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1. Introduction

The notion of point processes with values in a general space was formulated
by K. Matthes [4]. A point process is called Poisson. if it is a-discrete and is a
renewal process. We will prove in this paper that such a process can be charac-
terized by a measure on the space of values. called the characteristic measure.

Let X be a standard Markov process with the state space S. Fix a state a E S
and suppose that a is recurrent state for X. Let S(t) be the inverse local time of
X at a. By defining Y(t) to be the excursion ofX in (8(1-). S(t +)) for the t value
such that S(t+ ) > S(t-), we shall obtain a point process called the excursion
point process with values in the space of paths. Using the strong Markov property
of X, we can prove that Y is a Poisson point process. Its characteristic measure.
called the excursion law, is a a-finite measure on the space of paths. Although
it may be an infinite measure, the conditional measure, when the values of the
path up to time t is assigned, is equal to the probability law of the path of the
process X starting at the value of the path at t and stopped at the hitting time
for a. Using this idea, we can determine the class of all possible standard Markov
processes whose stopped process at the hitting time for a is a given one.
We presented this idea in our lecture at Kyoto in 1969 [3] and gave the

integral representation of the excursion law to discuss the jumping-in case in
which the excursion starts outside a. P. A. Meyer [5] discussed the general case
in which continuous entering may be possible by introducing the entrance law.
In our present paper, we will prove the integral representation of the excursion
law in terms of the extremal excursion laws for the general case. It is not difficult
to parametrize the extremal excursion laws by the entrance Martin boundary
points for the stopped process and to determine the generator of X, though we
shall not discuss it here.

E. B. Dynkin and A. A. Yushkevich [1]. [2] discussed a very general extension
problem which includes our problem as a special case. We shall deal with their
case from our viewpoint. The excursion point process defined similarly is no
longer Poisson but will be called Markov. It seems useful to study point
processes of Markov type in general.
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2. Point functions

Let U be an abstract Borel space associated with a a-algebra B(U) on U whose
member is called a Borel subset of U. Let T+ be the open half line (0, cc) which
is called the time interval. The product space T, x U is considered as a Borel
space associated with the product a-algebra B(T+ x U) of the topological a-
algebra B(T+) on T, and the a-algebra B(U) on U.
A point function p: T, -+ U is defined to be a map from a countable set Dp c T

into U. The space of all point functions: T, -+ U is denoted by H = H(T2-, U).
For p e H and E E B(T+ x U), we denote by N(E, p) the number of the time
points t E Dp for which (t, p(t)) e E. The space H is regarded as a Borel space
associated with the v-algebra B( H) generated by the sets: {p E H: N(E, p) = k},
EeB(T+ x U),k = 0,1,2, .
We will introduce several operations in H. Let E e B(T+ x U). The restriction

p|E of p to E is defined to be the point function g such that

(2.1) D, = {t e Dp: (t, p(t)) e E}

and g (t) = p (t) for t e Dg.
Let V eB(U). The range restriction Pir V of p to V is defined to be the

restriction p(T+ x VC Let e B(T+). The domain restriction PId S is defined to
be the restriction p | S x U. Let s e T+. The stopped point function ap of p at s
is defined to be the domain restriction ofp to (0, s] and the shifted point function
g = 0.p is defined by D, = {t: t + s e D,} and g(t) = p(t + s).

Let p,, for n = 1, 2, * be a sequence of point processes. If the Dpn, n =
1, 2, * *, are disjoint, then the direct sum p = E p,, is defined by Dp = U,, Dp
and p(t) = p,(t) for t e Dpn.

3. Point processes

Let n be the space of all point functions: T+ -. U as in Section 2. Let (Q, P)
be a probability space, where P is a complete probability measure on Q. A map
Y: Qi -n H is called a point process if it is measurable. The image of w by Y is
denoted Y01 and is called the sample point function of Y corresponding to Co.
The value of Y. at t if t belongs to the domain of Y. is denoted by Y,(t). It
follows from the definition that N(E, YO) is measurable in cw and is therefore a
random variable on (Ql, P) if E e B(T x U). The probability law of Y is clearly
a probability measure on (H, B( H)).
The process Y is called discrete if N((0, t) x U, Y) < cc a.s. for every t < oo.

It is called a-discrete if for every t we can find U, = U,(t) e B(U), n = 1, 2,
such that N((0, t) x Un, Y) < xc a.s. for every n and that U = U,, U,.
The process Y is called "renewal" if for every t < oo we have that aY and 0,Y

are independent and that Ot Y has the same probability law as Y for every t. By
virtue of the following theorem, we call a a-discrete and renewal point process a
Poisson point process.
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THEOREM 3.1. Let Y be a-discrete and renewal. Then N(Ei, Y), i = 1, 2, * *, k
are independent and Poisson distributed for every finite disjoint system {Ei} c

B(T+ x U).
REMARK. A probability measure concentrated at cc is regarded as a special

case of Poisson measure with mean cc.
PROOF. Because of the v-discreteness of Y and the second condition ofthe re-

newal property, we can take {U,,} independent of t such that N((O, t) x U,, Y) <
oo a.s. for every t and such that U = U, U,. It can be also assumed that U,,
increases with n. Since

(3.1) N(E, Y) = lim N(E n (T+ x Un). Y).
n

and since the Poisson property and the independence property are inherited by
the limit of random variables, we can assume that all Ei are included in T+ x U,.
By the renewal property of Y, we can easily see that Z(t) N((O, t) X U,. Y)
is a stochastic process with stationary independent increments and that its sample
function increases only with jumps = 1. a.s. This Z(t) is therefore a Poisson
process. This implies that Z(t) is continuous in probability.
Now set Zi(t) = N(Ei, (0, t) x UJ) and Z*(t) = Y, iZi(t). Since Z*(t) -

Z*(s) . k(Z(t) - Z(S)) for s < t, Z* is continuous in probability with Z. The
process Z* has independent increments and its sample function increases with
jumps. Thus, Z* is a Levy process and Zi(t) is the number of jumps = i of Z* up
to time t. The {Zi(t)}i are therefore independent and Poisson distributed. Since

(3.2) N(Ei, Y) = lim Zi(t),

the proof is completed.
As an immediate result of Theorem 2.1 we have the following theorem.
THEOREM 3.2. In order for Y to be a Poisson point process, it is necessary and

sufficient that it be the sum of independent discrete Poisson point processes.

4. Characteristic measure

Let Y be a Poisson point process defined in Section 3 and set m(E) =
Ep(N(E, Y)), where Ep = expectation. Then m is a measure on T+ x U which
is shift invariant in the time direction because of the second condition in the
renewal property of Y. By the a-discreteness of Y. we have m((0, t) X U,) < cc

for the U,, introduced in the proof of Theorem 3.1. This implies that m is a-finite.
Therefore, m is the product measure of the Lebesgue measure on T+ and a unique
a-finite measure n on U. The measure n is called the characteristic measure n of Y
by virtue of the following theorem.
THEOREM 4.1. The probability law of a Poisson point process Y is determined

by its characteristic measure n.
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PROOF. The measure n determines the joint distribution of N(Ei, Y), i =
1, 2, , k for disjoint Ei E B(T+ x U) by Theorem 3.1. Since N(E, Y) is
additive in E, it is also true for nondisjoint Ei. This completes the proof.
The following theorem shows that any arbitrary a-finite measure on U induces

a Poisson point process.
THEOREM 4.2. Let n be a a-finite measure on U. Then there exists a Poisson

point process whose characteristic measure is n.
Before proving this, we will study the structure of a Poisson point process

whose characteristic measure is finite.
THEOREM 4.3. A Poisson point process is discrete if and only if its charac-

teristic measure is finite.
PROOF. Observe that the number of s E D, n (0, t) is N((0. t) x U, Y).
THEOREM 4.4A. Let Y be a discrete Poisson point process with characteristic

measure n. (Then n is a finite measure by the previous theorem.) Let D, be -1 (CO),
T,(o)), -.and let ti(o) = Y. (Ti(co)). Then we have the following:

(i) Ti -Ti 1 i = 1, 2. (TO = °), 4l, 52, are independent;
(ii) Ti - Ti1 is exponentially distributed with mean I/n(U), that is. P(Ti-

- > t) = e t-(U);
(iii) P(4i E A) = n(A)/n(U). A e B(U).
PROOF. Let ci > 0 and Vi E B(U), i = 1, 2 k. Write qp(t) for ([pt] +

1)/p, [t] being the greatest integer . t. Then we have

(4.1) E xp{e E ciTi} Xi c- Vi, i = 1, 2. k]

plim E, expP i{ ip(zi)}. lie Vi, Ti - Ti-1 >

i= 1, 2, -k|

= lim e l E;vi} (
Vi Vi < rj <-e

P a) O<v1< <vk i=1 P P P

i=1, 2, . ,k)
The event in the second factor can be expressed as

N(Y.(vi 'i] x Vi) = 1

(4.2) for i = 1, 2, ,Ik,
N(Y (vi 1vi] x (U - Vi)= 0

P P

(4.3) AN Y, ( ]X U) for v V1, . ,VV.
P P
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Using Theorem 3.1, we can easily see that its probability is

(4.4) exp { ( } Q) H n(Vi).

Therefore, the above limit is expressed as an integral form

(4.5) Ep exp { L cTi}, i e Vi, i = 1, 2, , kg

k k

n(Vi) ... exp { iti tkn(U) dt, dtk.
0 < t <...-- tk

Changing variables in the integral, we obtain

(Jk
(4.6) ZEpiexp - 1V)i{ (Ti -Tr. i EVi= i =1 2.

=Hp n(Vi) ... exp { iSi E si) n(U)} dsl ...dsk
St1..Sk > °

for f31 >f2 > . . . > > 0. This is true forf1, 2*, e > ° by analytic
continuation in fli. It is now easy to complete the proof.

This theorem suggests a method to construct a Poisson point process whose
characteristic measure is a given finite measure.
THEOREM 4.4B. Let n be a finite measure on U. Suppose that al, a2,

4l 2,** are independent and that

(4.7) P(ai > t) = exp {-tn(U)}, P(4i A) = n(A)
n (U)

Define a point process Y by

(4.8) DY = {a1,,1 a+ U2 } Y(a1+ +ak) = k.

Then Y is a Poisson point process with characteristic measure = n.
Now we will prove Theorem 4.2. The case n(U) < oo has been discussed

above. If n(U) = x, then we have a disjoint countable decomposition of U:
U = Ui Uj, n(Uj) < x. Let ni(A) = n(A n Us). Then ni is a finite measure on
U and we have a Poisson point process Yi with characteristic measure ni. We
can assume that Y1. Y2,. . . are independent. First we will remark that
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Dy, i = 1, 2,*, are disjoint a.s. In fact for i #&

(4.9)
P(Dy Dn Dr'ji(0, t) #k 0)

< PiPN U x( ,p Yi) 0EN. U x( ,p, Yj) f

t2n (U)nj(U) (1) kO 0

as k xo. By letting t -- o, we have P(Dy, r- Dyj # 0) = 0 for i, j fixed.
Therefore, Dy1, DY2, *, are disjoint a.s.

Let Y be the sum of Y1, Y2, , (see the end of Section 1). It is easy to show
that Y is a Poisson point process whose characteristic measure is n.

Let p: T x Us~ [0, xo) be measurable B(T x U)/B[O, cc). Then we have
the following result.

THEOREM 4.5. With the convention that exp {- Y} = 0, we have

(4.10) Ep[exp {-at E (p(t, Yf)}]
teDy

= exp {T (exp {-cxp(t, u)} - 1) dt n(du)}

PROOF. If (p is a simple function, this follows from Theorem 3.1 and the
definition of n. We can derive the general case by taking limits.

Let (d be a random variable with values in [0, xc]. The condition ( <$o
a.s. is equivalent to

(4.11) lim E(exp {-x(l}) = 1.
a0+

Using this fact, we get the following theorem from Theorem 4.5.
THEOREM 4.6. The condition

(4.12) E T (t, Yt) < xo a.s.
teDy

is equivalent to

(4.13) jJ Xp(t, u) A 1 dtn(du) < cc.

REMARK. This condition is also equivalent to

(4.14) fxu (1 - exp {-(t, u)})dt n(du) < oo.

THEOREM 4.7. Let Y be a Poisson point process with values in U. The range
restriction Y* of Y to a set U* e B(U) is also a Poisson point process whose
characteristic measure is the restriction of that of Y to U*.
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5. The strong renewal property of Poisson point processes

Let Y be a Poisson point process and B,(Y) be the a-algebra generated by the
stopped process xtY. It is easy to see that B,(Y) is right continuous, that is,
B,(Y) = n.l> B,(Y) a.s., where two a-algebras are said to be equal a.s. if every
member of one a-algebra differs from a member of the other by a null set.

Let a be a stopping time with respect to the increasing family B,(Y), t e T,.
Suppose that a < oo a.s. Then we have the following.
THEOREM 5.1 (Strong Renewal Property). The process Y has the strong

renewal property:
(i) ocY and OaY are independent;
(ii) 0aY has the same probability law as Y.
The idea of the proof is the same as that of the proof of the strong Markov

property in the theory of Markov processes and is omitted.

6. The recurrent extension of a Markov process at a fixed state

Let S be a locally compact metric space. Let 6 stand for the cemetery, an
extra point to be added to S as an isolated point. Denote the topological a-
algebra on S by B(S) and let T stand for the closed half line [0, xo) with the
topological a-algebra B(T).

Let U stand for the space of all right continuous functions: T -> S U {3}
with left limits. Let B(U) denote the a-algebra on U generated by the cylinder
Borel subsets of U. It is the same as the topological a-algebra with respect to
the Skorohod topology in U. A member of U is often called a path. The
hitting time for a, the stopped path at t, and the shifted path at t are denoted
by ua(u), at(u), and 0(u) as usual. To avoid typographical difficulty. we write
aa(u) for the stopped path at ua(u).

Let X = (Xe, Pb) be a standard Markov process with the state space S,
where Pb denotes the probability law of the path starting at b which is clearly
a probability measure on (U, B(U)), completed if necessary.
The process X stopped at the hitting time a, for a is also a standard Markov

process which is denoted by aaX. The state a is a trap for caX.
Let X0 = (X', Pb) be a standard Markov process with a trap at a. Any

standard Markov process X = (Xj, Pb) with the state space S is called a recurrent
extension of X' at a if aaX is equivalent to X0 and if a is a recurrent state for X,
that is, Pa(ua < cO) = 1. The process X0 itself is a recurrent extension of X',
but there are many other extensions. Our problem is to determine all possible
recurrent extensions of X0. We will exclude the trivial extension X0 from our
discussion.

Let X be a recurrent extension of X'. We will exclude the trivial extension.
Since Pa(aa < oc) = 1, we have two cases.

Case 1 (Discrete Visiting Case). Pa(0 < a, < Xc) = 1. In this case the
visiting times of the path of X at a form a discrete set.

Case 2. Pa(a, = 0) = 1. In this case we have exactly one additive functional
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A(t) such that

(6.1) Eb(e-aa) = Eb({ e-' dA(t)).

This function A (t) is called the Blumenthal-Getoor local tine of X at a. The
path of A(t) increases continuously from 0 to x with t. This case is divided into
two subcases. Let Ta denote the exit time from a.

Case 2(a) (Exponential Holding Case). Ta is exponentially distributed with
finite and positive mean.

Case 2(b). (Instantaneous Case). Pa(T'a = 0) = 1.
We will define the excursion process Y of X with respect to Pa, In case 1, Y

is a sequence of random variables with values in U, Yk = aS(k)(0a(k- 1)X) where
u(() = 0 and u(k)(k > 0) is the kth hitting time for a. Since Yk is a random
variable with values in U for each k. it is a stochastic process and

(6.2) Yk(t) {X(a(k- 1) + t) j _ k< 5(k) -(k 1)
(a. ~~~~t_ a5(k) - u(k - 1 ).

By the strong Markov property of X at v(k). we can easily prove that all Yk have
the same probability law. In Case 2, Y is a point process with values in U:

(6.3) Dy = {s :S(s+) - S(s-) > 0}, S(t) = A (t),
ys = 0a(6S(s-)X), s e Dy;

the second equation can be written as

(6.4) Y (t) = X(8s-) + t), 0. t < S(s+) - S(s-).
(a! t > S(s+) -S(s-)

The process Y is discrete in Case 2(a). but not in Case 2(b). Even in Case 2(b)
Y is a-discrete, because S(s+) - S(s-) > I/k is possible only for a finite
number of s values in every finite time interval. Y is also renewal, as we can
prove by the strong Markov property of X. Therefore, the excursion process is
a Poisson point process in Case 2.
The excursion law of X at a is defined to be the common probability law of

Yk in Case 1 and the characteristic measure of Y in Case 2.
THEOREM 6.1. The excursion law n of X and the probability laws {Pbo}bta

determine the probability laws {Pb} of X.
PROOF. Because of the strong Markov property. it is enough to prove that

Pa is determined by n and {Pb?}bla. Since n determines Y, this is obvious in
Case 1. We will discuss Case 2. Since 8(s) is a subordinator. that is. an increasing
homogeneous Levy process. we have

(6.5) S(s-) = ms + E (8(t-) - s(t-)) = mns + E
t<s t<s, teD,
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m being a nonnegative constant, called the delay coefficient of X at a. Therefore.
S is determined by mn and Y. Since 5(s) is increasing and since we have

(66 ( =StS(s SS(s-) < I < S(s+).
(6.6) X, S Ss). ~ - = I

a, S( -) = t = S(s-)

a.s. (Pa), the probability law Pa is determined by mt and the probability law of Y.
But the latter is determined by n. Since m is also determined by n by the theorem
below, Pa is determined by n.
THEOREM 6.2. In Case 2. we have

(6.7) mn 1 -Uf (1 - exp {-aa(i)})n(du).

PROOF. By the definition of the local time, we have

(6.8) 1 = Ea(exp {-a}) = Ea(J exp {-t} dA(t))

= E, exp {-S (s)} ds) = Ea(exp {-S(s)}) ds

= i exp {-n&s}Ea[exp {- E oa(, ]t) ds
JO L I t<_s, teD J

= {o exp {-ns} exp {-s (1 - exp {-la (u)})n(du) ds

by Theorem 4.5. which equals [m -flu (1 - exp {-oa(u)})n(du)] This
completes the proof.
THEOREM 6.3. The excursion law satisfies the following conditions:
(i) n is concentrated on the set U' {u :0 < ,'a(u) < 00. u(t) = a for t _

a. M8)} ;.
(ii) n{u e U:u(O) ¢ V(a)} < oo for every neighborhood l'(a) of a;
(ii') Ju (1 - exp {a-a(u)})n(du) _ 1:
(iii) n{u: Oa(u) > t. u e At, Otu e M} = SAa(,.>t)Put)(M)n(du)foi t > 0, A, E

B,(U) andM e B(U);
(iii') n(u:u(O)EB,ueM) = JU(o)eBP.0(o)(M)n(du) for BeB(S - {a}) and

M E B(U).
PROOF. Condition (i) is obvious. Condition (ii') is obvious in Case 1 and it

follows at once from Theorem 6.2 in Case 2. Condition (ii) is obvious in Case 1.
To prove it in Case 2. consider the restriction Y* of Y to U* = {u: u(0) ¢ V(a)}.
Then t E D,* implies X(S(t -) -) = a and X(S(t -) +) J V(a). Since the set of
such t values is discrete. Y* is discrete. But Y* is a Poisson point process with the
characteristic measure = n U* (Theorem 4.7). Therefore, the total measure of
nIU* is finite and so we have n(U*) < ca. Condition (iii) is obvious and
condition (iii') is trivial in Case 1.
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To prove (iii) in Case 2, consider the measures (Meyer's entrance law):

(6.9) rt(B) = n{u a,(u) > t. u(t) e B} Be B(S), t > 0.

First we will prove that for B e B(S) and M e B(U),

(6.10) n{n : ua(U) > t, u(t) e B, 0, u c M} = lB r,(db)Pb(M).

Let V = {u e U:aa(u) > t} and Z = Y1, V. Since se Dz implies S(s+) -

S(s -) > t. the set of such s values is discrete. Therefore, Z is a discrete Poisson
point process with the characteristic measure = n V. This implies that n( V) < oo.
Let c be the first time in D,. By Theorem 4.4A we have

(6.11) Pa(c a(OS(t-)X) c M) = n(M' TV) ? M'cB(U).n(V)
Setting M' = {u: aa(u) > t, u(t) e B. 0,u e M}.M e B(U), we have

(6.12) n{u : ,a(u) > t. u(t) cB, 0,u ciM}

= f(V)Pa(ua(0s(,-)X) > t, Xs(r-)+tB, aa(OS(t-)+t(X)) E M).
Since S(z-) + t = inf {a > 0: Xs =& a for oa - t < s . a}, S(z-) + t is a

stopping time for X. Since ua(OS(t-)X) > t is the same as Xs(,),, + a, this event
is measurable (Bs(r-)t)+ Therefore, we have

(6.13) n{u ,a(U) > t, u(t) c B, Ou e M}

= n(V) { Pa(ua()OS(')X) > t, XS(-)+, e db)Pb(X CiM).

Setting M = {u u(0) e B}, we have

(6.14) r,(B) =_ n{u Ta,,(u) > t u (t) c-B}
= n( V)Pa(ua(OS(t_)X) > t, XS(r)+ 6c B)

Putting this in the above formula, we obtain (6.9). Equation (6.9) can be
written as

(6.15) n {u aa(u) > t, u (t) e B, Ou eiM} = uB P.(t) (M)n (du).

Using this and the Markov property of X and noticing that ua(u) > t implies
ua(u) > s and aa(u) = s + aa(0su) for s . t. we get

(6.16) n{u: ua(u) > t, u(tl) e B1, . u(tk) e Bk. 0u c M}

=ful)cBl,,U(tk)EBka(U)>t Pu(t)(M)n(du).
which implies (iii). A similar and even simpler argument shows (iii').
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THEOREM 6.4. In order for a a-finite measure n on U to be the characteristic
measure of a recurrent extension of X' it is necessary that n satisfies the following
conditions in addition to (i), (ii), (ii'), (iii) and (iii') in Theorem 6.3:

Case 1 (Discrete Visiting Case). n is a probability measure concentrated on
U' _ {us U':u(O) = a};

Case 2(a) (Exponential Holding Case). n is a finite but not identically zero
measure concentrated on U {u E U': u(O) :i a} such that fu (1 -
exp {-aa(u)})n(du) < 1;

Case 2(b) (Instantaneous Case). n is an infinite measure such that n(Ua) = 0
or oo.

PROOF. First we will prove the necessity of the conditions. In Case 1, n is
the probability law of the path of X' starting at a and is therefore concentrated
in Ua. In Case 2, n is proportional to the probability law (with respect to Pa) of
aa(t0X), when z is the exit time from a. Since G > T > 0 a.s., X(T)
aa(OtX) (0) :& a by the strong Markov property of X. This implies that n is con-
centrated in U'. Since the local time of X at a is proportional to the actual
visiting time in this case, the delay coefficient m must be positive. Thus, we have
the inequality. In Case 3, n must be an infinite measure, because the excursion
process Y is not discrete. IfO < n (Ua) < 00, then n (U + ) = Xo and Ya _ Y Ir Ua
would be a discrete Poisson point process. Let z be the first time in Dya. Then
S(T-) would be a stopping time for X, that is,

(6.17) S(T-) = inf {t: X, = a and there exists t' > t for all s e (t, t')X. =E a}

and the strong Markov property of X would be violated at S(r-).
For the proof of the sufficiency, it is enough to construct the path of X

starting at a with the excursion measure = n. First we construct the Poisson point
process Y with the characteristic measure = n by Theorem 4.2. It is easy to
construct the path of X starting at a whose excursion process has the same
probability law as Y by reversing the procedure of deriving the excursion
process from a Markov process.

7. The integral representation of the excursion law

Let X0 be a standard process on S with a trap at a e S and &(X') be the set
of all a-finite measures on U satisfying the five conditions (i), (ii), (ii'), (iii) and
(iii') in Theorem 6.3. Define the norm n e &(X0) by

(7.1) ||ni| =f (1 - exp {-aa(u)})n(du).

Let &1(XP) denote the set of all n E o(X0) with m|nu| = 1. Clearly, &1(X0) is a
convex set. This suggests that any n e &(X') has an integral representation in
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terms of extremal ones. The measure n e &1 (X') is called extremal if

(7.2) n cclul + C2U2(c1, C2 > O, C1 + C2 = 1, U1, U2 E&1(X))
implies u1 = u2 = u.
Suppose that n is concentrated on U+ = {u E U' :u(0) 4& a}. Then condition

(iii') implies

(7.3) n(*) = I k(db)Pb( ), k(B) = n{u: u(O) e B}.

Since Pb( ), b 4 a, satisfies all conditions (i) to (iii'), it belongs to &(X0), and
therefore we have

Pb() _ Wb)
(7.4) nb -Pblip

- Eb(1 - exp {- a})
e (X).

Therefore (7.3) can be written as

(7.5) n(-) = IbS-{a) A(db)nb( ), A(db) = Eb(1 - exp {-ura})k(db).

Since k(S - V(a)) < so for every neighborhood V(a) of a and

(7.6) -S l - exp {oa})k(db) = 1

by (ii) and Iluil = 1, A satisfies

(7.7)
A(d) < X0 for every V(a)

Is V(a) Eb (1 - exp {-a})y
and A(S - {a}) = 1.
Using (7.5) and noticing that nb = clnj + c2n2, cl, C2 > 0, implies that both
nj and n2 are concentrated on Ub = {u e U: u(0) = b}, we can easily prove
that nb, b 4k a, is extremal.

Suppose that u e 1(X') and B e B(S) and set

(7.8) UB = {u E U: u(0) e B}, nB = n| UB.

If nB 4 0, then nB/|inBi| E &1(X0). Using this fact, we can easily see that if
n e g1 (X0) is extremal, then n is concentrated in Ub for some b e S. If b 4 a,
then n = nb by (7.5). However, there are many extremal ones concentrated in
Ua. Let N' be the set of all such extremal ones and write B(N') for the a-algebra
on Na generated by the sets {v e Na: v(A) < c}, A c B(U), c > 0.

If n is concentrated on Ua, then n( * ) JINa v(* )A(dv), where A is a probability
measure on N'. Once this is proved, we can easily obtain the following theorem.
THEOREM 7.1. The measure n e 1(X0) can be expressed uniquely as

(7.9) n( ) = Jb anbO2(db) + N'. v(*)i(dv)

with a probability measure 2 on (S - {a}) u N .
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PROOF. Since n is concentrated on U', we will regard n as a measure on Ua
from now on. Let Q be the product space T x Ua associated with the product
a-algebra. We introduce a probability measure Q on Q by

(7.10) Q(dzdu) = l,< ,(U) exp {-T} dr n(du).
where 1,<,.(u) denotes the indicator of the set {(T, u) E 52: Z < 0a(U)}. It is easy
to see that Q(Q) = linil = 1. We will use the same notation for a measure
and the integral based on it, for example Q(f) = Inf(co)Q(dw0). We also use

the same notation for a a-algebra and for the class of all bounded real functions
measurable with respect to it.

Consider a stochastic process Z,(co) on (Q. Q) defined by

(u(t) for t < T.
(7.11) Zt(CO) = Z,(C, U) =

a for t .'

and let B,(Z) denote the a-algebra generated by Z, s . t. We will first prove
that

(7.12) Q[l,,,g(Otu)jB,(Zj = 1t<,nUt)((1 - exp {-ua})g) a.s. (Q)

for every g e B(Ua). For this purpose it is enough to prove that

(7.13) QU1(Z (t1)) ..f (Z(t,.)) t< 'g(0tU)]
= Q[f1(Z(t1)) ... ffl(Z(tf))lt<,n.(l)((L - exp {-a})g)],

for t1 < t2 < ... < tn < t and fie B(S8). The Z(ti) can be replaced by u(ti)
in the above equation because of the factor 1t<.' It is therefore enough to prove
that

(7.14) Q[f(u)1<,g(0,u)] = Q[f(u)lt<,nU(,)(1 - exp {-ena)g]
for everyf e B,(U). Integrating by dT and using property (iii), we can prove that
both sides are equal to

(7.15) *f(u)1t<,. exp {-t} Et)((1 - exp {aa})g)n(du).

The set Ua is a Borel subset of U with respect to the Skorohod topology whose
topological a-algebra is the same as B(U). Therefore letting BO+(Z) = n,>0
B,(Z), we can define on (U, B(U)) the conditionalprobability measure Q( IBO+ (Z))
of the random variable co = (., u) u. Define a measure v.) on (U. B(U))
depending on o by

(7.16) v.(du) 1 -exp { Bo

Then we have

(7.17) v. (g) = Q g-(U)B{) a.s. (Q).
- exp { -Ua(U)}
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The measure v. is clearly an Na valued function on Q, measurable with respect
to BO+ (Z). Let A be the probability law of this random variable.

Let g e B(Ua). Then we have

(7.18) |v(g)A(dv) = Q(vw(g)) = Q( g- U) )
('ra -)exp {i7a(8)}

JaJ0 1 -exp {i-a(u)}n (d)
= n(g).

To complete the proof, we need only prove v. e &1 (X0). The only difficult
condition we have to verify is (iii), that is,

(7.19) v.(f(u)g(Otu)) = v(,(f(u)E°(t) (g))
for t > 0, fE B,(Ua) and g e B(U0). We have to prove this except on a null set
which is independent of t, f and g. First fix t > 0. Since v. and Pb° are
measures, it is enough to prove (7.19) in casef and g are of the following form:

(7.20) f(u) = f1(U(tl))f2(u(t2)) fk(u(tk)), 0 < t, < * < tk,
g(u) = g1(u(81))g2(U(S2)) ... gm(u(sm)), 0 < s1 < ... < Sm'

where ti and sj are taken from a fixed countable dense subset of (0, oo) and fi
and gj are taken from a fixed countable number ofbounded continuous functions
on S which form a ring generating the a-algebra on S. Take 5 < t, and write
fa for f o a-j. Then we have

(7.21) vc(f(u)g(OM)) = Q exp{-(g (U)} /B+(Z)

= lim Q I(1 fa(0,au)g(0tat06u) |BO (Z))
a-0+ 1 -exp{- a )}(U5

Noticing that Q(.1BO+(Z)) = Q(Q(.IB(Z))|BO+(Z)) and using (7.14), we can

see that the expression above is

(7.22) lim Q(1a<rnU(a)(fa(u)g(Ot-au))IBo+(Z))
- lim Q(la<?nu(a)(fa(u) .E(t-a.)(g))IBO+(Z))-

By a similar argument, we have

f(u)EU(t) (g) B
(7.23) v. (f (u)EU(t)(g)) = Q1 - exp {- a(U)} 0+

= lim Q(1a<,nu(a)(fa(u) .E(t.-.)(g))IBO+(Z)).

Thus, (7.19) is proved for suchf and g except on a null co set. Since there are a

countable number of possible pairs of (f, g), equation (7.19) holds for every
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(f, g) except on a null co set which may depend on t. If (7.19) is true for t. then
it is true for every t' > t by the Markov property of X. It is therefore enough
to verify (7.19) only for a sequence t140. Thus, the exceptional ws set can be
taken independently of t.

We wish to express our gratitude to K. L. Chung and R. K. Getoor for their
valuable suggestions.

REFERENCES

[1] E. B. DYNKIN, "On excursions of Markov processes." Theor. Probability Appl., Vol. 13 (1968),
pp. 672-676.

[2] E. B. DYNKIN and A. A. YIXSUKEVICH. "On the starting points of incursions of Markov
processes." Theor. Probability Appl., Vol. 13 (1968). pp. 469-470.

[3] K. ITO. "Poisson point processes and their application to Markov processes." Department of
Mathematics. Kyoto University, mimeographed notes. 1969.

[4] K. MATTHES. "Stationdre zufdllige Punktmengen, 1." Jber. Deutsch. Math.- 1'erein., Vol. 66
(1963). pp. 69-79.

[5] P. A. MEYER, "Processus de Poisson ponctuels, d'apres K. Ito," 8eminaire de Probabilites,
No. 5, 1969-1970, Lecture Notes in Mathematics, Berlin-Heidelberg-New York. Springer-.
Verlag, 1971.


