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