
COMPUTER ASSISTED SECURITY SYSTEM DESIGN 

by 

Don Clements and Lance J. Hoffman 

Memorandum No. ERL-M468 

November 1974 

ELECTRONICS RESEARCH LABORATORY 

College of Engineering 
University of California, Berkeley 

94720 



COMPUTER ASSISTED SECURITY SYSTEM DESIGNt 

Don Clements and Lance J. Hoffman 
Department of Electrical Engineering and Computer Sciences 

and the Electronics Research Laboratory 
University of California, Berkeley, California 94720 

ABSTRACT 

A computer software package has been implemented which partially 

automates the selection of security techniques applicable to a particular 

data processing system design. The program is a table-driven, interactive, 

information retrieval system which takes "objects" and "threats" as 

input and produces suggested "countermeasures" as output. The system is 

a small prototype; possible extensions are discussed at the end of the 

paper. 

t Research sponsored by National Science Foundation Grant GJ-36475. 

-1-



1. OVERVIEW 

An automated management tool has been implemented to aid in the 

selection of security features which would enhance the security of an 

existing data processing facility or define security requirements in a 

system to be designed. An interactive decision making program was 

developed which employs information retrieval techniques to produce 

listings of "desireable" security measures to coml>at known or suspected 

"threats". This paper describes the algorithm used and illustrates 

(with sample output) the nature of its operation. General qualitative 

evaluations and proposed extensions to the system are also discussed. 

The actual programming was done in Stanford Basic using the IBM System 

370 facility at Stanford University. 

2. BACKGROUND 

The selection of security measures constitutes one component of 

the security system synthesis process. The entire synthesis procedure 

is defined in "Privacy and Security in Databank Systems" (Turn c.l973?). 

In this essay, Turn develops a definition of "Data Security Engineering" 

as a " •.• methodology, and a set of techniques, being developed to 

provide a framework for synthesizing security systems, comparing 

alternative designs, and providing tradeoff analyses." He views the 

security environment as a combination of a protected domain, a ~ 

domain, a threat domain, the security system, and a set of external 

constraints (see Figure 1). 

The protected domain contains all of the entities (objects) which 

require protection. This domain may be subdivided into several levels 

-2-



Valid Access 
Attempts 

OBJECT 

Protected Domain 

Figure 1 - The Security Environment 

-3-

Illegal Access 
Attempts 

(THREATS) 

Security System 

(COUNTERMEASURES) 



of protection according to the value placed upon the individual objects. 

The user domain is made up of all personnel authorized to enter the 

protected domain. All subversion techniques ,and the set of ~11 personnel 

not authorized access to the protected domain form the threat domain. 

The security system employs hardware, software, physical procedures, and 

administrative controls to erect barriers between the threat domain and 

the protected domain. These barriers must not greatly impede access from 

the user domain. External constraints include those policies, economic 

considerations, technological limitations, etc. which limit the ideal 

security system design. Constraints of this nature are, of course, 

common to all engineering design problems. 

An analysis of the protected domain and the subsequent identification 

of the objects of interest constitutes the first phase of security 

system design. All valid access paths must be defined; all vulnerabilities 

must be identified and carefully described. Techniques of Network Theory 

have been proposed (Turn c. 1973?) as a means of identifying these paths. 

Levels of required protection are determined by . a value analysis of each 

of the protected elements. Next a risk analysis is required to determine 

the subset of the threat domain promising the greatest potential gain 

from the intruder's point of view. Risk probabilities are assigned so that 

the threat domain is also subdivided into levels of importance. 

The synthesis of security barriers constitutes the tt.ird step 

of the design procedure. A set of security countermeasures is selected 

from the inventory of all known security techniques. Criteria include: 

effectiveness under the circumstances defined by the present environment, 

cost, degree of discrimination, and reliability. Care must be exercised 

-4-



that all interfaces with the computing system are well understood and 

that no "holes" in the security barrier network develop as a result of 

an incomplete or erroneous evaluation. 

The proposed system must be analysed for completeness and effective

ness, either by modeling/simulation, detailed analysis, or full scale 

penetration exercises. Several iterations of the above design process 

may be required to insure the specified security goals are attained. It 

is highly desireable that auditing and certification finalize the synthesis 

process. 

3. SCOPE OF THE PROJECT 

This work is concerned with the selection of appropriate security 

countermeasures: the third step in the design process discussed above. 

The program to be described accepts a pairing of elements from the object 

and the threat domains as inputs, producing a single "suggested" security 

countermeasures as output. The program iterates over all object-threat 

combinations of interest to the ~ and produces a set of counter

measures which then define the security system. If implemented, these 

countermeasure will form the security barriers for protection of the 

set of objects which make up the protected domain. The risk analysis 

which yields the most likely object-threat combinations is the respon

sibility of the Security Officer, system designer, or manager using the 

program. The risk analysis process is somewhat facilitated by the 

program flow; the user is forced to list his objects in order of decreasing 

value and the associated threats in order of decreasing probability. 

The final countermeasure set produced is by no means to be assumed 

-5-



optimal. Th~ target is a set which is "adequate" in that all objects 

are protected, and "minimal" in that any countermeasure which protects 

more than one object (or defends against more than one threat upon a 

single object) is given preference. Since it is recognized that a weak 

countermeasure covering more than one threat may be a poor choice in a 

very high security design, the "weighting" feature (see Section 5) may 

be used to offset this "minimal set" characteristic where desired. It 

is the user's responsibility to ascertain the cost-effectiveness of the 

security barrier set and apply any external constraints which may preclude 

the adoption of one or more of the given countermeasures. 

This work should not be viewed as a rigorous mathematical model of 

an ideal security system. The intent is rather the production of a 

useful design aid in the selection of the pertinent security measures. 

The program is very general; it will aid in the design of a wide variety 

of security systems at diverse installations. Many of the selection 

criteria in the program logic are somewhat coarse since the program is 

still undergoing experimentation and "tuning". 

4. SAMPLE DESIGN CONVERSATION 

The terminal conversation for a complete design run is shown in 

Figure 2. User inputs may be distinguished by two characteristics: 

inputs always follow a prompt ("?") and are always in lower case type. 

Note the use of plain text for input keywords andthe high degree of 

redundancy in the repeated generation of partial lists. The summary 

phase shows the effect of multiple use of a countermeasure and the special 

result ("none available") when all design alternatives are rejected by 

-6-



HERE IS A LIST OF SECURITY OBJECTS: 
TYPE "YES 11 FOR THOSE TO BE CONSIDERED. 

CORE MEMORY ? yes 
FILES ? yes 
OPERATING SYSTEM ? no 
REMOTE TERMINALS ? yes 

HERE ARE THE REMAINING OBJECTS: 
1. - CORE MEMORY 
2. - FILES 
3. - REMOTE TERMINALS 

CHOOSE CBY NUMBER) THE MOST VALUABLE: 3 

HERE IS A LIST OF THREATS AGAIIIST Rft.10TE TERMINALS: 
TYPE 11 YES 11 FOR THOSE TO BE CONSIDERED. 

BETWEEN LINES ENTRY ? yes 
BOGUS TERMINAL ? no 
INTERCEPTING SIGJWFF ? yes 
MASQUERADING ? yes 
WIRE TAPPING ? no 

HERE ARE THE REMAINING THREATS: 
1. - BETWEEN LINES ENTRY 
2. - INTERCEPTING SIGNOFF 
3 • . - MASQUERADING 

CHOOSE (BY NUMSER) THE MOST PROBABLE: 3 

HERE ARE THE REMAINING THREATS: 
1. - BETWEEN LINES ENTRY 
2. - INTERCEPTING SIGNOFF 

CHOOSE (BY NUMBER) THE MOST PROBABLE: 2 

HERE ARE THE REMAINING OBJECTS: 
1. - CORE MEMORY 
2. - F I LES 

CH005E (BY NUMBER) THE MOST VALUABLE: 1 

HERE IS A LIST OF THREATS AGAINST CORE MEMORY: 
TYPE 11 YES 11 FOR THOSE TO BE COtlSIDERED. 

ILLEGAL ACCESS ? no 
READING RESIDUE ? yes 

HERE IS A LIST OF THREATS AGAINST FILES: 
TYPE "YES 11 FOR THOSE TO BE CONSIDERED. 

ALTERATION ? yes 
BRO\~~ I UG ? . yes 
DESTRUCTION ? yes 

HERE ARE THE REMAINING THREATS: 
1. - ALTERATION 
2. - BROI~S I I~G 
3. - DESTRUCTION 

CHOOSE (BY NUt-1BE11) THE I<IOST PI10BI\BLE: 2 

-7-

Figure 2 -

Sample System 

Design 



IIERE ARE THE REf.1AIIJIIJG THREATS: 
1. - ALTEHATIOIJ 
2. - DESTRUCTION 

CHOOSE (BY tJUMBER) TilE 1·10ST PROBABLE: 2 

HERE ARE THE SUGGESTED COUNTER-MEASURES: 
TYPE "NO" FOR THOSE \·IHI CH ARE UUAVAI LABLE. 

PASSi/ORD ? yes 
SYSTEM SIGNOFF CONFIRMATION ? no 
ENCRYPT Nll LLS ·? yes 
OVERiiR ITE CORE ? yes 
BACKUP COPY ? yes 

HERE IS A SUMMARY IN PRIORirY ORDER: 

OBJECT 

REMOTE TERM I f\!ALS 

CORE MEt40RY 

FILES 

AlTERNATIVE DESIGN? yes 

THREAT 

MASQUERADING 
INTERCEPTING SIGNOFF 
BETHEEN L I N'ES ENTRY 

READING RESIDUE 

BRO\'IS I NG 
DESTRUCTION 
ALTERATION 

HERE ARE THE SUGGESTED COUNTER-MEASURES: 
TYPE 11 N011 FOR THOSE 1m1 CH ARE UrJAVAI LABLE. 

PASSiiORD ? no 
AUTHORIZATION ALGORITHM ? yes 
SYSTEM SIGNOFF CONFIRMATION ? yes 
ENCRYPT NULLS 7 no 
OVERi/RI TE CORE 7 yes 
ACCESS LIST ? yes 
BACKUP COPY ? yes 
CHECKSU1·1 ? yes 

HERE IS A SUM!-IARY IN PRIOR I TV ORDER: 

OBJECT 

REr-10TE TERt·11 NALS 

CORE MH10HY 

FILES 

THREAT 

1-IASQUERAD I IJG 
lrJTERCEPTJNG SIGNOFF 
BETWEEN LINES ENTRY 

READING RESIDUE 

BRO\JS I IJG 
DESTRUCT I ON 
AL TEHATI ON 

-8-

Figure 2 - (cont.) 

COUNTER-MEASURE 

PASSWORD 
NONE AVAILABLE 
ENCRYPT NU LL5 

OVER\~R I TE CORE 

PASS\~ORD 
BACKUP COPY 
PASS\~ORD 

COUNTER-MEASURE 

AUTHORIZATION ALGORITHM 
SYSTE~ SIGNOFF CONFIRMATION 
NONE AVAILABLE 

OVER\oJR I TE CORE 

ACCESS LIST 
BACKUP COPY 
CHECKSUI4 



the user. This sample run took 5.5 minutes wall-clock time and 1.39 

CPU seconds on the Stanford 370. 

5. DESCRIPTION OF THE PROGRAM 

Table 1 is an outline of the program logic. Indented entries 

represent user inputs via the terminal; the other steps are responses 

by the program logic to these inputs. Wherever possible, inputs are 

formatted as plain text "YES" or "NO" responses with the decision 

keying done on the first letter of the typed input (e.g. "y" if a "YES" 

input is expected). In this way the effects of typing errors are 

minimized. An exception to this policy is made in the interest of 

brevity during the ranking of Objects (step 5) and Threats (step 10). 

Here the listing is numbered and the user types the number of the next 

"most valuable Object" or "most probable Threat". As each Object or 

Threat is processed, it is eliminated from the current list (see Figure 

2). The modified list is renumbered and relisted at the terminal for 

the next selection. Thus only a minimal amount of information must be 

remembered by the user during execution. 

The names of all Objects, Threats, and Countermeasures which are 

recognized by the program together with the pointers which relate the 

various combinations of these three elements are retained permanently 

on secondary storage in a file system. The exact nature of this file 

structure· is examined in detail in the Appendix. These files are random 

access in that individual records are directly addressable. During the 

execution of step 11 (Table 1), the current Object and Threat names are 

entered into a table in primary (core) storage with the pointers (record 

-9-



OUTLINE OF PROGRAM LOGIC 

PROGRAM ACTION/OUTPUT 

USER INPUT 

0. Initialization 

1. List an object name 

2. Accept or reject 

3. Repeat 1 & 2 until Object file empty 

4. List accepted subset of objects 

5. Select "Most Valuable" 

6. Search Threat file 

7. List a threat name 

8. Accept or reject 

9. Repeat 7 & 8 until all associated threats listed 

10. Select "Most Probable/Costly" 

11. Save links to Countermeasure file for this threat 

12. Eliminate threat & iterate 10-12 until no more threats 

13. Eliminate object & iterate 5-13 until no more objects 

14. Read in initial weights of saved countermeausre· ~ (CM' s) 

15. Increase weight of each CM saved more than once 

16. List highest weight CM for this threat 

17. Accept or reject 

18. If rejected, zero weight and return to 16 

19. If accepted, save CM name for summary 

20. Eliminate threat and iterate 16-20 until no more threats 

21. Print Object, Threat, Countermeasure triplets in a priority 
order summary 

22. If Alternative Design requested, iterate 14-21 

23. Otherwise, terminate 

Table 1. Outline of the Algorithm 

-10-



numbers) of the possible Countermeasures. In addition to providing fast 

retrieval during the summary printing of step 21, this tabular scheme 

automatically provides a "priority ordering" according to the user's 

terminal inputs. 

The selection of one countermeasure from a set of alternatives 

involves the use of a weight value. This initial weight of each counter

measure recognized by the system is stored in a file which is read during 

step 14. Currently, all initial weights are given the value "1", the 

choice being somewhat arbitrary. The use of these initial weight 

values to "presee' the system is a topic for further experimentation. 

There may be occasions when one countermeasure will be useful 

against more than one threat. The program logic causes the initial 

weight value from the Countermeasure Weights file to be added into a 

table which is initialized to zeros. Each time a countermeasure is 

referenced by a link value in the summary table this weight is added in 

to the accumulated value of the appropriate weight table entry. Thus, 

after complete scan of the summary table, those countermeasures which 

serve more than one threat will have attained higher weights. The 

program then merely selects the countermeasure with the highest weight 

whenever a choice is required. 

It is possible (indeed likely) that one or more of the various 

countermeasures proposed may be unavailable, too costly to implement, 

or in some other way unacceptable to the user. This information is 

declared during step 17 as each proposed countermeasure is listed. 

When a countermeasure is rejected its weight is reset to zero so that 

the next search will ignore (recall all weights are at least "1" after 

-11-



reading the weight file). If a countermeasure for more than one threat 

is ever rejected by the user, the program does not consider using it 

against any other threats in the set of interest. Finally, if all 

alternatives in the countermeasure list for a threat are rejected the 

message "none available" is saved for the summary and processing of 

that threat is terminated. 

After the set of "best" countermeasures is thus determined, a 

summary is printed showing each object-threat pair in priority order. 

This ordering was developed during the input phase when the objects and 

threats of interest were declared by the user. A single countermeasure 

is listed following each object-threat pair. This summary provides the 

set of security features to be implemented and the order in which they 

should be developed to insure that objects of greatest value are 

protected first. 

At the end of the summary phase an alternative design may be 

requested (see Figure 2). Countermeasure weights are reinitialized and 

a new set of "acceptable" countermeasures determined. Any number of 

alternative designs including the summary information may be produced 

without reentereing all of the object and threat information. When all 

alternatives of interest are produced, the program terminates. 

A sample of the output from the summary portion of the program is 

shown in Figure 3. The two sets of results show the effect of a 

rejection of a countermeasure ("password") upon the summary ¥hen more 

than one threat is involved. A complete system design can be found in 

Section 4. 

In support of the file system and main design portion of the program, 

-12-



II ERE ARE THE SUGGESTED COUfHER-t-1EASURES: 
TYPE 11 N0 11 FOR THOSE \-IH I CU ARE UNA VAl LABLE. 

PASSiiORD ? yes 
ENCRYPT DATA ? yes 
BACKUP COPY ? yes 

HERE IS A SUMMARY IN 

OBJECT 

REf-10TE TERMINALS 
. 

FILES 

PRIORITY ORDER: 

THREAT 

MASQUERAD I f~G 
WIRE TAPPING 

BROI-lS I NG 
DESTRUCT! ON 

COUNTER-t-1EASURE 

PASSWORD 
ENCRYPT DATA 

PASSWORD 
BACKUP COPY 

Figure 3a - Summary Output (note multiple use of Password) 

HERE ARE THE SUGGESTED COUNTER-MEASURES: 
TYPE 11 N0 11 FOR THOSE WHICH ARE UNAVAILABLE. 

PASSiiORD ? no 
AUTHORIZATION ALGORITHM ? yes 
ENCRYPT DATA ? yes 
ACCE3S LIST ? yes 
BACKUP COPY ? yes 

HERE IS A SUMMARY IN PRIORITY ORDER: 

OBJECT 

REMOTE TERMINALS 

F I LE5 

TUREAT 

t-\ASQUERAD I NG 
~liRE TAPPING 

BRm-JS I NG 
DESTRUCT fON 

COUNTER-MEASURE 

AUTHORIZATION ALGORITHM 
ENCRYPT DATA 

ACCESS Ll ST 
BACKUP COPY 

Figure 3b - Summary Output (Password countermeasure rejected) 

-13-



file management routines are included for listing of all of the file 

contents and for the modification of files by addition or deletion of 

Objects, Threats, and Countermeasures. The modification routines are 

designed to ease the process of linking related Object - Threat -

Countermeasure triplets by shifting file entries and pointer values as 

required to maintain alphabetical order in the name files and correct 

record numbers for linkage in the link files. Appendix A contains sample 

file listings and a description of the logic of the file management 

routines. 

6. EVALUATION 

This systhesis algorithm possesses two features which enhance its 

use in real world operations: it is extensible and interactive. The 

file structure is of sufficient generality to make practical the inclusion 

of a large number of objects, threats, and countermeasures. If information 

in these files is made sufficiently complete, it should be feasible to 

design or modify a realistic large scale computing facility. Most of 

the current work has been devoted to the development of this prototype 

and experimentation with the weighting feature; complete development of 

the file information sets is the next logical step. 

The interactive nature of the program provides several advantages. 

The user is relieved of the exhaustive task of supplying all possible 

installation characteristics in advance. The probability of erroneous 

or unneeded inputs is also minimized. A batch type of program would also 

lock the user into one design per run, an undesirable feature in a 

design process which is usually iterative. As mentioned earlier, the 

-14-



interactive property of the program flow also aids the user in the risk 

analysis and priority identification portions of the design process. 

On the negative side, the logic employed in selecting a single 

"best" countermeasure from each set is somewhat simplistic. Recall that 

each countermeasure weight is initialized to 1. In the absence of an 

application of one countermeasure to more than one threat, this weight 

will remain unchanged throughout the search phase. The selection of the 

"best" countermeasure for a given object-threat pair is made by choosing 

that element of the countermeasure set with the largest weight value. 

In the event of a tie, the first entry encountered in the set is used. 

Thus the algorithm is very sensitive to the ordering of the countermeasures 

in each set. Some degree of improvement would result if individual 

initial weights were different. These initial weights could be 

governed by the amount of information known about the utility of a 

particular security measure at a given installation. Since this 

information is so dependent upon the individual installation character

istics, the best approach would involve the user. This proposal is 

further examined in Section 7. 

Since multiple use of a countermeasure depends upon the establish

ment of appropriate linkages at file generation time, it is important 

that the name of a countermeasure be distinct whenever this multiple use 

is not appropriate. Referring to the sample summaries in Figure 3, note 

that "passwo~d" appears as a protective measure for both "remote terminals" 

and "files". This does not mean that one password is always sufficient 

to protect both objects. Flexibility may dictate a user password to the 

system and a separate password for the file structure. Discrimination 

-15-



could be added by using the names "user password" and "file password" 

in the countermeasure file. The algorithm would no longer bias its 

selection of the "password" over alternative countermeasures since the 

linkages would now point to separate entries in the countermeasure file. 

This tradeoff of "specificity" for multiple application of a security 

feature must be carefully considered when the countermeasure file for 

this program is designed or modified. 

7. PROPOSED EXTENSIONS 

In the previous section, the weighting problem was discussed. One 

useful modification of the present program would . be a "weight preset" 

option available to the user at the beginning of the program execution. 

User information about availability and/or suitability of various security 

features at his installation could be incorporated into the weighting 

file. This feature could also be offered during the summary phase to 

generate multiple designs .showing user weightings. In this way cost 

tradeoffs would be facilitated. 

There is some system learning during the summary phase with respect 

to the utility of various countermeasures. This "memory" is lost after 

the run since only the weighting tables are modified; the intial weights 

in the countermeasure weight files remain unchanged for the next run. 

A possible improvement here would involve additional logic during the 

search phase to increment entries in a "history file" which would preserve 

information about likely object-threat and threat-countermeasure pairings 

over a large number of runs. This information would be useful in any 

future modification of the linkage files to enhance efficiency by presenting 

-16-



"probable" objects, threats, and countermeasures to the user first. 

Finally, the exact definition of each specific object, threat, and 

countermeasure should be avialable to the designer. A glossary should 

be written in parallel with the expansion of the system files. This would 

minimize ambiguity and eliminate any need for the user to recognize 

"security jargon". 

8. CONCLUSION 

A table-driven program which automates the selection phase of 

security system design has been presented. Its position in the overall 

field of Data Security Engineering was discussed. The algorithm which 

implements this selection process was des~ribed in general terms. The 

program is straightforward and relatively easy to implement, though 

somewhat lacking in discrimination. Several extensions to the present 

system have been outlined. A sample design run was presented in Section 

4. The contents of the files used in this prototype program are listed 

in the Appendix. Given sufficiently complete files, it is believed the 

program will function well in the synthesis of a large scale security 

system. 

-17-



(Browne 19 l 2) 

(Canning 1970) 

(Hoffman 1973) 

(Hoffman 1974) 

ANNOTATED BIBLIOGRAPHY 

Browne, P.S., 11Taxonomy of Security and Integrity", 

unpublished M.S. draft (in Hoffman, 1973). 

Very complete treatment of the areas of consideration 

in the design of a total security system; administrative, 

physical, hardware, software areas outlined. Audit, 

testing, and certification procedures included. 

Canning, R.G., 11Data Security in the CDB11
, EDP Analyzer, 

vol. 8, no. 5, May 1970. 

Application of security techniques to protection 

of the Corporate Data Base; types of threats (active, 

passive, accidental) illustrated in business data environ

ment; good general overview of access management; 

suggested methods for terminal security improvement given. 

Hoffman, L.J., Security and Privacy in Computer Systems, 

Melville Publishing Co., Los Angeles, CA., 1973. 

Anthology of latest papers in the security and 

privacy field; sections on civil liberties, hardware 

and software secruity techniques, formal models, data 

banks; IBM's RSS used as example of existing systems. 

Hoffman, L.J., 11Computer Security Engineering'',lecture 

notes for CS 244, Dept. of EECS, CS Div., UC Berkeley, 

Winter 1974. 

Large variety of security techniques catalogued 

-18-



(IBM 1970) · 

(IBM 1972) 

(Popek 1974) 

with detailed examples of proposed and existing implemen

tations; hardware, software, file management, 0/S 

protection, physical, and administrative techniques; 

short section on privacy. 

IBM, "The Considerations of Data Security in a 

Computer Environment, Form G520-2169-0, 1970. 

Detailed examination of security techniques for 

management, system design, and operations personnel; 

use of authorization techniques, file protection, audit 

logs; details on development of security operating 

procedures. 

IBM, "The Considerations of Physical Security in a 

Computer Environment", Form G520-2700-0, 1972. 

Detailed treatment of protection against physical 

threats to the data system; fire and disaster procedures; 

backup facility design; terminal and network security; 

computer and I/0 Room administration; system audit 

procedures; IBM's Advanced Administrative System used 

as a case study. 

Popek, G.J., "Protection Structures", Computers, June 

1974, pp. 22-33. 

Discussion of the best known software mechanisms 

for protection and their flaws; capabilities, access 

lists, and domains; description of the kernel approach 

-19-



(Turn c.l973?) 

to protection design; possibilities for program 

verification in proving systems; several formal models 

mentioned. 

Turn, R., "Privacy and Security in Databank Systems", 

unpublished paper, Rand Corporation, Santa Monica, CA., 

undated. 

General delineation of the security environment; 

conceptualization of the principles of Data Security 

Engineering; Discussion of Risk Analysis and Cost

Effectiveness measurements; advocacy of graph-theoretic 

approach to Security System Synthesis. 

-20-



APPENDIX 

THE FILE STRUCTURE 

Contents of the Object, Threat, and Countermeasure name and link 

files are shown on the next two pages. These listings were produced by 

the file management routines. The file structure is detailed in Section Al 

which follows the listings. Finally, a short description of the modifica

tion routines is given. 

-21-



FILE NUI·1BER? 1 (OBJECT NAMES) 
RECOIW I CONTENTS 

1 CORE t-1EMORY 
2 FILES 
3 OPERATING SYSTEM 
4 REMOTE TERMINALS 

FILE NUt-IBER? 2 (THREAT NAI-1ES) 
RECORD I CONTENTS 

1 ALTERATIOI~ 
2 BEl)/EEN LINES ENTRY 
3 BOGUS TERMINAL 

-4 BROHSING 
5 DESTRUCT I ON 
6 DUMPING 
7 ILLEGAL ACCESS 
8 INTERCEPTING SIGNOFF 
9 MASQUERADING 

10 READING RESIDUE 
11 TRAP DOORS 
12 WIRE TAPPING 

FILE NUMBER? 3 (COUNTERMEASURE NAMES) 
RECORD II CONTENTS 

1 ACCESS Ll ST 
2 APPEND ONLY BIT 
3 AUTHORIZATION ALGORITHH 

" BACKUP COPY 
5 BADGE ACTIVATED TERMINAL 
6 BOUNDS REGISTERS 
7 CHECKSUM 
8 DEFINE ALL OP CODES 
9 ENCRYPT DATA 

10 ENCRYPT NULLS 
11 FETCH PROTECT BIT 
12 FILE I D 
13 OVERI·IR I TE CORE 
H PASSviORD 
15 PRIVILEGED MODE 
16 PROTECTED PAGING 
17 READ ONLY ACCESS 
18 RIIJGS 
19 SYSTEM SIGNOFF CONFIRMATION 
20 TERMINAL ID (WIRED IN) 
21 TERMINAL LOCK 
22 USER ID 
23 iiR I TE R I tiG CT APE FILES) 

Figure Ala - Contents of Name Files 

-22-

---------



FILE NUMBER? 4 (OBJECT-THREAT LINKS) 
RECORD I CONTENTS 

1 7 10 0 0 0 
2 1 4 5 0 0 
3 1 6 11 0 0 
4 2 3 8 9 12 

F I L E NU t·1B E R ? 5 (THREAT-COUNTERMEASURE LINKS) 
RECORD I CONTENTS 

1 7 14 17 23 0 
2 10 · o 0 0 0 
3 3 14 20 22 0 
4 1 2 12 14 0 
5 4 0 0 0 0 
6 6 16 0 0 0 

• 7 6 11 0 0 0 
8 19 0 0 0 0 
9 3 5 14 21 22 

10 13 ·0 0 0 0 
11 8 0 0 0 0 
12 9 0 ·o 0 0 

FILE NUt-1BER? 6 (COUNTERMEASURE WEIGHTS) 
RECORD I CONTENTS 

1 1 
2 1 
3 1 
4 1 
5 1 
6 1 
7 1 
8 1 
9 1 

10 1 
11 1 
12 1 
13 1 
14 1 
15 1 
16 1 
17 1 
18 1 
19 1 
20 1 
21 1 
22 1 
23 1 

FILE NUt·IBER? 7 (FILE LENGTHS) 
RECORD I CONTENTS 

1 4 
2 12 
3 ·23 

Figure Alb - Contents of Link, Weight & Length Files 

-23-

-· -·-----·-·----------------·-·~--------------



Al. FILE STRUCTURE 

This program utilizes a direct-access file structure for the 

permanent retention of lists of Object, Threat, and Countermeasure names. 

Most BASIC interpreters support secondary storage files with direct 

access to individual records. Minor modification of the search routines . 

would allow true sequential access files to be employed. Some degradation 

of execution time would result. 

Seven files are used in the system. File #1 contains a list of 

names of Security Objects stored in fixed size records, one name per 

record. Currently, names are limited to 32 characters. This restriction 

is easily modified to any reasonable length. Most BASIC systems restrict 

string lengths to 256 characters maximum. The·Object names are stored 

in alphabetical order for ease in reading file listings and to simplify 

the search routines. 

Files #2 and #3 are similarly organized lists of Threat (#2) and 

Countermeasure (#3) names. The contents of these files are read into 

fast core tables by the search routines during program execution and 

printed on the user terminal. 

File #4 contains the linkages between each Object in File #1 and its 

associated Threats on File #2. Each record on File #4 corresponds (in 

order) to an Object name and contains a list of integers which index the 

Threat name file. Currently, each record contains 5 numbers. This 

record length is a compromise allowing a reasonable number of threats 

per object while holding search time and file space to minimum values. 

Record size is easily increased if required. 

-24-

- ··-------~------------ -------------·---------------·---- ---------·-----·-·---------



File #5 is identical in structure to File #4. It contains the 

linkages between Threats (File #2) and Countermeasures (File #3). File 

/16 serves as permanent storage for "weights" of Countermeasures. Each 

record contains one integer field. This value represents a relative 

utility ranking of this Countermeasure against others associated with the 

same threat. Currently, these weights are all set to "1". Some 

proposals for the use of this weight field are discussed in Section 7 

above. 

File #7 contains the lengths of each of the other 6 files. This 

information is needed to interface properly with certain features of 

the BASIC file handling routines which are peculiar to the system upon 

which this program was developed. 

A2. FILE MODIFICATION 

In addition ot the basic Security System Synthesizer which makes up 

the main program the system contains routines to allow addition of new 

Objects, Threats, and Countermeasures to the files. These routines 

accept a name as input from the terminal and perform the required shifting. 

of entries in the appropriate file (File 1, 2 or 3) to maintain alpha

betical ordering. The associated link file (in the case of Objects and 

Threats) or weight file is also shifted. The new link is calculated from 

further terminal input in the following manner. If an Object is added, 

the system requests associated Threats. The Threat name file is 

searched for each name entered at the terminal. The position of the 

named Threat in the file is then recorded in the new location in File 4 

(the Object-Threat link file). Up to five entries per new Object are 

-25-



possible currently. Similar action occurs when a new Threat is added 

with respect to Countermeasures. When a new Countermeasure is added, 

the associated weight is merely entered directly from the terminal and 

stored on File #6. 

When a new Threat is entered somewhere in the middle of File #2, 

all entries which are lexicographically greater must be moved up one 

record to free a record. Accordingly, the Object-Threat links to these 

shifted entries are no longer valid. A correction is achieved by 

scanning the link file (File #4) and adding 1 to all links having a value 

greater than or equal to the position of the new entry. A similar 

procedure is applied to correction File #5 when a new Countermeasure is 

entered in File #3. 

It is also possible to delete entries by specifying only the name 

and the type (Object, Threat, or Countermeasure). The proper name file 

is searched for a duplication of the entered name. When located, the 

file entries are shifted down by one record so that the deleted name 

is overwritten. The link files are patched up in a manner analogous 

to the procedure for adding entries described above. 

-26-

·-·-------·------------·----


