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1. Introduction

The models of this paper attempt to account for the age, sex, and marital
status distributions of human populations. A marriage market develops around
preferences for mates of different ages, and we study this market as changes in
age distributions change the availability of mates. Unless we know how to relate
marriages to the exposed population, we cannot even calculate rates that will tell
us whether marriage is increasing or decreasing. Sections 11 to 16 below attempt
an empirically based solution of the two-sex problem.

2. Separate treatment of the sexes

To suggest what constitutes a “solution” from a demographic viewpoint, think
of the sense in which the one-sex problem is solved. A given and fixed set of birth
and death rates, specific by age, say for females, determines the entire trajectory
of a closed population. Theory permits a calculation of exactly how many indi-
viduals would be present at each future time if those rates applied; the ultimate
stable age distribution, the ultimate stable rates of birth, death, and natural
increase, are similarly calculable. For the shorter term, a spectral analysis spe-
cifies the waves through which the population at each age would move on its
way to the stable exponentially increasing condition; we can in particular trace
the echo effect by which an initial hollow in the age distribution tends to be
reflected in later generations with gradually diminishing relative amplitude until
it disappears.

Aside from this, the one-sex theory enables us to say just what a given degree
of emigration will do to the level of the ultimate population; how birth control
applied by women aged 40 will affect the rate of increase of the population, as
compared with birth control applied by women aged 20; when we find that the
United States has a much higher mean age than Mexico, the theory enables us
to trace this to our low birth rates rather than to any advantage that we may
have in lower mortality. Within its own assumptions, often a close approximation
to reality, the model gives complete and consistent results.
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This is not true of the two sexes considered simultaneously, where models
typically produce selfcontradictions. Consider two separate, uncoupled equa-
tions, one for the trajectory of each sex. Between the number F, of females at
time ¢ and its derivative F; we might have the relation

(21) F; = Tng,

where rr is the observed rate of increase, to which the solution is F, = Fyexp
{rst}. For males M, at time ¢, we would correspondingly have

2.2) M =ruM,,

with solution M, = Mg exp {rmt}.

If the parameters 7r and 7a are taken from a given period of observation of a
real population, the two equations will provide solutions in which the male and
female populations increase unequally, so that the sex ratio ultimately becomes
zero or infinity. We know that in real populations the male and female popula-

tions do adjust in numbers so as to maintain equality, and the mechanism by
which they do this eludes the representation (2.1) and (2.2).

3. Female dominance without recognition of age

The simplest way of coupling the equations is by supposing male or female
dominance in the generation of births. In female dominance, both boy and girl
babies are generated in fixed proportion to the number of females at time ¢. The

pair of equations for the population trajectory becomes, if the birth rate is A and
the death rate p,

M = —puM .+ \uF,
Fi = —ppFi 4+ \eF .

The form of these equations, with uy = ur and Ay = Ar, is due to Kendall [15];
Goodman [7] permitted the male and female parameters to differ from one an-
other. The ratio Ay/Ar is not arbitrary, but holds close to 1.05 for human popu-
lations.

The equations (3.1) are coupled in one direction only—the first depends on
the second, but the second does not depend on the first. The second member of
(3.1) is in fact the same as (2.1) if we identify Ar — ur with 7p, and hence must
be satisfied by F, = Fyexp {(\r — ur)t}. From the solution for females in the
second member of (3.1), that for males follows by substitution in the first mem-
ber, and it turns out that the male population ultimately increases according to
the same exponential as the female.

To find the asymptotic ratio of males to females is to find the value at which
M ,/F, has a zero derivative. Where the derivative of M/F, is zero, M,/F, will
be equal to the ratio of derivatives Mi/Fi, and hence from (3.1),

(3 2) _M;‘S M:’ —I‘MMeo + )\MFeo

Fo Fa  ~(Or—pwrfFs

3.1)
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or if B, is the ratio M /F,

—pumBRe + A
3.3 R, = —Ho= TN
(3:3) Ar — ur
Solving this for R, gives easily

Ay
(34) R. = Ar — pr + pyM

The one sided coupling of the equations (3.1) is a decided improvement on the
one sex model. It leads to (3.4) which accords with common sense in telling us
that insofar as male mortality is heavier than female the ultimate sex ratio of
the population of all ages will be less than the sex ratio at birth (Goodman [7],
Keyfitz [16], p. 297). But it has the drawback of supposing that births continue
unchanged in the total absence of males.

A similar argument applies to male dominance and to an average of male and
female dominance taken with fixed weights. A degree of male domirance D would
mean that each male produces at the rate of DAy male births, and each female
produces at the rate of (1 — D)Ay male births, per unit time, so that male births
would be Ay(DM; + (1 — D)F). Similarly, female births would be Ar(DM, +
(1 — D)Fy). If D is unity, then the rate of increase of the system is Ay — uu.
If D is zero, the rate of increase is A — pr. If D is fixed at some intermediate
value, then the ultimate rate of increase of the system is a weighted average of
the male rate of increase Ayy — un and of the female rate A — up. This is better
than female dominance, where births depend not at all on males. Nonetheless,
births would still continue, though at a lower rate, in the mixed dominance case
if either sex was entirely absent, as long as D is fixed.

4. The harmonic mean birth function

The defect may be rectified by making dominance vary with time, say letting
the degree of male dominance be given by

___F. |
M.+ F,

In support of such a value of D, we note that when there are few females D,
would be low, which is to say that the model would make births depend largely
on the number of females, and on males when males are few. The equations are
now

4.1) D,

M= —uuM,+ Me(DM,+ (1 — D)F)),

Fi = —ueF, + M\e(DM,+ (1 — D)F)),
F.

M.+ F,

where as usual Ay/Ar equals the sex ratio at birth. By entering D, =
F./(M;+ F,) in the first two equations, we obtain

4.2)
Dt =
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M, = —puuM, + 22y ——M—ip—'—'—,
M.+ F,

4.3) .

_MF.:

M.+ F,

These equations are homogeneous and of the first degree in M, and F,, though

not linear.

We can study the asymptotic properties of the system (4.3) by entering mert
for M, and fert for F,. Making this substitution and eliminating 7 and f, we ob-
tain the condition for consistency, and it may be arranged to provide the in-
trinsic rate of natural increase as

Fi = —urF: + 2)\r

y B

(4.4) r=—2 M A
1 1 1 1

w TR W

Of the two terms the first is the harmonic mean of the given birth rates Ay and
Mr, and the second a weighted arithmetic mean of the given death rates us and
ur, the weights being the reciprocals of the birth rates.

The corresponding ultimate sex ratio is m/f or

m _ Mg — 5wy — pr)
*5) F M+ (e — pr)
whose numerator and denominator, respectively, are the averages of the numer-
ator and denominator of the male and female dominant models.

Robert Traxler has gone on to solve (4.3) more completely. He divides the
first equation by M, and the second by F, subtracts the first equation from the
second, substitutes log z for M,/F,, and so reduces the problem to a standard
quadrature in z.

Our set (4.3) was reached by making dominance a function D; of time. Fred-
rickson ([6], p. 121) and Pollard [26] reach the same equations by a different and
instructive argument. They suggest the conditions that: (1) if linear equations
are not possible, then let us at worst have equations that are homogeneous of
degree one; (2) when either males or females are lacking, the births must be zero;
and (3) when males are relatively plentiful the number of births must be pro-
portional to the number of females, and vice versa. The quantity M ,F.,/(M, + F,)
tends simply to F, when M, is large:

. MF, _ . P,
(4.6) AR A F, T T R, e
1+,
t

A similar result holds when F, becomes large and M, remains finite.

The theoretical argument in favor of the harmonic mean birth function
2M.F./(M, + F,) applies to marriage as well as to birth. But, as we will see in
an empirical test below, the fluctuations in available males and females existing
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in real populations are not great enough to enable the harmonic mean to stand
out over the arithmetic and geometric means.

6. An asymmetric birth function

A desirable degree of asymmetry is introduced by replacing M.F.,/(M.+ F,)
in (4.3) by M} ~*F{**/(M .+ F.). The homogeneity is retained, and setting ¢
greater than zero would make births depend more on fluctuations in the number
of females than of males.

The pair of equations corresponding to (4.3), but with M ,F, on the right re-
placed by M ~°F}**, may again be studied by entering M, = me’ and F, = fe".
We have two homogeneous equations in m and f:

mr = —uym + 2\y %’
(5.1) ml—eflte
fr = —ppf + 2Xr m—'i'f’

equivalent to two nonhomogeneous equations in r and the ultimate sex ratio

m/f = x:

z—*
= —uy + 2y 7
142

(5.2) pime
r= —ur+ 2\p Ty

First seeking z by equating the two right sides, we have

_m _ M — 3(uy — pr)a*
(5.3) v= I N+ 3un — pr)z
which expresses z in terms of the other quantities including 2. This can be used
for iteration, starting with an arbitrary z, say 1, entered on the right side to start
the process. With e zero, this is the same as (4.5), and with ¢ small, convergence
will be rapid.
Once z is known, r may be obtained from either member of the pair ¢5.2):

(5.4) r =2\ (%) —_—

If x were unity, then » would be Ay — us. Having z greater than unity and e
positive lowers the value of r. In words, if there are fewer women than men, then
making births depend more on women than on men reduces the birth rate. This
is hardly surprising, but it shows that the model makes sense in one important
respect.

6. A simple marriage model

Permanent monogamous marriage modifies the two-sex problem by fixing the
difference between ages of father and mother through any sequence of births to
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a particular couple. We can here, in preliminary fashion because age is omitted,
follow Kendall ([15], p. 248) and Goodman ([7], p. 216) in setting down the condi-
tions for marriage and reproduction with the two sexes. This section is confined
to female marriage dominance, meaning that the number of marriages is pro-
portional to the number of females. The equations for single females F, and for
married couples N, are

Fi= —(ur + v)Fi + (\r + pa)N.,
Ni: =vFy — (ur + pu)N,,

where » is the fraction of females marrying per unit time, applied continuously
to F,. We suppose that all births occur to married couples, at rate A\r for girl
babies, and that death rates are the same for the married and single population,
conditions that could be relaxed at the cost of a slight complication in the equa-
tions. The first of the equations (6.1) says that the number of single females
(a) declines with female mortality and with marriage, and (b) increases with
births and with the death of married males. (We are counting the widows as
‘“single.””) The equation for single males can be easily written down, but is
omitted here because it cannot affect the trajectory of females in our female
dominant model.

Unlike equations that we will meet later, the pair (6.1) is easily solved. The
trajectory from any starting point Fy and N, and any set of the Greek letter
fixed parameters is a sum of two exponentials each multiplied by a constant.
But to try to answer our questions without explicit solution will be more sugges-
tive for the unsolvable models that follow. We may be interested in the ratio of
married to single females N./F, and especially its rate of change. This is given by

6.1)

(7)
6.2) F.) N, N.F

in which we may enter the derivatives from (6.1):

N,

Equation (6.3) tells us that the ratio of married to single women goes up with »,
the marriage rate, and it goes down with increased births of females or deaths
of males. These entirely reasonable results are evidence that we have not put
into our equations (6.1) conditions that contradict common sense. It also follows
from (6.3) that the proportion married is not affected by the female death rate,
provided, as in this model, mortality is the same for single and married females.

7. Introduction of age in a continuous model

However, we cannot be satisfied with any model that fails to take account of
age, since we are hoping to answer questions concerning the marriage market,
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which is clearly sorted out by age as well as sex. Sets of equations such as (3.1)
or (6.1) can distinguish ages if we interpret F, and other variables as column
vectors of age distributions—say in five year age intervals, with the first item the
number of persons aged zero to four at last birthday, the second element the
numbers five to nine, and so forth. The Greek letter constants in (3.1) or (6.1)
would now be interpreted as square matrices, with as many rows and columns
as the number of ages recognized.

In fact there is good reason to object to matrix differential equations in this
application. To take the same interval of time as of age offers a real advantage in
population analysis, because then the whole group of one age moves into the
next age interval in the time interval. If the time interval is shorter than the age
interval only a part of the group moves on, and we face the complication of cal-
culating what part. Thus, staying with discrete ages while making the time inter-
val infinitesimal is to be avoided. We could easily write an analogue to any of
our equations in discrete time; that for the first member of (6.1) would be given
by replacing F; on the left by F..1 — F;. The Leslie [17] theory then applies
in full detail.

Here we will proceed to infinitesimal intervals for both age and time, a device
developed by von Foerster [5] in his work on cellular proliferation. In application
‘to equations (2.1) and (2.2), F, becomes a function of age and time, say F,,;, and
the female population of age a + Aa at time ¢ + At is Fyya6,61a:. These latter
include the same individuals as were counted in F, ;, only a little older and sub-
ject to deductions for mortality (as well as for emigration if one wishes, but
we shall confine ourselves here to populations closed to migration). The equation
corresponding to (2.1) and (2.2) becomes

(7-1) Fa+Aa.t+At = La,t — MaFa,tAt-
Expanding on the left by Taylor’s theorem for two independent variables and
cancelling F, , from both sides, we have

aFa,g aFa,t
at da

Dividing by Aa, which is supposed to be the same as At, and allowing Aa = At
to tend to zero, we have

(7.2)

At 4 Aa = —pF, AL

OFa., , 0F.,

3l + da = I-‘aF a,te
This is von Foerster’s equation for one sex, for all values of 0 < ¢ < w, where w
is the oldest age to which anyone lives. The corresponding equation for males at

age a’ is

(7.3)

aMa’.t aMa',t

(7.4) 3t + oa. = HaMory

(Fredrickson [6]). Note that (7.3) and (7.4) are concerned with mortality only;
tar is our way of writing the male force of mortality. Deaths are uncoupled as
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usual; the numbers of males and their deaths are not taken as having any effect
on the deaths of females.
Births enter as a boundary condition at age zero:

(7.5) Foi= [ Foidesda,

where « is the youngest age of childbearing and 8 the oldest, and \,,; is the age
specific birth rate at time {. We will consider birth rates fixed in time and ac-
cordingly write \,,; as A,. But this is unsatisfactory once again, because births
really depend on males as well as on females, and our model must somehow take
account of this.

To improve on the female model with fixed (female, male, or mixed) dominance
we need a simultaneous birth function of the females aged a to a + da and males
aged o’ to @’ + da’. By an extension of the varying D, incorporated in (4.3), we
could use here an analogue to the harmonic mean for births

1 £ [° '
(7.6) Fo, = W‘L -/; NooFo, Mo, da da’,

where F, + M, is the total population of both sexes and all ages. This substan-
tially meets the requirements mentioned earlier; for example, if the male popu-
lation of all ages becomes very large then the birth rate A, . is multiplied by a
number proportional to F, ;. Only if some ages and not others became very large
would (7.6) be unsatisfactory.

Since in any large population the ratio of boy to girl babies is nearly constant,
we can take for the boundary condition on males,

(7.7) M, = sFy,,,

s being the sex ratio at birth.
Finally, to start the system on its way we need initial age distributions for
males and females:

Fa.0=Fa; 0<a<w
(7.8) Myo=M,, 0<a <w.
To convert (7.3) to a homogeneous form, apply the substitution
(7.9) Foi=exp{— [ ud} G,
which results in
8Ga,: |, 0Ga,e
(7.10) Tty Wt g,

But any function of ¢t — a, say Gs,: = f(t — a), obviously satisfies this homoge-
neous equation. Hence, a general solution of (7.3) is

(7.11) Fou=foexp {— [) u db} f(t — a),

where fo is an arbitrary constant, and f(! — @) an arbitrary function.
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To deal more easily with the boundary conditions, we will specialize f(t — a)
to an exponential, writing f(t — a) = exp {(t{ — a)r}. Entering in (7.6) the value

(7.12) Fo. = foexp {(t — a)r} exp {— foa Mo db}

and the corresponding function for M, ;, we can solve for the asymptotic sex
ratio and rate of increase as ¢ becomes large.

We will make the usual assumption that the sex ratio at birth is the same for
all ages of mothers and fathers, that is, in the present notation that s = A «/Aaa,
where A\;« is defined as the rate of birth of boy babies to couples of which the

mother is aged a and the father a’. For ease in writing let exp {— ﬁ)a 7 db} be

called ¢, as is usual in demographie work.
Then we have from (7.6) and the corresponding equation for M,

M, Lﬂ /j Moo exp {—r(a + @)} Lulo: da da’
Foi ™ [* [P Nw exp {—r(a + @)} tule dada’

and with the supposition A, = S\.q, the ratio of integrals reduces to s. The
assumption of a fixed ratio of boy to girl babies at each age of parents evidently
leads to a fixed sex ratio for total births at all times. The sex ratio in the popu-
lation as a whole is obtained from (7.12) and the corresponding equation for
males as

(7.13)

_f:M,.,,da_sfowe—'“(éda
- [*Fiida L“e—'“t’ada.

The boundary condition (7.6) provides the intrinsic rate of increase of the
system r. Entering the general solution for F, ; of (7.12) and the corresponding
solution for M,,;, (7.6) becomes

M,
(7.14) 7

B8 (8 —ra’
[ [P haweretee™ b dada’
1 —_—

(7.15) = o Je
[) (ets + se—otl) da

on cancelling et from both sides. (See Fredrickson{[6], Equation (38).) This equa-
tion for r in the two sex model corresponds to Lotka’s characteristic equation
for one sex. It is solvable by iterative methods—for example, multiplying both
sides by e and taking 1/27.5 of the logarithms gives an improved r on the
left when an arbitrary r is inserted on the right. (The method is exhibited in
detail for the characteristic equation of the one-sex model in Keyfitz [16], p. 108.)
P. Das Gupta [2] has developed and applied in some detail a two-sex model
similar to that of the present section.

The model consisting of equations (7.3), (7.4), (7.6), (7.7), and (7.8) can be
shown to reduce to the Lotka integral equation, where one sex only, say females,
is under consideration and the analysis is concentrated on female births Fy,..
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The discrete approach using matrices (Leslie [17]) and that of Goodman [7] re-
duce to the above partial differential equations when the intervals of time and
age, always remaining equal to one another, tend to zero. The partial differential
equations may be extended to an explicit incorporation of marriage, and to this
we proceed.

8. Age and marriage in a continuous model

If husbands and wives were always of exactly the same age, the contradictions
between the male and female uncoupled models could be easily overcome, and
much of the problem with which we are here concerned would disappear. In fact
husbands are of different ages from their wives, but not independently for the
several children: for any given marriage the difference of ages remains always the
same. We take advantage of this fact by distinguishing the married population
from the single, and suppose that all births are to married couples (Fredrickson,
[6]).

Now let M, da’ be the number of single males of age a’ to o’ 4+ da', let
F, ; da be single females of age a to a + da, and let N, -, da da’ be the number
of couples in which the age of the wife is a to @ + da and of the husband o’ to
a’ + da’. The partial differential equation for unmarried females that corre-
sponds to (7.3) is

oF.,. , dF., ¢ : '
8.1 ot t 4 -Ht = —uFo ¢ — /(; Va,af(Mar i, Fo ) da

@ , 1 /w ,
+ﬁ Ha’ a,a’.tda +- 1+s/o )\a.a’Na,a',tda,

where pu, is the death rate of females of age a; v,,.- is the marriage rate between
girls aged a and men aged a’; u is the death rate of males of age a’; Ao is the
rate of childbearing at time ¢ of couples of which the wife is aged a and the hus-
band aged a’; and f is a function whose nature will be discussed below. Of the
four terms shown on the right side of (8.1) the first allows for the deaths of un-
married females, the second for marriages of women to men of all ages, the third
for the deaths of married males, each of which releases one female into the un-
married group, and the fourth for childbearing among married couples.

The last term of (8.1) makes births perfectly straightforward in the two sex
model. Admittedly its A\, .- demands a kind of data that is not commonly pro-
duced, namely births by age of father and of mother, along with the number of
married couples in the population by age of husband and of wife. These could
easily be tabulated from existing censuses and vital statistics, and such tabula-
tions are available for a few countries. The two items of data, on births and popu-
lation, provide a discrete version of A, .-; birth rates specific for age of father and
of mother, say in five year age intervals, would be obtained by dividing births
by population in each class. If seven age intervals are recognized for women, and
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nine for males, this means 63 rates altogether, not an impossible number to
handle.

9. Varying marriage dominance

The second term on the right of (8.1), to allow for the women who leave the
single state for marriage, now inherits the difficulties that appeared for births
in models not recognizing marriage. All the possibilities in the function
f(Mg F,.;) that were previously open for births are now possibilities for mar-
riage, and each brings with it the earlier disadvantages. To use female dominance
would cause marriages to take place in the model even in the absence of males,
and with male dominance in the absence of females. Mixed dominance in any
fixed ratio would entail at least part of the same drawback.

The only escape is to allow the degree of dominance to vary according to the
availabilities of individuals of the two sexes at the ages in question. The analogue

for marriage and age to (4.3) would give for the second term on the right side
of (8.1)

@ 2Ma' tFal.‘
.1 — a0 T da’.
©-1) L Y. Mo+ Fa.tda

Yet (9.1) does not embrace the full complexity of the problem. For marriages
between women of age a and men of age o’ evidently depend on much more
than F, . and M, .. They depend also on the numbers of individuals at other
ages. If for example the number of women at ages @ — 1 and a + 1 is increased,
all other circumstances remaining the same, then the number of marriages be-
tween women aged a and men aged &’ will be reduced. To take this into account
we would have to make the second term on the right of (8.1) depend on other
ages of women, say represented by z, so it would become

9:2) = [ [ versafMar.s, Fars, Fu) do e,

where the function f would have to be specified. Equally, it could be argued that
other ages of men should be taken into account.

10. Measuring the marriage rate

Until we know the form of the marriage function, we have no denominator
constituting exposures that will permit calculation of a marriage rate. With a
suitable marriage function, we can calculate marriage rates just as we calculate
death rates. An example will suffice to present the problem and the proposed
solution.

Let us try to decide whether marriage among single persons 20 to 24 years of
age went up or down between 1963 and 1967 in the registration area of the United
States. The facts are that 207,211 first marriages at those ages were reported for
1963, and 315,650 first marriages for 1967, in official vital statistics. In 1963, the
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estimated number of single males 20 to 24 was 2,355,000, and in 1967 it was
3,379,000, so in relation to single males the marriage rate was 0.0880 in 1963 and
0.0934 in 1967, a six per cent increase. But relating the marriages to the number
of single women in the two years (1,339,000 and 2,183,000, respectively) pro-
duces the ratios 0.1547 for 1963 and 0.1446 for 1967, a seven per cent decline.
Did the marriage rate go up or down?

Clearly, the best denominator for the rate is some kind of average of the single
men and women. If we take the geometric mean the rate declines from 0.1167
to 0.1162 or 0.4 per cent. We will see, however, that such a symmetric treatment
of the men and women exposed is not quite appropriate.

11. The marriage coefficients—response of preferences to availabilities

Running through all work on this subject is an implicit juxtaposition between
the ages of mates preferred by young people and the demographic availabilities
of persons of those ages. (Griffith Feeney [3], Henry [10], Hirschman and Matras
[12], Hoem [13], and others have elaborated this point.) It is this juxtaposition
that must somehow be incorporated in the marriage function. We want a func-
tion that will apply in the face of considerable departures from the availabilities
that are “normal,” that is, from those pertaining to a population of fixed marriage,
birth and death rates and no migration.

A substantial departure from normal availabilities occurs in the wake of the
postwar baby boom. United States births in 1947 numbered 3,817,000 (Historical
Statistics, p. 22). About twenty years later the girls of this cohort reach marrying
age, and they would ordinarily marry men about two years older than them-
selves, which is to say men born about 1945. But the births of 1945 numbered
only 2,858,000, about one quarter fewer than those of 1947. This is what Paul
Glick [24] has termed the marriage squeeze, and it is occurring in most western
countries. When the births decline, on the other side of the baby boom, the
squeeze will be in the opposite direction—the shortage will be of girls. This has
already come about in Japan, and will gradually appear in the United States
towards the end of the 1970’s. Insofar as the fall of births from 1957 to 1968 was
more gradual than the rise from 1945 to 1947 the squeeze of the mid-1980’s
will be less spectacular than that of the early 1970’s.

Having now brought the presentation of the problem to its maximum of diffi-
culty, I shall show how it can be simplified again, and how data may be made to
bear on at least some aspects. What is needed is a way of using the observation
of marriages in successive years, along with the known availabilities by age, to
tell what function of the ages of available men and women determines the unions
that take place. If the availabilities were always the same, we could not make the
inference I propose, and under this condition of stability the problem would not
arise. It is the changing availabilities that both give rise to the problem of this
paper and provide the data for its solution.
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12, Forcing the data to decide among marriage functions

The first confrontation with data in effect asks the observed marriages to
discriminate among the five marriage functions:

(12.1) Nijio=viFi: (female dominance),
(12.2) Nijie=vi;M;, (male dominance),
(12.3) N.‘,j,g = V.',,'(O.5F.',¢ + 0.5Mj,g) (arithmetic mean),
(12.4) Ni e = vi;(Fed M3? (geometric mean),
(12.5) Nijit = 20, _FoiMis (harmonic mean),

Fi,t + Mi.t

and to tell us which fits the observed marriages best.

We should be able to decide which of the functions (12.1) to (12.5) above is
appropriate once we know marriages by age of bride and groom for two dates ¢
and #, and the numbers of males and females exposed to the risk of marriage at
the two dates. If the marriage function to be used is f(F;,., M;,.), where f stands
for any of (12.1) to (12.5) or some other function altogether, and if f contains
one constant »;,; for each combination of ages as do (12.1) to (12.5), then the
constant can be evaluated for time ¢ and the f so completely specified can be
applied to time ¢. Suppose that the resulting estimate of marriages between
brides aged ¢ and grooms aged j at time ¢’ is

(12.6) Nijw =fFiv, Mj0).

Then the difference d; ;. between this estimate N, ;. and the observation
N [N 15

(12.7) dijr = Nije — Nije

averaged somehow over the ages of women ¢ and of men j, is a measure of the
appropriateness of the marriage function f.

Three kinds of average of (12.7) will be used—its root mean square, mean %
power, and mean absolute value, shown as the columns of Table I. The mean
square gives relatively more weight to the large deviations, and the mean abso-
lute value more weight to the smaller ones. We will see that the three measures
do not always report in quite the same way on a given set of data.

The work will be confined to first marriages, partly because the exposure to
risk is more clearcut for these. If divorce is easy the whole of the married popu-
lation is at risk of further marriage, but the degree of risk varies greatly among
individuals and we have no way of establishing a cutoff. For first marriages the
single population is the obvious measure of exposure, even though some members
may be immune and others highly susceptible.
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TABLE I

MEASURE OF DEPARTURE FROM OBSERVATIONS OF ESTIMATES OF MARRIAGES BASED ON
Five MARRIAGE Funcrions, Data For UNITED STATES 1963 AND 1967, AND SWEDEN 1959
AND 1963
n is 9 for the U.S. and 36 for Sweden.

[X @¥/n)]v2 [3 |d|*2/n]%e Zldl/n
United States 1963 and 1967
(12.1) Female dominance 16,256 14,465 12,079
(12.2) Male dominance 18,860 16,498 13,642
(12.3) Arithmetic mean 14,316 11,896 9,069
(12.4) Geometric mean 14,678 11,874 8,608
(12.5) Harmonic mean 15,320 12,421 9,195
Sweden 1969 and 1963
(12.1) Female dominance 309.0 2279 149.1
(12.2) Male dominance 375.9 266.4 160.9
(12.3) Arithmetic mean 201.2 201.0 120.7
(12.4) Geometric mean 297.6 202.6 115.1
(12.5) Harmonic mean 309.8 2144 125.9

13. Measuring departures of observed from expected marriages

The first set of data on which the several marriage functions are to be tested
is for the registration area of the United States, 1963 and 1967, using age groups
15-19, 20-24, and 2544 at last birthday. (The official publication does not show
any finer breakdown of ages of the single under 45.) The second set of data for
Sweden in 1959 and 1963, in which six age groups (15-19, 20-24, 25-29, 3034,
35-39, and 40-44) are recognized, was provided to me by David McFarland [23].

The measures of departure of Table I correspond to the two sets of data and
three criteria of fit ranging from mean square to mean absolute value. They show
the one-sex models (12.1) and (12.2) to be generally inferior to the various aver-
ages of the two sexes (12.3), (12.4), and (12.5). The sequence is essentially the
same for the three measures of departure, and for the United States and Sweden,
with the arithmetic and geometric means tied for first place.

A surprising feature of the outcome is that the theoretical merits of the har-
monic mean over the arithmetic and geometric do not assert themselves. Our
theoretical argument revolved around ensuring that when one sex was altogether
lacking there would be no marriages, and when one sex was plentiful marriages
would be proportional to the other. The data apparently vary too little from the
stable case to diseriminate on the basis of what happens when the number of one
sex goes towards zero or infinity.

14, Asymmetry

The second question we will put to the data concerns the degree of dominance:
whether males or females are more important for marriage. Merely to illustrate
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the logic that will be employed in this argument, suppose that we have statistics
for available men and women, along with the year’s marriages, in three situations
that are in all other respects identical, as in Table II.

TABLE 1I

HYPOTHETICAL MARRIAGES WITH DIFFERING NUMBERS OF
SINGLE MEN AND SINGLE WOMEN

Single men Single women  Year’s marriages
(a) 100,000 100,000 10,000
(b) 120,000 100,000 11,000
(¢) 100,000 120,000 11,500

Apparently the extra 20,000 males in (b) increase marriages by 1000, while the
extra 20,000 females in (c) increase them by 1500. Various mechanisms are
imaginable; we will not attempt to diseriminate among them.

Instead, we empirically investigate whether fluctuations in the number of
females affect marriages more or less than do equal fluctuations in the number of
males. To test for such asymmetry requires some kind of weighting of the num-
bers of males and females, and the easiest way to weight is by modifying the
arithmetic or geometric mean. Weighting the females with 0.5 + ¢ and the males
with 0.5 — ¢ alters the arithmetic mean to

(14.1) Nije= {005+ Fi+ (0.5 — )M;,],
and the geometric mean to
(14.2) Nije = vi ,FOFHMOP*.

If it turns out that e > 0, we will consider that females are more determining,
if e < 0, that males are more determining.

From another point of view, the estimates of nuptiality for the more recent
date can be regarded as a projection of the nuptiality at the earlier date, using
as an index the marriage function based on the available males and females at
the two dates:

o JFse, M)
(14.3) Nijw =Nije I
With the weighted arithmetic mean, for example, the departure for the United
States in 1967 would become

(14.4) & = NI — NI
= N1%67 __ prioes [(0-5 + F*" + (0.5 — 3)M}%7:|.
“ Y L5+ FP® + (0.5 — oM™
Table III shows with the United States data the three kinds of average of the

d;.;, for values of e from —0.5 to 0.5 at intervals of 0.1, and an enlargement of the
arithmetic mean formula for the interval 0.1 to 0.2. On the whole, ¢ is clearly

.
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TABLE III

DEPARTURE OF OBSERVED FROM CALCULATED FIRST MARRIAGES
The calculated first marriages are based on arithmetic and geometric weighted
means, with weights e from —0.5 to 40.5 and three measures of departure
ranging from mean square to mean absolute value, United States 1963 and 1967
in three age groups.
Asterisks indicate minimum points.

Values of e [Z az/9]2 (X |dJ*r2/9]%2 2 d|/9
Arithmetic mean
-0.5 18860 16498 13642
—-04 17680 15414 12673
—0.3 16638 14416 11744
—0.2 15719 13489 10899
-0.1 14933 12631 10012
0 14316 11896 9069
0.1 13923 11506* 8805*
0.2 13830* 11584 9087
0.3 14127 12187 9997
0.4 14907 13149 10999
0.5 16256 14465 12079
Geometric mean
—0.5 18860 16498 13642
—-04 17745 15381 12607
-0.3 16736 14314 11554
-0.2 15865 13323 10484
—-0.1 15166 12458 9397
0 14678 11874 8608*
0.1 14436* : 11873* 9009
0.2 14468 12242 9749
0.3 14785 12822 10507
0.4 15387 13572 11283
0.5 16256 14465 12079
Enlargement for arithmetic mean
0.1 13923 11506 8805
0.11 13899 11484 8778
0.12 13878 11466 8750
0.13 13860 11452 8722
0.14 13845 11444 8694
0.15 13834 11442* 8666*
0.16 13826 11458 8748
0.17 13821* 11482 8832
0.18 13821* 11511 8916
0.19 13823 11545 9001
0.2 13830 11584 9087

positive, showing a tendency to female dominance. The data are very skimpy—
we can hardly expect to learn much from only three age groups.

The somewhat more detailed ages for Sweden resulted in Table IV, showing ¢
at 0.13 for the mean square and at 0.10 and 0.11 for the other two averages of
the d; ;, all based on the arithmetic mean. The geometric mean is less consistent,
with e ranging from 0.21 down to 0.10, depending on which average of the d;,;
is taken. In both parts of Table IV, however, the ¢ is positive for best fit, and



MATHEMATICS OF SEX AND MARRIAGE 105
TABLE IV

DEPARTURES OF ACTUAL FROM CALCULATED FIRST MARRIAGES
The calculated first marriages are based on arithmetic and geometric weighted
means, Sweden 1959 and 1963 in six age groups.
Asterisks indicate minimum points.

Values of e [X d2/36]v2 [ |d|*2/36]%/% 3 |d]/36

Arithmetic mean
0.09 288.36 198.83 118.97
0.10 288.24 198.79* 118.76
0.11 288.16 198.82 118.54*
0.12 288.11 199.01 118.97
0.13 288.10* 199.31 119.69
0.14 288.12 199.68 120.44

Geometric mean
0.09 291.30 197.64 113.16
0.10 290.81 197.28 113.05*
0.11 290.36 196.97 113.10
0.12 289.96 196.70 113.16
0.13 289.60 196.48 113.21
0.14 289.28 196.30 113.26
0.15 289.00 196.17 113.31
0.16 288.77 196.09 113.37
0.17 288.59 196.06* 113.43
0.18 288.45 196.10 113.48
0.19 288.36 196.22 113.54
0.20 288.31 196.54 114.27
0.21 288.31* 197.01 115.58
0.22 288.35 197.56 116.50

this is the most solid evidence so far attained of the tendency to female marriage
dominance.

One would like to see clearer minima than are exhibited in Tables IIT and IV.
Presumably the curves showing departure of observed from expected as functions
of ¢ would rise more sharply on either side of the minimum if the disequilibrium
of the numbers single of the two sexes was more extreme, a circumstance that
may show itself for the years about 1970. A more sharply defined minimum
would also appear if more age groups were used. One confirmation that an ¢ on
the female dominant side at least has the right sign comes from English data
of 1891 and 1961 (P. R. Cox [1]). Cox finds a higher correlation between mar-
riages and the supply of nonmarried women than between marriages and the
supply of nonmarried men, which confirms the tendency to female dominance.

This presentation cannot but end on the need for further testing. Until the
same caleulation is made on a variety of times and places, no one can be certain
that it is the inequality of available males and females that results in the asym-
metry of the marriage function found here. The same marriage function need
not apply to the two years being compared if circumstances have changed. One
is tempted to complicate the marriage function by introducing into it other
variables than the single males and single females present, by analogy to pro-
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ceeding from zero order correlation to partial correlation in the familiar linear
model. Unfortunately, in our problem it is not obvious what variables ought to
be partialled out to obtain the pure effect of availabilities of single men and
single women. Failing some knowledge or at least suspicion of possible extraneous
variables, we can only seek further data of the kind used here. Insofar as the
disturbing variables are unspecifiable and all disturbances have to be regarded
merely as noise, the recourse is to perform the same caleulation on the most
varied populations for which data are to be had.

16. A least square estimate for ¢

Richard Cohen suggests a way of reducing our problem of estimating ¢ to
classical least squares. He linearizes (14.2) by taking logarithms, and finds

(15.1)  log Nij. = logvi;+ (0.5 + ¢) log Fi.. + (0.5 — ¢) log M ...

The problem is now to find the e that minimizes

(152) Y [—logN: .+ logwi;+ (0.5 + ¢) log Fi.. + (0.5 — ¢) log M;..]%
With the United States data of 1963 and 1967, Cohen obtains ¢ = 0.1035.

16. Conclusion

While we would like to experiment with more countries and more years, and
certainly wish that more ages could be recognized than three for the United
States and six for Sweden, yet the present materials strongly suggest that the
degree of female dominance is ¢ = 0.1 or more. This means that number of mar-
riages is some constant times F{-*M}*, where F; is the number of females aged ¢
and M; the number of males aged j at any time.

The 0.6 and 0.4 will be recognized as elasticities of marriages for females and
males, respectively. If single females increase by one per cent marriages go up
by 0.6 per cent. If single males increase by one per cent marriages go up by 0.4
per cent. Pending further data, we conclude that at the margin marriages depend
at least 60 per cent on the number of women and at most 40 per cent on the num-
ber of men. Should the nonlinearity of such a geometric function prove awkward,
an almost equally good fit can be obtained from the arithmetiec and linear
vi ; (0.6F; + 0.4M ;).

Once the marriage function »; ;(F{*M{*) (or some other) is ascertained, then
given childbearing rates by age of father and of mother, and given mortality
specific by age for single and married persons of each sex, we are at last in a
position to make statements on the two-sex model corresponding to any that are
possible on the one-sex model. An authentic projection can be made into the
future that generalizes the standard one-sex projection. Over each finite time
period, we can calculate age by age and for each sex the number of marriages.
Recognizing the single and the never married, we apply life tables to find the
number of survivors, and fertility tables for the number of births. If this applies
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over any particular time interval, it applies over all together, and so provides
the asymptotic ultimate values.

The projection in its turn permits examination of the effect of change in any
specific rate on the ultimate rate of increase and age distribution. The effects
would probably not be very different from those given by the simpler one-sex
model for any question that can be asked both of the one-sex model and the
age-sex-marriage model. However, the latter permits altogether new questions—
effects of changes in age specific marriage rates, for example. It also could show
the effect of constantly changing proportions of the two sexes, including, for
example, how the growth of a population would be affected if its birth rate os-
cillated about a given mean, so that it experienced an endless succession of mar-
riage squeezes.

Among other benefits of a marriage function, it tells how to calculate the mar-
riage rate. To answer the question asked earlier, whether the marriage rate for
persons 2024 in the United States went up or down between 1963 and 1967,
we would note that in relation to the weighted geometric mean F{*M7*, the rate
was

207,211 _
(16.1) (1,339,000)0-3(2,355,000)04 — 01235
in 1963 and
(16.2) 315,650 - 0.1214

(2,183,000)°-%(3,379,000)°-4

in 1967. The last word based on this argument is that the rate went down from
0.1235 to 0.1214, a decline of 1.7 per cent.

Where we cannot count on the relative permanence of marriage, or where a
large fraction of births are illegitimate, we will have to drop marriage from the
model and use birth rates to the whole population by age of father and of mother.
In the resulting simpler and cruder two-sex model, a birth function would take
the place of the marriage function, and one could still perform the projection and
other inferences. Presumably the birth function would be asymmetric; in the
extreme case of promiscuous mating it would be weighted heavily towards the

female side.
O O o O O

My thanks are due to Richard Cohen, Griffith Feeney, A. G. Fredrickson,
Louis Henry, Jan Hoem, David McFarland, Beresford Parlett, Prithwis Das
Gupta, and Robert Traxler for helpful discussions and access to unpublished
materials.
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