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Abstract. A random sample is available from a multivariate distribution

having a bounded density, which is assumed to satisfy a mild additional

condition. A finite collection of histogram estimates of the unknown

density is constructed, whose cardinality increases algebraically fast

with respect to the size of the random sample. A histogram selection rule

is introduced, which is shown to be asymptotically optimal relative to

integrated squared error loss.
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1. Statement of the main result. Let X1,X2,... be independent

Rd_valued random variables having common absolutely continuous distribution

P with bounded density p. Let Pn denote the empirical distribution of

X1,...,Xn, defined by

P (A) -{i: <i < n and X e A}n n-_1

Let Rd denote the collection of d-tuples of positive numbers. Choose

a = (a ....,ad)e Rd and b (bl,...,bd)e Rdi; set h = (a,b). Consider

the histogram estimate Pnh of p defined as follows: Let Q = (l 2- d)

denote an arbitrary d-tuple of integers. Set

d
1hZ XX[a.+((. l)b., a.+Z.b.)

d~~~Each d-dimensional interval 'hQ has volume vh = IId b.;i the collection of

all such intervals forms a partition of Rd. Finally, set

Pnh vh on hi9

(See page 21 of Kendall and Stuart, 1977, for a picture of a bivariate histogram

based on a sample of size n = 9,440.) The integrated squared error loss of

Pnh as an estimate of p is given by

Lnh (Pnh P) =T I Pn(Ihk) -
v P (I )P(I) + Fp2

Let H denote a finite subset of Rd x Rd whose cardinality increasesn

algebraically fast with n; that is, lim nr c#(H ) = 0 for some c > 0. A
n n

histogram selection rule hn is an H n-valued function of X1,...,Xn* Clearly

Lnh n
minh Ln 1;
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here it is understood that he Hn. The selection rule hn is said to be

asymptotically optimal if

1 im [mint =1 with probab I ity one

Set

K = l 2 Z2 Inh V h n X£n h )

(see Section 2 for motivation). Let hn be a value of h that minimizes

Knh. It will be shown below, under a mild condition on p, that the

histogram selection rule h is asymptotically optimal.n

CONDITION 1. There are positive constants cc and 6 such that

(Ph-P)2 > cc(vS A 1) for n > 1 and he Hn.

Here s A t = min (s,t). Condition 1 is satisfied if, say, there is

some nonempty open subset of lRd on which the derivative of p exists

and is continuous and nonzero. For an alternative set of assumptions which

guarantees that this condition is satisfied, at least when d = 1, see

Freedman and Diaconis (1981).

THEOREM 1. If Condition 1 hoZds, then hn is asymptoticaZZy optimaZ.

For other theoretical results on the selection of a histogram see

Freedman and Diaconis (1981); Chow, Geman and Wu (1981, 1983); and Burman

(1984). For an analogous result on kernel density estimates see Stone

(1984). The latter two papers were written after the original version of

this paper.
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2. Motivation for K Ideally, h should be chosen to minimizen

Lnh JP vQ Pn(Ih) - v
Z Pn(Ih,Q)P(IhZ)Lnh- = hZ h .

but the quantity P(I is unknown. The estimate Pn(Ih of P(I
leads to the biased estimate P 2(IhQ) of P (I h)P(Ihg). It is easily
checked that

n 2 nIh,n P(I ) -n-1 n hQ9, n-1l

is an unbiased estimate of P n(Ih )P(Ih9); t-hat is,
n 2 n(Ithat is

EFn_ Ph(Ihz) - nn1 = E[Pn(Ih9)P(IhZ)] P (I 9)
This leads to the following histogram selection rule: choose h to minimize

K' =1 2P~~) 2 F 2 -n
(I h_nh v pnIhQ -Ihg[ P (IhQ) - nnlhnh nhh 9 h nLi1 ~n h.Q n-i1

1 n+l~~ P2(Ih)vh n-I n-T Z Pn Ihg))

An inessential simplifying approximation leads to the formula for Knh given

in Section 1. For an alternative motivation in terms of cross-validation

see Rudemo (1982).

3. Proof of Theorem 1. Recall that p is assumed to be bounded and

that the cardinality of Hn increases algebraically fast with n. Define

n
Gnh = n1 Ph(Xi) - EPh(X)

n
G = p(Xi) - Ep(X)n n I
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nh = f(Ph-P) + nvh
and

Vr A 1 1 for r O>nhr h nlvh

LEMMA 1. If Condition 1 holds, then lim max IGnhGn = ith
n h nh

probabilZity one.

LEMMA 2. For all r > O

1I 2 1lim max (;P - I = 0 with probability one.
n h nhr flh

The proofs of these two lemmas will be given at the end of the paper.

To prove that hn is asymptotically optimal it suffices to show that

lim max ILnh Lnh (Knh' Knh)l = 0 with probability one. ()
n h,h' Lnh+ Lnh'

To verify (1) it suffices to show that

Lnh
inf min Jn > 0 with probability one (2)
n h nh

and

lim maxILnh Lnh+Knh Knh)i = 0 with probability one . (3)
n h,h' nh+ nh'

Observe that

Lnh j(pnh~p)= .fPnh(Phh+

It now follows easily from Condition 1 and Lemma 2 that (2) holds.

By elementary algebra

Lnh -K - 2G = 2(G-G ) + 2r(P 2 2nh-nh n nh n J nh-Ph' nvh
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It now follows easily from Lemma 1 and Lemma 2 that (3) holds.

Thus the proof of Theorem 1 is complete once the two lemmas are verified.

To prove Lemma 1 wri te

nh n nZZih Znh

where

Zih = Ph(Xi) - p(Xi) - E(ph(Xi) - p(Xi))
Then Zih' i > 1, are independent and identically distributed random variables

having mean zero. Since p is bounded, there is a positive constant c

independent of h such that IZihi < c and Var(Z h) < cub2, where

uh= J(php)2 By Bernstein's inequality (see Hoeffding, 1963)

Pr(IZnh > t) < 2 exp -TrX/2(l1+X/3)] , where 0 < X< t/uh2 and T = nt/c.
hChoose £ > 0. Suppose that uh> n E: - 1

Set t = nF_11uh and

x = n I/uh < 1. Then XT = n2/c. Suppose instead that uh < nS½. Set

t = n2e-1 and X = 1. Again, XT = n2 /c. Thus in either case it follows

from Bernstein's inequality that

Pr( '1nhi > t) < 2 exp(-n2E/3c)

Consequently

lim Pr(I hi >nE1 uh+ n2 for some he ) = 0
n

Thus to verify Lemma 1 it is enough to show that for some £ > 0

nS- u +nlim max u2 2/+/n2/ = 0
n u>O u +0/nu

where B is from Condition 1. For 0 < E < 1/2(1+S), this result is easily

shown by considering separately: 0 < u < n½2, nS½2 < u < n /2(l ) and
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u > n-V2(1+6).
The simplest way to prove Lemma 2 is by means of the technique called

"Poissonization." It was used by Rosenblatt (1975) in a related context.

LEMMA 3. Let N be independent Poisson random variables with mean

SQ such that 0 < X = < O. Set N = ItN9, PQ = X,/X and P = max P9.

For each positive integer k there is a finite positive universaZ constant

ck such that

E[t((N9,_NP)2 - N)2k] < c (X + Sk + X2kFP)

This lemma follows in a straightforward manner from properties of

cumulants summarized in Gnedenko and Kolmogorov (1954) or Kendall and Stuart

(1977). (Observe that E[(N-X)2k] is a polynomial in X of degree k with

zero constant term. The next step is to prove the desired conclusion with

N replaced by X.)

Set T = sup p and N n(Ih) = nPn( hk).

LEMMA 4. For each positive integer k there is a universal constant

ck such that Et(v(N (I )-nP(I 2_ n) 2k < cknk0 + (nTv )kk L\n h9,Pn h9 n - ckn (l(Th)

PROOF. Let pn denote the 2k th moment ofn

Z = (Nn(Ih )-nP(Ih)) 2- n

and set po = 0. Let R(X) denote the 2kth moment of the random variable

obtained through replacing n in the definition of Z by a Poisson number

N having mean X. Then

R(X) = X Pr(N=n)hin = e
n n
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According to Lemma 3 and the well .known connection between multinomial and

independent Poisson random variables, R(X) is a polynomial of degree 2k

in X and

2k R____ = R(X)k 2k k_
0 < I R ( xi = R(R() < Ck(X++X (TVh)) for X > 0

j=l

Thus there is a finite positive universal constant c" such that

2k jR~~(0)J j k.2k fokjtRJ)jl xi < ck(X++X (Tvh)k) f X >

(For suppose otherwise and note that for each fixed c > 0, if X > 0 and

IR !(O) > Ck(X+Xk+x 2k (Tvh)k)

then

IR J!(O)I (cA); 2kI (CA); > O
0 ~~~j=lZRj ()(c)

by a compactness argument, there would then be a nonzero polynomial in c

of degree 2k that equals zero at more than- 2k distinct points.)

Consequently,

2k n!R(i)(0o 2k JR(3()I jk 2k k_
2 n =j! 2 1 n < c"(n+n +n (TVh) )for n > 0
j=l j=l

which yields the desired result.

To prove Lemma 2, observe that by Lemma 4 and Chebyshev's inequality,

lim max = 0(Pn(IhZ) ( hP) n a
for

C
> .

n h nS (vg2-+ n~
Let r > 0 be fixed. It is easily seen that for sufficiently small

£ > 0,

lim max n
r
(v½+n½) = 0

n v v(vr+n)
nv
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The desired conclusion follows from these two observations.
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