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1. Introduction

This study was prompted by investigations of models of traffic flow on a
highway through analyses of the structure and properties of Poisson fields of
random lines in a plane. It is possible to view the trajectory of a car produced
by its time and space coordinates on the highway as a straight line in that plane
if the car travels at a constant speed once it enters the highway and then never
leaves the highway. These traffic considerations plus the property of time
invariance for traffic flow distributions lead to one model for traffic flow on a
divided highway developed by Renyi [10]. This idealized model is simpler to
study than the more realistic situation that provided Renyi's motivation and
which he also subjects to analysis, namely, cars do lose time because of an over-
taking of one car by another even on a divided highway with two lanes for
traffic moving in one direction.

In his paper, Renyi found it convenient to start from the stochastic process of
entrance times of the cars at a fixed point on the highway. Other authors start
from the spatial process of cars distributed in locations along the highway at
some fixed time according to some random law. The traffic flow results of Weiss
and Herman [13] who study the spatial process for the idealized model are
analogous to Renyi's results which stem from the temporal process. To demon-
strate the equivalence of the two results, care must be taken to employ the
appropriate measure in deriving distributions related to traffic flow. Both Renyi,
and Weiss and Herman, achieved asymptotic results for traffic flow distri-
butions. We will reproduce both results in Section 4 as special cases of our
development of traffic flow models through the structure of random lines in the
plane. It should be mentioned here that Brown [3] reconsiders Renyi's idealized
model and derives exact distributions rather than asymptotic distributions for
spatial and speed distributions of cars.
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To this point we have not been specific about the random processes governing
entrance times of cars on a highway., positions of cars on a highway, and speed
distributions of cars on the highway. The Poisson process is the assumed
machinery governing car entrance times or equivalently car positions and the
speed distributions for each car are assumed to be identically and independently
distributed (i.i.d.). Starting from the spatial process, Breiman [2] considered
the idealized model and proved that the Poisson process is the only process
obeying the time invariance property-namely if at a time to, the spatial process
is Poisson with specific parameter, and the speeds of the cars are i.i.d. with
respect to each other and the positions of the cars at time to. then the process
will have the same properties at any other time t.

Obviously, other results for Poisson processes can be germane to traffic
flow situations and similarly this can be so for results in queueing pro-
cesses. There is a vast literature in both subjects. However, it is pertinent to
this exposition to mention some results for the M/G/oc queue. The highway can
be regarded as the infinite server for each car suffers no delay when it enters the
highway in our model; in addition the input is Poisson and the service time
distribution is the distribution of the distances traveled by each car before ,it
overtakes or is overtaken by another car on the highway or equivalently the
distribution of the time expended until an overtaking occurs. In a paper on
Markov processes, Kingman [6] arrives at a general formulation that can be
reduced to our idealized traffic flow model or equivalently the M/G/G& queue.
This produces the result that the distribution of cars on the highway is Poisson
with parameter

(1.1)-odG(v).
Jov

where co is the parameter of the Poisson process for cars entering the highway
and G(v) is the cumulative distribution function for the speed of each car. This
result is employed by Renyi in his paper where he cites other authors who have
produced it. It also falls out of the development in this paper and appears in
Theorem 4.2.
Along these lines there is a recent paper by Brown [4] in which he discusses

an estimation procedure for G in the M/G/oc queue for which data are kept
only on the times cars enter or leave the highway without identification of cars
(that is, no pairing of entering and departing times for any one car). This is a
different model from the one to which we give central attention in this paper.
In its representation in the time-space plane we would have one straight line
going through an origin on the time axis or equivalently on the spatial axis to
indicate an arbitrary car (or observer car) always traveling on the highway at

some constant speed, vo, but all the other cars would be indicated by line seg-
ments from whose lengths we could get distance traveled on highway (still
assumed to be i.i.d.) and from whose orientation angle with the t axis we could
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get the speed of the car. This produces the problem of the distribution of the
number of intersections made by the line segments with the fixed line, an
interesting but unsolved problem in geometrical probability.

However, this serves to return us to the central issue of intersections ofrandom
lines in the plane and its relationship to traffic flow models. We now turn to the
formulation where the arbitrary car and all other cars are indicated by straight
lines in the plane. The number of intersections of the arbitrary line (observer car)
by the other lines determines the number of overtakings of slower cars made by
the observer car plus the number of times it was overtaken by faster cars. We are
interested in this distribution and also in the distributions of faster car over-
takings of the observer car and the overtaking of slower cars by the observer car.
The structure of random lines in the plane and the properties resulting from a

specific structure are therefore pertinent to analyses of traffic flow for our
idealized model. The notion of a homogeneous Poisson field of random lines in
the plane and its consequences have been developed by Miles in several papers
[7], [8]. Additional development for nonhomogeneous Poisson fields ofrandom
lines is required for study of traffic flow models. In subsequent sections, we
provide a formulation for a nonhomogeneous Poisson field of random lines
and develop its structure and characteristics. This makes it possible to provide
a different proof of RWnyi's theorem and the Weiss and Herman result on
traffic flow and allows for further understanding of traffic flow models. It also
provides a format for viewing their results as special cases of a more general
model. In fact, this model provides a unified treatment for viewing any aspect
of the idealized traffic flow model.

2. Development

First we formalize the notion of straight lines distributed "at random"
throughout the plane. We will describe the plane in terms of (t, x) coordinates
for subsequently the t axis will be employed to register time of arrival of cars at
a fixed point on a highway and the x axis will in similar fashion report on spatial
positions of cars on a highway at a fixed point in time. Naturally the time
invariance property will insure that the conditions will prevail at any point in
time. Any line in the (t, x) plane can be represented as

(2.1) p = tcos a + xsin , -0C2 <p < oCo,O . a < 7r,

where p is the signed length of the perpendicular to the line from an arbitrary
origin 0, and a is the angle this perpendicular makes with the t axis (Figure 1).
Note that if the intersection of the perpendicular with the line is in the third or
fourth quadrant, p is taken to be negative. A set of lines {(pi, ac): i = 0, + 1,
±2, } constitutes a Poisson field under the following conditions.

(1) The distances -< P-2 _ P- 1 <-Po -Pi < P2 .of the lines from
an arbitrary origin 0, arranged according to magnitude represent the coordinates
of the events of a Poisson process with constant parameter, say A. Thus, the
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number ofpi in an interval of length L has a Poisson distribution with mean AL.
(2) The orientations ai of each line with a fixed but arbitrary axis (say the

t axis) in the plane are independent and obey a uniform distribution in the
interval [0, r).

Thus, a reasonable representation of random lines in the plane is that of the
Poisson field. This definition of randomness for lines in the plane also has the
property that the randomness is unaffected by the choice of origin or line to
serve as t axis, since it can be demonstrated that except for a constant factor
| dpda is the only invariant measure under the group of rotations and trans-
lations that transform the line (p, a) to the line (p', a'). We will return to this
structure and its characteristics, but now we employ it as a point of departure to
initiate discussion of a nonhomogeneous Poisson field of random lines. To
achieve this we will relax condition (2) above and ask only that the aj be
identically and independently distributed (i.i.d.).
For ease in the algebra of our traffic flow models, we will employ instead of

a, an angle formed by the intersection of the t axis with a line in the plane and we
label this 0 (Figure 1); note that v = tan 0. Also we will only be concerned with

line Z = (p t) / (ncoshFnsine)GARE
>/~~~~~~inle segment: L of

line QC = (W,V)

FIGURE 1
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those lines wherepi falls in the second or fourth quadrant since this will yield all
positive car velocities. The inclusion of the pi in the first and third quadrant does
not complicate the mathematical development, but they are not relevant. Thus,
a = jin + 0 and the lines of interest will now be parametrized by (p, 0) where

(2.2) p =-tsin0 + xcos0, O.< 0 < 1r.

Equation (2.2) takes care of the sign ofp for it insures that p will be positive if
it is in the second quadrant and negative in the fourth quadrant.
The set Y of lines {(pi, ai): i = 0 ± 1, ± 2,.* *} becomes a nonhomogeneous

Poisson field if we require invariant measure only under translation, and we
look into this situation because it will be helpful in our traffic flow models.
Under this constraint, we now have the same conditions except that the orienta-
tion angles ci of each line are i.i.d. random variables with common distribution
function in the interval [0, 7t). Thus, | dpdca is no longer the appropriate measure.
The diagram in Figure 1 delineates the situation where the origin can be
arbitrarily chosen at any point on a specific and fixed t axis because invariance
is preserved now only under translation.
The orientations 0i are independent and identically distributed with common

distribution F in the interval [0, 27r) and further the sequence of values <0i> are
independent of <pi>. This is equivalent to the statement that the velocities of
cars, namely, vi = tan 0i are independent and identically distributed with
common distribution G on [0, co) and thus <vi = tan Oi> are independent of
<pi>.
When 00 = 0, po = 0, the traffic flow is characterized by a distribution of time

intercepts on the t axis; when 00 = P17, po = 0, the traffic flow is characterized
by a distribution of cars spaced along the x axis. For any other value of 0, the
traffic flow is measured along a trajectory line. In the traffic literature, trajectories
for low density traffic flow (no delays in overtaking) may be assumed to be linear
in the time-space plane. Thus in any development, we must employ the
appropriate measure to characterize distributions of traffic flow in such matters,
for example, as distribution of number of overtakings. For our purposes where
Poisson processes will be the underpinning for traffic flow in both spatial and
temporal processes, the evaluation of the appropriate Poisson intensity para-
meter will be paramount as will be the relationships between these parameters
for different measures.
The following exposition and the diagram in Figure 2 are included to make

clear how the departure to nonhomogeneous Poisson fields occurs. Consider the
(p, 0) plane. The homogeneous Poisson field occurs when points on the p axis
follow a Poisson process with parameter A independent ofp and 0 is uniformly
distributed from 0 to 2n. Given a fixed interval on p containing exactly n points,
each follows a uniform distribution whose range is the length of the interval.
When the interval is of unit length the density is dp. Similarly the density for 0
is dO and the joint density is dpdO leading to | dpdO as the measure. This is
invariant under rotations and translations. If Oi is i.i.d. but not uniformly
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[1dp
Oe

0 p

FIGURE 2

distributed, then the Poisson process for points of intersection along any
trajectory line (p, 0) is maintained but the density for 0 is no longer dO. Thus, any
dpdO rectangle as in Figure 2 will have the same measure only under translation
on the p axis.

Also if 0 is uniformly distributed but the points on the p axis follow a Poisson
with parameter A(p), we obtain a nonhomogeneous Poisson field of random
lines. If there are departures in the structure of both Oi and pi as listed above,
then we obviously have a nonhomogeneous Poisson field of random lines where
a Poisson process for points of intersections along any trajectory line (p, 0) will
be maintained but the counting will be measured by the values of (p, 0) or
equivalently the values of (t, x).

3. Basic results

The main results for nonhomogeneous Poisson fields of random lines Y are
discussed in this section. All sets under investigation are assumed to be measur-
able and events of probability zero are neglected. For instance, a possible
realization of Y is one in which there are no lines at all with probability zero
and this is omitted. Many of the following results must be qualified by the
phrase "with probability one"; however, this is often omitted for brevity. One
basic feature of a special nonhomogeneous Poisson field of random lines, where
p is Poisson with parameter A and 0 is i.i.d. is given in the following theorem.
THEOREM 3.1. Points of intersections of such random lines MT and any

arbitrary and fixed line (po. 00) form a Poisson process with parameter A(0o),
where

(3.1) Af(Oo) = A cos 00 j v - tan 001(1 + v)-112 dG(v)

and A is the parameter of the Poisson field of random lines and v = tan 0.
NOTE. The counting is done on the arbitrary and fixed line (po, 00) and of

course <v = tan 0> for all the lines in S. In our traffic model, a point of inter-
section on the line (po, 00) when represented in the coordinates of the time-
space plane (to, x0) may be viewed in the following traffic sense-to is the actual
time of car overtaking and x0 is the actual spatial position where the car over-
taking event occurs. This is developed more fully in Section 4.
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PROOF. We note that the random mechanism in Y is invariant under trans-
lation and is thus unaffected by the choice of origin; hence, we can have the
arbitrary line go through the origin such that the segment of line (0, 00) with
length L emanates from the origin and 00 is the fixed angle associated with this
arbitrary line. Now denote tj as the length of this segment measured from the
origin to the point of intersection with another line t' = (p', 0') E Y (see Figure
1). We can classify lines in Y that intersect with line segment L into two groups,
namely:

(1) for 0 such that 0 < 0 < 00, p > 0 we have n sin (00 - 0) = p, if and
only if

(3.2) 0 < = p csc(00-0) < L.

(2) for 0 such that 00 < 0 < 2x, p < O we have q sin (0 - 00) = -p, if and
only if

(3.3) 0 < C = -p csc (0-00) < L.

Let NL denote the number of lines in Y intersecting the segment of length L.
Then we will show that

(3.4) Pr {NL = n} = exp {-Lip} (LAp)n

and upon evaluation, that

(3.5) p = cos 00 o v - tan OoI(1 + v2)- l/2 dG(v).

Recall that cos 00 and tan 00 are constants depending on the 00 of the arbitrary
line. Denote NP the number of random lines whose signed distance p, to the
origin is between -L sin 00 and L cos 00. Then

(3.6) Pr {NL = n} = E Pr {NL = nl Np = m}Pr {NP = m}.
m0=

Clearly, no line can intersect the segment L unless its minimum distance to the
origin is between -L sin 00 and L cos 00. Thus, NP must be more than NL;
that is,

(3.7) Pr {NL = nINP = m} = 0 for n > m.

and therefore

(3.8) Pr {NL = n} = E Pr {NL = njNp = m} Pr {Np = m}.
m =n

Let p = Pr {NL = 1| NP = 1 }. Then since the random lines are independent,
that is, sequences <vi> and <Pi> are independent, we have

(3.9) Pr {NL = n|NP = m} = (m),f(1 - ,I)m,-n for m > n.
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By the definition of random lines Y, we have

(3.10) Pr {Np = m} = exp {-AL(sin 0, + cos 0°)}[1 ( ° !
sin

.

Thus,

(3.11) Pr {NL = n} = n,(-),( - n

exp {-AL(sin 00 + cos o0)} [AL(cos 00 + sin 00)]m

= exp {-ALM (sin 00 + cos 00)} [2LM(sin 00 + cos 00l)"

Now we evaluate p, the probability that a line whose minimum signed distance
to the origin is between -L sin 00 and L cos 00, will intersect the segment L.
Write

(3.12) t = Pr {NL = 1 IN, = 1}

= Pr {O < il < L -Lsin 00 <p < L cos 00}
= Pr{O < < L;0 <0< 00< -L sin 00 <p < LcosO0}

± Pr {0 < q < L; 00 <0<< -L sin 00 < p < L cos 00}

L=sin 00 [J cos Oo) LT~LS~fPr {O < q < L, 0 < 0 < 0 Ip} dpL(sin 00 + COSos0) -L sin Oo

rLcoso00
+ CSPr {0 < q < L; 00 <0<n7<ip} dp].

Therefore, we have
0

(3.13) Lp(cos 00 + sin 0°) = L.| Pr {0 < q < L;0 <0 <0o p} dp

(LcosOo
+ J Pr {0 < q < L; 00 < 0 < 17rlp} dp

Stan Oa
= L cos 00 (tan 00 - v) (1 + v2)- 1/2 dG(v)

+ 5 (v - tan Oo)(1 + v2)-1/2 dG(v)].
tan 00

Hence, we may conclude that

(3.14) ,u = cos 00v tan o (1 + V2)-112dG(v)cos 0, + sin 0 t
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and this in turn gives the result that

(3.15) Pr {NL = n} = exp {-AL cos 00 { v - tan 0oI(1 + V2)-1/2 dG(v)}

[AL cos0o iv - tan001(1 + V2)-1/2 dG(v)] (n!)-1.

That is, NL, the number of intersections with segment L from lines in Y, follows
the Poisson distribution with parameter

(3.16) A cos 0 {"0Iv - tan 0oI(1 + v2)-112 dG(v).

Let us denote NL+ the number of lines in Y intersecting the segment L with
0o < 0 < 2TC and denote Nj the number of lines in Y intersecting the segment
L with 0 < 0 < 00. (Clearly, NL = N+L + N17.) Theorem 3.1 permits us to state
the following result immediately.
THEOREM 3.2. Let <(cy> be points of intersections of random lines £' with

00 < 0 < 2X and any arbitrary line (po, 00) and let (<ri > be points of intersections
of random lines Y with 0 < 0 < 00 and line (po, 00). Then <zr> and <K, > form
two independent Poisson processes, with parameters

(3.17) A'(00) = A cos 00{ (tan 00 - v)(1 + v2)-1/2 dG(v)

and

(3.18) A-(00) = A cos 00J (v - tan00)(1 + v2)-1/2 dG(v).
tamn 0o

In traffic terms, A+(00) is the intensity of the Poisson process generated by the
fixed car K(po, 00) overtaking slower cars and A- (00) for faster cars overtaking
K(po, 00). We remark here that if 00 = O. po = 0, namely the t axis, then
A+(0) = 0 and -(0) = A2 f v(1 + v2)-12 dG(v), that is, if the random variable
NP is distributed according to the Poisson distribution with parameter 2, then
the points of intersection of random lines Y with the t axis form a point pro-
cess distributed according to the Poisson distribution with parameter
2 foO v(1 + v2)- 1/2 dG(v). Similarly, if 00 = 2Xpo = 0, namely the x axis, then

(3.19) A(' ) = Af (1 + v2)-1/2 dG(v),

and the counting is done along the spatial axis. The corresponding A+('p) =
A(hr) and A-(2r) = 0. Hence, we have established the following result.
THEOREM 3.3. (i) Points of intersection of the field 2' and the t axis (temporal

counting) form a Poisson process with parameter it where

(3.20) A, = A,` v(1 + v2)-112dG(v).fo
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(ii) Points of intersection of the field Y and the x axis (spatial counting)form a
Poisson process with parameter A2, where

(3.21) ix = A I (1 + v2) 1/2 dG(v).

Let the sequence <K1k> denote the instants when the arbitrary line (po, 00)
segment of length L intersects random lines of Y whose orientations Oi belong
to a given set 01 and sequence KZ2k> denote the instants when the arbitrary line
(po, 00) segment of length L intersects random lines of Y whose orientations
Oi belong to a given set 02. We now state a generalized version of the results in
Theorem 3.4.
THEOREM 3.4. If 0( n 02 = 0, then the two sequences Zlk> and <K2k>form

two independent Poisson processes with parameters 2, (00) and 22 (00), respectively,
where

(3.22) Ai(O0) = A v - tan Ool(1 + v2)-1V2 dG(v), i = 1. 2,

and

(3.23) tan Oi = {v v = tan 0 such that 0 E 0j}. i = 1, 2.

The details of the proof are omitted since it is essentially the proof used in
Theorem 3.1.

In the next paragraphs, we establish some similar results employing Kzi> and
<pi>, where the Ti are the arrival times of cars on a highway measured from a
fixed position, say x = 0, and ni are corresponding positions of these cars on
the highway at a fixed time, say ti. Let us denote <zc> the sequence of points of
intersections of a given random family of lines a? with the t axis. Let <vi = tan Oi>
be the sequence of i.i.d. random variables. Those Oi are the orientations of
random lines in a?. Denote <ili> the sequence of points of intersections of
random lines in sY with the x axis. We employ sa instead of Y for now we do
not wish to assume as in Y that <Pi> and <vi> are independent sequences. In
the following theorems, we will employ <oi> and <vi>, or <Ki> and <vi> as
independent sequences and these assumptions will be made specific in each state-
ment of the theorem. The results can be stated as follows.
THEOREM 3.5. If <Ki> forms a Poisson process with parameter Arand sequences

<K i> and <vi> are independent, then <Pi> forms a Poisson process with parameter
A, so [(1 + v2)"12/v] dG(v).

Similarly, we have:
THEOREM 3.6. If <Kli>forms a Poisson process with parameter ,, and sequence

<Ki> and Kvi> are independent, then <Pi> forms a Poisson process with parameter
Ai ft (1 + v2)1/2 dG(v).
We shall give a proof of Theorem 3.5. The proof of Theorem 3.6 is similar

and hence is omitted.
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PROOF OF THEOREM 3.5. Based on the proof similar to that used in Theorem
3.1, we denote N,(c) the number of lines in a? intersecting the t axis in an interval
of length c and denote Np for the number of lines in a? whose pi is bounded by
o < pi < p. Then it is clear we want to show that

(3.24) Pr {N, = n}
- ex {A t{~(1 + v2)1/2 ) d (1 v2)/2 G(V) n

<lp Jo v dGv Apo v d (n!)-
Following the previous development, we arrive at

(3.25) Pr {Np = n} = lim exp {-,CM,} n!

and

(3.26) p, = Pr {NP = 1 N,(c) =1}(
It remains to show that

= X (1 + v2)1/2
(3.27) lim cuc = p - dG(v),

coo JO v

(3.28) pc = Pr {Np = 1 N,(c) = 1} = Pr{NP = 1IT} dx,

(3.29) c=m Pr {NP = 1IT} dx,

(3.30) lim chIc = Pr {NP = 1|} dx

= i Pr{O < 0 < sin -} dx
/Psintan - l

= {I {;I ntan~v dxdG(v)

J ( + v2 1/2

dG(v).

This completes the proof of Theorem 3.5.

4. Traffic flow applications

The purpose of this section is to discuss a number of results that can be
related to low density traffic flow models on an infinite highway in the light of the
developments in Section 3. These models were initiated and developed principally
in papers by RWnyi [10]. Weiss and Herman [13], and Breiman [2], sometimes
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without specific reference to low density traffic flow. Of the theorems presented
in this section, some are known but all the proofs are new and developed in a
unified manner.

Renyi [10] has developed and analyzed a model of traffic flow on a divided
highway that extends in one direction out to infinity without traffic lights or
other barriers. It is assumed that the speed of each car is constant but its value
is governed by a random variable and passing is always achieved without
delays. Assuming that the temporal distribution of cars is described by a Poisson
process, Renyi obtained some asymptotic results for the spatial distribution of
cars along the highway. In what follows, we shall reproduce Renyi's theorems
and include other results dealing with low density traffic flow. It will also be
demonstrated for Renyi's model, that if the spatial distribution of cars is
assumed to obey a Poisson process then the temporal distribution of cars (that
is, arrival times at some fixed position) is again a Poisson process. This new
result establishes a crucial structural property of Renyi's model for low density
traffic. In detail, the assumptions of Renyi's model are:

(a) instants <ti>7' 1 at which cars enter the highway at a fixed position form a
homogeneous Poisson process with parameter co;

(b) a car arriving at a certain point on the highway at instant ti chooses a
velocity Vi and then moves with this constant velocity; the random variables
<Vk> are independently and identically distributed with distribution function
G(v) = Pr {V . v} and sequences {Vk} and <tk> are independent;

(c) in (X/v) dG(v) < cc, that is, the mean value of 1/v is finite; without this
condition a traffic jam would arise and make all traffic flow impossible;

(d) no delay in overtaking a car traveling at a slower speed when it is
approached.
Suppose an arbitrary car K(to, vo) arrives at some fixed point of the highway

at time to, where it assumes and maintains the fixed velocity vo. Let KtQ> denote
the instants at which the car K(to, vo) overtakes slower cars and tQ-> denote
instants at which car K(to, vo) is overtaken by faster cars. Renyi has obtained
the following asymptotic result.
THEOREM 4.1. (Renyi). The instants {t1 } and {t<,} form, two independent

homogeneous Poisson processes, with parameters:

(4.1 ) w) (vO) v= dG(v) (v0) = 0 i ° dG(v)

Renyi's proof of the above theorem is based on the following two properties
of Poisson processes:

(A) if <ti> are the instants of time when an event occurs in a homogeneous
Poisson process with parameter a), and 4 , 42, * * *, is a sequence of independent
positive random variables, each having the same distribution G(C) and each is
independent of the process {tk}, then the time instants tk~k, k = 1, 2, also
form a homogeneous Poisson process with density
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(4.2) W* = WX dG();

(B) if a subsequence {t,,J of the instants {tk}, in which an event occurs in a
Poisson process with density co, is selected at random in such a way that for
each j the probability of the event Ai that j should belong to the subsequence
{vk} is equal to r, 0 < r < 1, and the events Aj, j = 1, 2, . . ., are independent,
and if {tuk} are the instants that are not selected, (that is, j belongs to the sequence
{Uk} if and only if it does not belong to the sequence {Vk}), then {tvj and {tuk}
are two independent Poisson processes with density cor and co(l - r).

It is now known from a result of Wang [12] that property (B), in some sense,
is a characteristic property for Poisson processes. We shall establish Theorem
4.1 without using property (A). Thus, it may be inferred that property (B) implies
property (A).
PROOF OF THEOREM 4.1. The trajectory of any car in the time-space diagram

in the preceding section for Renyi's low density traffic model is realized by a
straight line. Let us denote the trajectories of all cars on the highway as a set d?.
Then it is clear that W possesses the properties of a nonhomogeneous Poisson
field ofrandom lines. Denote MLj the number of lines in .a? that intersect segment
L from below and MP the number of lines in d whose arrival times are in (0, to).
Then

(4.3) Pr {M' = n} = E(m't"(l (t)mM()

= exp {-wtop} n!

where

(4.4) = Pr {M, = 1 MP= 1}

= Pr{0 > tan 1T 10 < p < to}

= 1|OPr{V > s dp
v - vo dG(v),
sov

and vo = xo/to.
Similarly, we define ML as the number of lines in d intersecting L from above
and MP as the number of lines in ci whose arrival times fall in the interval - c

and 0, c > 0. We can compute

(4.5) Pr {ML = n} = lim exp {-cc*} n!
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where i4 = Pr {ML- = 1 M' = 1} and

(4.6) lim c~u* = 1im cPr {M[ = lIM1 = 1}
ca 00 c-X

ro r o/o(to - p)
= lim J J dG(v) dp

= fxo0I(to-p)
= I 0I 0 dG(v) dp

0xod- vnto

0V vo -V
to dG(v).

Random variables ML and ML+ are independent because the events involved
come from disjoint intervals. This completes the proof of Theorem 4.1.
The counting interval employed in the above theorem is on the time axis. In

what follows, a similar approach to the problem dealing with a spatial counting
interval is employed and produces some interesting results.

Denote M- the number of lines in a? intersecting L from above and M+ the
number of lines from below. Denote M., the number of lines in a? whose spatial
positions at t = 0 are between 0 and xo and similarly M'0 for 0 and - c. Let A*
be the spatial density. Then we have

(4.7) Pr {M = n} = exp {-A*Xop} ( !X)

where

(4.8) p Pr {M- =1 m,0 = 1}

to r (v

-I (t'0 - c) dG(t!) .
and

(4.9) Pr {M' = n} = lim E Pr {iM' = n|'= m} Pr {M'. = m}
C~:J3 man

= lim exp {-A*c'c} (A*cPC!)n

where jpc = Pr {M' = 1 M'= 1}. It can be easily verified that

(4.10) lim cmu'j = to{ (7. - vo) dG(v)

and random variables M- and M' are independent. Now denote M! = M'I +
M-. We conclude that
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(4.11) Pr {MI = n} = exp {-A*)to I o- v dG(v)}

K*to { vo- v dG(v)] (n!)-1.

The above result appeared initially in the paper [13] by Weiss and Herman
mentioned previously.

In the next paragraph, results are derived about the spatial distribution of
vehicles if the temporal distribution (distribution of arrival times) is assumed
to be Poisson.

Denote by S' the number of lines in a? intersecting (0. xO) and xO > 0 at
time zero and by S' the number of lines in ,a? whose arrival times are in the
interval (-c. 0). We further denote by S- the number of lines in a? intersecting
(-xO . 0), xO > Oat time zero and by S- the number of lines in a? whose arrival
times are in the interval (0, c). Let us compute the quantities Pr {S' = n},
Pr {S- = n}, and Pr {S = S' + S- = n}. We have

(4.12) Pr {S' = n} = lim exp {-wc1C2} nC

where co is the temporal density and JU2 = Pr {S' = 1 S'= 1}. It can be
shown easily that

(4.13) lim CP2 = X - dG(v).
cp,JO v

We conclude that

(4.14) Pr {S+ = n} = exp {- CxO { dG(v)} [coxo | vdG(v)] (n!)

Similarly, we obtain Pr {S- = n} = Pr {S' = n} and

(4.15) Pr {S = S+ + S = n} = exp {-2cxo - dG(v)}

L2oxo |- dG(v)] (n!)-

We can now summarize as follows.
THEOREM 4.2. If Kti>forms a Poisson process with parameter coand sequences

(ti> and < Vi> are independent, then the locations of vehicles on the highway at
time t = 0, namely <xi>, form a Poisson process with parameter co f (l/v) dG(v).
THEOREM 4.3. If <xi>forms a Poisson process withparameter A* and sequences

<xi> and < Vi> are independent and <xi+ > denotes the positions at which the car

K(vo) overtakes slower cars and <xi-> denotes the positions at which car K(vo) is
overtaken by faster cars, then the two sequences <xt> and <x-> form two

independent (homogeneous) Poisson processes, with parameters
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(4.16) )*(v* )=i * I (vo - v) dG(v) A* (VO) = A* (v - vo) dG(v).

This result is analogous to the Renyi result which we developed as Theorem
4.1 except that the counting of overtakings is accomplished on the spatial axis
rather than on the time axis. The next theorem provides results analogous to
those in Theorem 4.2.
THEOREM 4.4. If <xi>forms a Poissonprocess withparameter 1* and sequences

<xi> and < Vi> are independent and the < Vi> are i.i.d. random variables with common
distribution G(v) = Pr {V _ v}, then the corresponding Kti> arrival times at
position x = 0 form a Poisson process with parameter A*E(V), where E(V) =
lo vdG(v).

PROOF. The proof is again based on the binomial mixing as presented in
property (B) and hence details are omitted.

5. Concluding remarks

REMARK 5.1. On the basis of the work in the previous sections, it appears
that we can view the main structural property for a nonhomogeneous Poisson
field of random lines 2 in the following way. The point process obtained by the
intersections of lines in the field Y with any fixed line (po, 6O) forms a Poisson
process subject to the existence of the integral lo h(v) dG(v) for some suitable
h(v), say 1/v, v(l + V2)-y12, (1 + v2)-112, and others.
REMARK 5.2. In light of the statement in Theorem 3.2, we can offer the

more general result below for which the proof is immediate and hence is omitted.
THEOREM 5.1. Let 1, ,m be m disjoint intervals on 0 and let P1, . . ., Pm

be m intervals on p. Recall that Y is the nonhomogeneous Poisson field defined
previously, then the random variables N(Pi, 0s), i = 1, 2, *, m, where N(Pi, 0i) =
{no. of (p, 0) e £ such that p e Pi, 0 E E4i}, i = 1, 2, ..* , m, are m independent
Poisson random variables. Consequently, the lines (p, 0) are points of a two
dimensional nonhomogeneous Poisson process with parameter A(e) that depends
on 0.

Consider the strips in the (p, 0) plane where 0 _ 0 < j1 and -o < p < oo;
see Figure 2. Thus, the number ofp in an interval of length I on thep axis whose
0 are in the set e has a nonhomogeneous Poisson distribution with mean

(5.1) Ai(0) = AI i dF,

where F is the c.d.f. on the random variable 0.
It is clear, for the homogeneous Poisson field of random lines where F is

the uniform distribution, that Je dF equals the length of the interval measure
for 0 divided by j7r. Hence, the parameter

(5.2) RI J dF = 2-1 (length of 0),
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and thus it depends only on the length of the set 0 and the length of I on the p
axis. Thus, Theorem 5.1 holds for homogeneous Poisson fields of random lines
and in this way it adds to Miles' results.

All results obtained in this paper should be capable of extension to other
nonhomogeneous Poisson fields, say, where A is the function of p, A = A(p), or
where A = A(t, x).
REMARK 5.3. The results announced by Miles in [7] and [8] also fall out

immediately from our development because there the orientations xci are
independent and uniformly, distributed, 0 < ai < t. Then the following result
is immediate: the points of intersection of the random lines a? and an arbitrary
line (po, 00) form a Poisson process with parameter 2A/7r.
REMARK 5.4. Based on the results stated in Theorem 3.3 (i) and Theorem

3.5, one might expect to get the following identity

(5.3) i iA{ (1 ±V) dG(v) iv(1 ± v2)"2 dG(v).

But the identity is true if and only if the field & consists of parallel lines alone.
This reduces the field of random lines $f to the case initially studied by Goudsmit
[5], who employed it as a first attempt to study random lines in the plane in
connection with examining the randomness of tracks left in a cloud chamber
by a particle.
REMARK 5.5. The structure and properties of random lines in the plane

that are developed in this paper make it possible to review and extend results
in still other applications. In a paper reporting on the pattern in a planar region
of one species of vegetation with respect to another, Pielou [9] defined a random
pattern as one in which the alternation between species along any line transect is
Markovian. In a subsequent paper, Bartlett [1] indicated that she did not
establish the existence of a two state planar process that could produce this
Markovian property. Switzer [11] then demonstrated the existence of a finite
state random process in the plane, namely, the homogeneous Poisson field or
random lines with the property that alternation among states along any straight
line is Markovian. In this paper, a whole class of finite state random processes
in the plane that accomplishes this is presented by our results for nonhomo-
geneous Poisson fields of random lines.
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