A CLASS OF STOPPING RULES FOR TESTING PARAMETRIC HYPOTHESES

HERBERT ROBBINS and DAVID SIEGMUND COLUMBIA UNIVERSITY and HEBREW UNIVERSITY

Let $f_{\theta}(x)$, $\theta \in \Omega$, be a one parameter family of probability densities with respect to some σ -finite measure μ on the Borel sets of the line. Denote by P_{θ} the probability measure under which random variables x_1, x_2, \cdots are independent with the common probability density $f_{\theta}(x)$. Let θ_0 be an arbitrary fixed element of Ω and ε any constant between 0 and 1. We are interested in finding stopping rules N for the sequence x_1, x_2, \cdots such that

(1)
$$P_{\theta}(N < \infty) \leq \varepsilon$$
 for every $\theta \leq \theta_0$,

and

(2)
$$P_{\theta}(N < \infty) = 1$$
 for every $\theta > \theta_0$.

Among such rules, we wish to find those which in some sense minimize $E_{\theta}(N)$ for all $\theta > \theta_0$.

A method of constructing rules which satisfy (1) and (2) by using mixtures of likelihood ratios was given in [3]. Here we sketch an alternative method.

Let $\theta_{n+1} = \theta_{n+1}(x_1, \dots, x_n)$ for $n = 0, 1, 2, \dots$, be any sequence of Borel measurable functions of the indicated variables such that

 $n=1,2,\cdots,$

(3)
$$\theta_{n+1} \ge \theta_0.$$

In particular, θ_1 is some constant $\geq \theta_0$. Define

(4)
$$z_n = \prod_{1}^n \frac{f_{\theta_i}(x_i)}{f_{\theta_0}(x_i)}$$

and for any constant b > 0, let

(5)
$$N = \begin{cases} \text{first } n \ge 1 \text{ such that } z_n \ge b, \\ \infty \text{ if no such } n \text{ occurs.} \end{cases}$$

We shall show that under a certain very general assumption on the structure of the family $f_{\theta}(x)$, the inequality (1) holds at least for all $b \ge 1/\varepsilon$.

Assumption. For every triple $\alpha \leq \gamma \leq \beta$ in Ω ,

(6)
$$\int \frac{f_{\alpha}(x)f_{\beta}(x)}{f_{\gamma}(x)} d\mu(x) \leq 1$$

Research supported by Public Health Service Grant No. 1-R01-GM-16895-03.

We remark without proof that this holds for the general one parameter Koopman-Darmois-Pitman exponential family and many others.

Denote by \mathfrak{F}_n the Borel field generated by x_1, \cdots, x_n . Then for each fixed $\theta \leq \theta_0$, $\{z_n, \mathfrak{F}_n, P_{\theta}; n \geq 1\}$ is a nonnegative supermartingale sequence. For, given any $n \geq 1$,

(7)
$$E_{\theta}(z_{n+1}|\mathfrak{F}_n) = z_n E_{\theta} \left(\frac{f_{\theta_{n+1}}(x_{n+1})}{f_{\theta_0}(x_{n+1})} \middle| \mathfrak{F}_n \right)$$
$$= z_n \int \frac{f_{\theta}(x) f_{\theta_{n+1}}(x)}{f_{\theta_0}(x)} d\mu(x) \leq z_n,$$

since by hypothesis $\theta \leq \theta_0 \leq \theta_{n+1}$. We can therefore apply the following.

LEMMA. Let $\{z_n, \mathfrak{F}_n, P; n \geq 1\}$ be any nonnegative supermartingale. Then for any constant b > 0. ۹. .

(8)
$$P(z_n \ge b \text{ for some } n \ge 1) \le P(z_1 \ge b) + \frac{1}{b} \int_{(z_1 < b)} z_2 \, dP \le \frac{E(z_1)}{b}$$

PROOF. Defining N by (5), we have

(9)
$$P(z_n \ge b \text{ for some } n \ge 1) = P(z_1 \ge b) + P(1 < N < \infty).$$

Since z_n is a nonnegative supermartingale,

(10)
$$\int_{(N>1)} z_1 \, dP \ge \int_{(N>1)} z_2 \, dP = \int_{(N=2)} z_2 \, dP + \int_{(N>2)} z_2 \, dP \ge \cdots$$
$$\ge \sum_{i=2}^n \int_{(N=i)} z_i \, dP + \int_{(N>n)} z_n \, dP \ge bP(1 < N \le n) + 0,$$

· · · ·

because $z_i \ge b$ on (N = i) and $z_n \ge 0$. Since n is arbitrary,

(11)
$$P(1 < N < \infty) \leq \frac{1}{b} \int_{(z_1 < b)} z_2 \, dP,$$

and hence from (9)

(12)
$$P(z_n \ge b \text{ for some } n \ge 1) \le P(z_1 \ge b) + \frac{1}{b} \int_{(z_1 < b)} z_2 dP$$
$$\le \frac{1}{b} \int_{(z_1 \ge b)} z_1 dP + \frac{1}{b} \int_{(s_1 < b)} z_1 dP = \frac{E(z_1)}{b},$$

which proves (8).

Applying this lemma to (4) and (5), we see that for each fixed $\theta \leq \theta_0$,

(13)
$$P_{\theta}(N < \infty) \leq P_{\theta}(z_{1} \geq b) + \frac{1}{b} \int_{(z_{1} < b)} z_{2} dP_{\theta}$$
$$\leq \frac{E_{\theta}(z_{1})}{b} = \frac{1}{b} \int \frac{f_{\theta}(x)f_{\theta}(x)}{f_{\theta}(x)} d\mu(x) \leq \frac{1}{b},$$

and hence, as claimed above, (1) holds at least for $b \geq 1/\epsilon$.

As an example, suppose that under P_{θ} the x are $N(\theta, 1)$, so that $f_{\theta}(x) =$ $\varphi(x-\theta)$, where $\varphi(x)$ is the standard normal density, and that $\theta_0 = 0$. It is easily seen that if $\theta_1 > 0$ then

(14)
$$z_{n} = \prod_{1}^{n} \exp\left\{\theta_{i} x_{i} - \frac{\theta_{i}^{2}}{2}\right\}, \qquad E_{\theta}(z_{1}) = \exp\left\{\theta\theta_{1}\right\},$$
$$P_{\theta}(z_{1} \geq b) = \Phi\left(\theta - \frac{\log b}{\theta_{1}} - \frac{\theta_{1}}{2}\right),$$

(15)
$$\int_{(z_1 < b)} z_2 dP_{\theta} = \int_{-\infty}^{\log b/\theta_1 + \theta_1/2} \int_{-\infty}^{\infty} z_2 \varphi(x_2 - \theta) \varphi(x_1 - \theta) dx_2 dx_1$$
$$\leq \exp \left\{\theta \theta_1\right\} \Phi\left(\frac{\log b}{\theta_1} - \frac{\theta_1}{2} - \theta\right),$$

where $\Phi(x) = \int_{-\infty}^{x} \varphi(t) dt$. Hence, (13) gives for any $\theta \leq 0$, the inequality

(16)
$$P_{\theta}\left(\prod_{1}^{n} \exp\left\{\theta_{i}x_{i} - \frac{\theta_{i}^{2}}{2}\right\} \geq b \text{ for some } n \geq 1\right)$$
$$\leq \Phi\left(\theta - \frac{\log b}{\theta_{1}} - \frac{\theta_{1}}{2}\right) + \frac{1}{b}\exp\left\{\theta\theta_{1}\right\} \Phi\left(\frac{\log b}{\theta_{1}} - \frac{\theta_{1}}{2} - \theta\right)$$
$$\leq \frac{1}{b}\exp\left\{\theta\theta_{1}\right\}.$$

The middle term of (16) is increasing in θ , so

(17)
$$P_{\theta}\left(\prod_{1}^{n} \exp\left\{\theta_{i}x_{i} - \frac{\theta_{i}^{2}}{2}\right\} \ge b \text{ for some } n \ge 1\right)$$
$$\le \Phi\left(-\frac{\log b}{\theta_{1}} - \frac{\theta_{1}}{2}\right) + \frac{1}{b}\Phi\left(\frac{\log b}{\theta_{1}} - \frac{\theta_{1}}{2}\right) \le \frac{1}{b}$$

for every $\theta \leq 0$.

We shall now suppose that in addition to the requirement that $\theta_{n+1} = \theta_{n+1}(x_1, \dots, x_n) \ge 0$, the sequence θ_n converges to θ with probability 1 under P_{θ} for each $\theta > 0$. For example, both

(18)
$$\theta_{n+1} = \frac{\max(0, s_n)}{n}$$

and

(19)
$$\theta_{n+1} = \frac{s_n}{n} + \frac{\varphi(s_n/\sqrt{n})}{\sqrt{n}\Phi(s_n/\sqrt{n})},$$

where $s_n = x_1 + \cdots + x_n$, have this desired property (equation (19) is the posterior expected value of θ given x_1, \cdots, x_n when the prior distribution of θ is flat for $\theta > 0$). Thus, for large n,

(20)
$$z_n = \prod_{1}^{n} \exp\left\{\theta_i x_i - \frac{\theta_i^2}{2}\right\} \approx \prod_{1}^{n} \exp\left\{\theta x_i - \frac{\theta^2}{2}\right\} = \exp\left\{\theta s_n - \frac{n\theta^2}{2}\right\} = z_n(\theta),$$

say. Now it has been remarked elsewhere [2], and a proof based on [1], pp. 107–108, is easily given, that for any fixed $\theta > 0$,

(21)
$$N_{\theta,b} = \begin{cases} \text{first } n \ge 1 \text{ such that } z_n(\theta) \ge b, \\ \infty \text{ if no such } n \text{ occurs,} \end{cases}$$

is optimal in the sense that if T is any stopping rule of x_1, x_2, \cdots such that

(22)
$$P_0(T < \infty) \leq P_0(N_{\theta,b} < \infty),$$

then $E_{\theta}(N_{\theta,b}) < \infty$ and $E_{\theta}(T) \geq E_{\theta}(N_{\theta,b})$. Thus, the N using (18) or (19) may be expected to be "almost optimal" simultaneously for all values $\theta > 0$. Monte Carlo methods will be needed to get accurate estimates of $P_0(N < \infty)$ and $E_{\theta}(N)$ for $\theta > 0$. We have, however, been able to find the asymptotic nature of $E_{\theta}(N)$ as $\theta \to 0$ or $b \to \infty$ in the normal and other cases for various choices of the θ_n sequence, and the results will be published elsewhere. For example, using (18), we can show that, for $\theta > 0$,

(23)
$$E_{\theta}(N) \sim P_{0}(N = \infty) \left(\log \frac{1}{\theta} \middle/ \theta^{2} \right) \quad \text{as } \theta \to 0,$$

and

(24)
$$E_{\theta}(N) = \frac{2\log b + \log_2 b}{\theta^2} + o(\log_2 b) \quad \text{as } b \to \infty.$$

By putting

(25)
$$\theta_{n+1} = \begin{cases} \frac{s_n}{n} & \text{if } s_n \ge [n(2\log_2^+ n + 3\log_3^+ n)]^{\frac{n}{2}}, \\ 0 & \text{otherwise}, \end{cases}$$

where $\log_2 n = \log (\log n)$, and so on, equation (23) is replaced by

(26)
$$E_{\theta}(N) \sim 2P_0(N = \infty) \log_2 \frac{1}{\theta} / \theta^2$$
 as $\theta \to 0$,

which is optimal for $\theta \rightarrow 0$.

In evaluating $P_{\theta}(N < \infty)$ for $\theta \leq 0$ with an arbitrary sequence $\theta_{n+1} = \theta_{n+1}(x_1, \dots, x_n) \geq 0$, $n = 0, 1, 2, \dots$, and b > 1, we see that this probability is equal to

(27)

$$P_{\theta}\left(\prod_{1}^{n} \exp\left\{\theta_{i}x_{i} - \frac{\theta_{i}^{2}}{2}\right\} \geq b \text{ for some } n \geq 1\right) = \sum_{n=1}^{\infty} \int_{(N=n)} \exp\left\{\theta s_{n} - \frac{n\theta^{2}}{2}\right\} dP_{0}.$$

For any fixed x and n the function $f(\theta) = \exp \{\theta x - n\theta^2/2\}$ is increasing for $-\infty < \theta < x/n$. Hence if the condition

(28)
$$s_n > 0$$
 whenever $N = n$, $n = 1, 2, \cdots$,

is satisfied, then $P_{\theta}(N < \infty)$ will be an increasing function of $\theta \leq 0$ (as is the middle term of (16)). Recalling that

(29)
$$N = \begin{cases} \text{first } n \ge 1 \text{ such that } \sum_{i=1}^{n} \left(\theta_{i} x_{i} - \frac{\theta_{i}^{2}}{2} \right) \ge \log b, \\ \infty \text{ if no such } n \text{ occurs,} \end{cases}$$

we see that if N = 1, then $\theta_1 x_1 \ge \log b + \theta_1^2/2$ so $s_1 = x_1 > 0$, while if N = n > 1, then

STOPPING RULES

(30)
$$\sum_{1}^{n-1} \theta_i x_i < \log b + \frac{1}{2} \sum_{1}^{n-1} \theta_i^2,$$
$$\sum_{1}^{n} \theta_i x_i \ge \log b + \frac{1}{2} \sum_{1}^{n} \theta_i^2,$$

so $\theta_n x_n > 0$, and hence $\theta_n > 0$ and $x_n > 0$. In cases (18) and (25), it follows that $s_{n-1} \ge 0$, and hence $s_n = s_{n-1} + x_n > 0$. Thus, $P_{\theta}(N < \infty)$ is an increasing function of $\theta \le 0$ in these cases. Whether this is true for the choice (19) we do not know. Likewise, we do not know whether $P_{\theta}(N \le n)$ is an increasing function of θ for each fixed $n = 1, 2, \cdots$, even for (18) or (25). For $\theta > 0$, $P_{\theta}(N < \infty) = 1$ and $E_{\theta}(N) < \infty$ in all three cases.

In the case of a general parametric family $f_{\theta}(x)$, we can try to make $E_{\theta}(N)$ small for $\theta > \theta_0$ by choosing θ_n to converge properly to θ under P_{θ} for $\theta > \theta_0$, but a comparison with the methods of [3] remains to be made. The present method of sequentially estimating the true value of θ when it is $>\theta_0$ appears somewhat more natural in statistical problems.

If we do not wish to take advantage of the property (6), we can use, instead of (4),

(31)
$$z'_n = \prod_1^n \frac{f_{\theta_i}(x_i)}{h_n},$$

where $h_n = h_n(x_1, \dots, x_n) = \sup_{\theta \leq \theta_0} \{\prod_{i=1}^n f_{\theta}(x_i)\}$. The use of (31) has been independently suggested by Edward Paulson. For $\theta \leq \theta_0$, we then have

(32)
$$P_{\theta}(z'_n \ge b \text{ for some } n \ge 1) \le P_{\theta} \left(\prod_{1}^n \frac{f_{\theta_i}(x_i)}{f_{\theta}(x_i)} \ge b \text{ for some } n \ge 1\right) \le \frac{1}{b},$$

by the lemma above. It would seem, however, that (31) should be less efficient than (4) when the assumption (6) holds.

REFERENCES

- Y. S. CHOW, H. ROBBINS, and D. SIEGMUND, Great Expectations: The Theory of Optimal Stopping, Boston, Houghton-Mifflin, 1971.
- [2] D. A. DARLING and H. ROBBINS, "Some further remarks on inequalities for sample sums," Proc. Nat. Acad. Sci., Vol. 60 (1968), pp. 1175-1182 (see p. 1181).
- [3] H. ROBBINS, "Statistical methods related to the law of the iterated logarithm," Ann. Math. Statist., Vol. 41 (1970), pp. 1397-1409.