APPROXIMATION OF CONTINUOUS ADDITIVE FUNCTIONALS

R. K. GETOOR University of California, San Diego

1. Introduction

The purpose of this exposition is to give correct proofs of two well known and reasonably important propositions concerning continuous additive functionals. We adopt the terminology and notation of [1] throughout. We fix once and for all a standard process $X = (\Omega, \mathcal{F}, \mathcal{F}_t, X_t, \theta_t, P^x)$ with state space E. (See (I-9.2); all such references are to [1].)

The following two theorems are important facts about continuous additive functionals (CAF's) of such a process. (See (IV-2.21) or [2].)

THEOREM 1. Let A be a CAF of X. Then $A = \sum_{n=1}^{\infty} A^n$ where each A^n is a CAF of X having a bounded one potential.

Making use of Theorem 1, one can establish the following result. (See (V-2.1) or [2].)

THEOREM 2. Suppose that X has a reference measure (that is, satisfies the hypothesis of absolute continuity). Then every CAF of X is equivalent to a perfect CAF.

Unfortunately, the proofs known to me of Theorem 1 are not convincing. For example, the "proof" in [1] goes as follows. Let A be a CAF of X. Define

(1.1)
$$\varphi(x) = E^{x} \int_{0}^{\infty} e^{-t} e^{-A_{t}} dt.$$

Clearly, $0 < \varphi \leq 1$ and φ is universally measurable; actually it is not difficult to see that φ is nearly Borel, but this is not required. Let $R = \inf \{t: A_t = \infty\}$. Then it is easy to check that R is a terminal time and that $P^x(R > 0) = 1$ for all x. Obviously, $\varphi(x) = E^x \int_0^R e^{-t} e^{-A_t} dt$. Now if T is any stopping time,

(1.2)
$$E^{x}\{e^{-T}\varphi(X_{T}); T < R\} = E^{x}\left\{e^{-T}\int_{0}^{R \cdot \theta_{T}} e^{-t}e^{-A_{t} \cdot \theta_{T}} dt; T < R\right\}$$
$$= E^{x}\left\{e^{A_{T}}\int_{T}^{R} e^{-u}e^{-A_{u}} du; R < T\right\},$$

This research was partially supported by the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, under AFOSR Grant AF-AFOSR 1261-67.

and so using T15, Chapter VII, [3], one finds

(1.3)

$$U_{A}^{1}\varphi(x) = E^{x} \int_{0}^{\infty} e^{-t}\varphi(X_{t}) dA_{t}$$

$$= E^{x} \int_{0}^{\infty} e^{-t}\varphi(X_{t})I_{[0,R)}(t) dA_{t}$$

$$= E^{x} \int_{0}^{R} e^{A_{t}} \int_{t}^{R} e^{-u}e^{-A_{u}} du dA_{t}$$

$$= E^{x} \int_{0}^{R} e^{-u}e^{-A_{u}} \left(\int_{0}^{u} e^{A_{t}} dA_{t} \right) du$$

$$= E^{x} \int_{0}^{R} e^{-u}(1 - e^{-A_{u}}) du \leq 1.$$

Next let f_n be the indicator function of $\{1/(n + 1) < \varphi \leq 1/n\}$ for $n \geq 1$. Clearly, $\Sigma f_n = 1$ and so if we define $A_t^n = \int_0^t f_n(X_s) dA_s$, then $\Sigma A^n = A$. Also,

(1.4)
$$E^{x} \int_{0}^{\infty} e^{-t} dA_{t}^{n} = E^{x} \int_{0}^{\infty} e^{-t} f_{n}(X_{t}) dA_{t}$$
$$\leq (n+1) E^{x} \int_{0}^{\infty} e^{-t} \varphi(X_{t}) dA_{t} \leq n+1.$$

Consequently, each A^n is a CAF of X with a bounded one potential.

The *joker*, of course, comes in this last sentence; namely, although $t \to A_t^n$ is continuous almost surely, A^n need not be an additive functional. To see the issue fix n and let $B = A^n$ and $f = f_n$. Then

$$(1.5) B_{t+s} = B_t + \int_0^s f(X_u) \circ \theta_t \, d_u A_{u+t}$$

Now $A_{u+t} = A_t + A_u \circ \theta_t$ and so if $A_t < \infty$, $dA_{u+t} = d(A_u \circ \theta_t)$ which yields

$$B_{t+s} = B_t + B_s \circ \theta_t$$

if $A_t < \infty$. Obviously, (1.6) holds if $B_t = \infty$, but there is no reason for (1.6) to hold on $\{A_t = \infty; B_t < \infty\}$. If $A_t = \infty$, then $A_{u+t} = \infty$ for all u and so $dA_{u+t} = 0$. Therefore, although (1.6) need not hold, at least

$$(1.7) B_{t+s} \leq B_t + B_s \circ \theta_t.$$

However, something of value can be salvaged from this discussion. Let f_n and A^n be as above. Note that

(1.8)
$$A_t^n = \int_0^t f_n(X_s) \, dA_s = \int_0^{t \wedge R} f_n(X_s) \, dA_s$$

214

since dA_s puts no mass on the interval $[R, \infty]$. In particular, each A^n is a CAF of (X, R) with a bounded one potential; recall that for B to be an additive functional of (X, R) we only require that $B_{t+s} = B_t + B_s \circ \theta_t$ almost surely on $\{R > t\}$ and that B is continuous at R and constant on $[R, \infty]$. Thus, we have proved the following lemma.

LEMMA 1.1. Let A be a CAF of X. Then $A = \sum_{n=1}^{\infty} A^n$, where each A^n is a CAF of (X, R) having a bounded one potential.

Most likely Lemma 1.1 would suffice in many situations. Still it is of interest to know that Theorem 1 is valid. The main purpose of this note is to present a proof of Theorem 1. It is not at all surprising that Lemma 1.1 will be used in our argument. Once Theorem 1 is established Theorem 2 follows as in [1]. However, because our proof of Theorem 1 is rather long, there is some interest in giving a direct proof of Theorem 2 which avoids an appeal to Theorem 1. We present such a proof in Section 2.

Although our proof of Theorem 1 is rather involved, all of the ideas and techniques that we will need are contained in Section V-5 of [1]. Since these techniques are of some interest in themselves and not particularly well known, it is perhaps worthwhile to present them here in a situation that is substantially simpler than that of Section V-5 of [1]. Consequently, we will give complete details even though this necessitates repeating certain arguments given in [1].

The key fact that we need is the following interesting result which is essentially (V-5.12).

THEOREM 3. Let T be the hitting time of a finely open nearly Borel set and let A be a CAF of (X, T) with a bounded one potential. Let $\eta < 1$ and let $K = \{x : E^x(e^{-T}) < \eta\}$. Then there is a CAF, B of X with a bounded one potential such that for every x and $f \in \mathscr{E}^+_+$ which vanishes off K, we have

(1.9)
$$E^{x} \int_{0}^{T} e^{-t} f(X_{t}) \, dA_{t} = E^{x} \int_{0}^{T} e^{-t} f(X_{t}) \, dB_{t}.$$

Most likely this theorem is true for an arbitrary exact terminal time T, but our proof makes use of the fact that T is the hitting time of a finely open set. Of course, one could easily abstract the property of T needed for the proof to go through, but this would be of very little interest.

As mentioned before, Section 2 is devoted to a proof of Theorem 2. In Section 3 we prove Theorem 1 assuming Theorem 3, while in Section 4 we prove Theorem 3.

2. Proof of Theorem 2

We begin with some preliminary facts that will also be used in Section 3. We fix an additive functional A of X and for the moment we assume only that A has no infinite discontinuity. We assume without loss of generality that $t \rightarrow A_t(\omega)$ is right continuous and nondecreasing for all ω . Recall that $A_0 = 0$ and $t \rightarrow A_t$ is continuous at ζ . We will usually omit the phrase "almost surely" in our

discussions. Let $R = \inf \{t: A_t = \infty\}$. By right continuity $A_R = \infty$ if $R < \infty$ and since A has no infinite discontinuity, A is continuous at R if $R < \infty$. Of course, A is continuous at R if $R = \infty$ because $A_{\infty} = \lim_{t \uparrow \infty} A_t$ by convention. It is easy to see that R is a terminal time and that $P^x(R > 0) = 1$ for all x. Therefore, R is an exact terminal time. Let $R_n = \inf \{t: A_t \ge n\}$. Then each R_n is a stopping time and $R_n < R$ when $R < \infty$ because A has no infinite discontinuity. Clearly, $\{R_n\}$ is increasing. Let $T = \lim_{t \to \infty} R_n \le R$. Since $A(R_n) \ge n$ on $\{R_n < \infty\}$, it is clear that $A(T) = \infty$ on $\{T < \infty\}$. Consequently, T = R. Thus, $\{R_n\}$ is an increasing sequence of stopping times with limit R and $R_n < R$ for all n if $R < \infty$. Let $\psi(x) = E^x(e^{-R})$. Because R is an exact terminal time ψ is 1-excessive and $0 \le \psi < 1$. Let $E_n = \{\psi > 1 - 1/n\}$. Then each E_n is a finely open nearly Borel set, and the E_n decrease to the empty set. Finally, let T_n be the hitting time of E_n . The following lemma is well known. Since a more general and considerably more complicated version is given in [1], we will give the proof here even though only very standard techniques are involved.

LEMMA 2.1. Using the above notation $T_n \leq R$. $\lim T_n = R$, and $T_n < R$ if $R < \infty$.

PROOF. By the usual supermartingale considerations $e^{-R_n}\psi(X_{R_n}) \to e^{-R}L$ where $0 \leq L \leq 1$ and since R is a strong terminal time, we have, for any $\Gamma \in \mathscr{F}_{R_k}$ and $n \geq k$,

(2.1)
$$E^{x}\left\{e^{-R_{n}}\psi(X_{R_{n}}); \Gamma; R_{n} < R\right\} = E^{x}\left\{e^{-R}; \Gamma; R_{n} < R\right\}.$$

Letting $n \to \infty$, we obtain

(2.2)
$$E^{x}\{e^{-R}L; \Gamma; R_{n} < R, \forall n\} = E^{x}\{e^{-R}: \Gamma; R_{n} < R, \forall n\}$$

for all $\Gamma \in \bigvee \mathscr{F}_{R_k}$. Let $\Gamma = \{R < \infty\} \in \bigvee \mathscr{F}_{R_k}$. Since $R_n < R$ if $R < \infty$, we see that $L = \lim \psi(X_{R_n}) = 1$ if $R < \infty$ and since ψ is 1-excessive, this yields $\lim_{t \in R} \psi(X_t) = 1$ if $R < \infty$.

Now if $0 \leq t < T_n$, $\psi(X_t) \leq 1 - 1/n$, and consequently $T_n < R$ if $R < \infty$ because $\lim_{t \uparrow R} \psi(X_t) = 1$. Hence, $T_n \leq R$ and $T_n < R$ if $R < \infty$. Also, $\psi(X_{T_n}) \geq 1 - 1/n$ if $T_n < \infty$ and so

(2.3)
$$E^{x}\left\{e^{-(R-T_{n})}; T_{n} < R\right\} = E^{x}\left\{\psi(X_{T_{n}}); T_{n} < R\right\} \ge \left(1 - \frac{1}{n}\right)P^{x}(T_{n} < R).$$

Letting $n \to \infty$, we see that $\lim T_n = R$ on $\{T_n < R : \forall n\}$. But $\lim T_n = R$ on $\{T_n = R \text{ for some } n\}$, and so Lemma 2.1 is established.

The importance of Lemma 2.1 is that the T_n are *hitting* times of finely open sets and hence are *perfect exact* terminal times.

We now are ready to prove Theorem 2. We assume that A is a CAF of X and we will use the notation developed above. Define $B_t^n = A(t \wedge T_n)$. Then each B^n is a CAF of (X, T_n) and B^n is finite on $[0, T_n)$: this is clear if $R < \infty$ because then $T_n < R$ and it is true *a priori* if $R = \infty$. But $I_{[0,T_n)}(t)$ is a perfect multiplicative functional of X and so it follows from (V-2.1) that each B^n is perfect. (The proof of (V-2.1) is valid for all CAF's of (X, M) which are finite on [0, S) where $S = \inf \{t: M_t = 0\}.$) As a result for each *n* there exists $\Lambda_n \in \mathscr{F}$ with $P^x(\Lambda_n) = 0$ for all *x* such that if $\omega \notin \Lambda_n$, $B^n_{t+s} = B^n_t + B^n_s \circ \theta_t I_{[0,T_n)}(t)$ identically in *t* and *s*. Let $\Lambda_0 = \{\lim T_n \neq R\}$ and $\Lambda = \bigcup_{n \ge 0} \Lambda_n$. The proof of Theorem 2 is completed by observing that

(2.4)
$$\{A_{u+t} \neq A_t + A_u \circ \theta_t \text{ for some } t \text{ and } u\} \subset \Lambda.$$

3. Proof of Theorem 1

Let A be a CAF of X. Then by Lemma 1.1 we can write $A = \sum A^n$ where each A^n is a CAF of (X, R) with a bounded one potential.

LEMMA 3.1. Let B be a CAF of (X, R) with a bounded one potential. Then there exist CAF's B^n of X. each having a bounded one potential such that $B_t = \sum B_t^n$ if t < R.

Before coming to the proof of this lemma, let us use it to prove Theorem 1. Applying Lemma 3.1 to each A^n , we have

(3.1)
$$A_t = \sum_n A_t^n = \sum_n \sum_k A_t^{n,k}$$
 if $t < R$.

where each $A^{n,k}$ is a CAF of X with a bounded one potential. But if $t \ge R$, $A_t = \infty$, and since the double sum in (3.1) is monotone in t, it also must be infinite if $t \ge R$. Thus, (3.1) holds for all t establishing Theorem 1.

It remains to prove Lemma 3.1. We do this assuming Theorem 3 which will be proved in Section 4. As in Section 2 let $\psi(x) = E^x(e^{-R})$ and let T_n be the hitting time of the finely open set $E_n = \{\psi > 1 - 1/n\}$. Then $T_n \uparrow R$ according to Lemma 2.1. Let $G_n = \{\psi \le 1 - 1/n\}$ and let $\varphi_n(x) = E^x(e^{-T_n})$. Next define $K^{n,k} = \{\varphi_n < 1 - 1/k\}$. It is immediate that $K^{n,k}$ increases with both *n* and *k*, and so if we let $K_n = K^{n,n}$ then $K_n \subset G_n$ for each *n* and $\bigcup K_n = E$. Now $t \to B(t \land T_n)$ is a CAF of (X, T_n) with a bounded one potential and so by Theorem 3 there exists a CAF, C^n , of X with a bounded one potential such that if $f \in \mathscr{E}_+^*$ and vanishes off K_n then

(3.2)
$$E^{x} \int_{0}^{T_{n}} e^{-t} f(X_{t}) \, dB_{t} = E^{x} \int_{0}^{T_{n}} e^{-t} f(X_{t}) \, dC_{t}^{n}.$$

We need the following compatibility relationship: if $f \ge 0$ vanishes off K_n , then for all m

(3.3)
$$E^{x} \int_{0}^{T_{m}} e^{-t} f(X_{t}) \, dC_{t}^{n} = E^{x} \int_{0}^{T_{m}} e^{-t} f(X_{t}) \, dB_{t}$$

Suppose firstly that m < n. It follows from (3.2) that

(3.4)
$$\overline{B}_{t} = \int_{0}^{t \wedge T_{n}} I_{K_{n}}(X_{u}) \, dB_{u}, \qquad \overline{C}_{t} = \int_{0}^{t \wedge T_{n}} I_{K_{n}}(X_{u}) \, dC_{u}^{m}$$

define CAF's of (X, T_n) with the same bounded one potential. Consequently, by the uniqueness theorem for CAF'S, $\overline{B} = \overline{C}$ (that is, \overline{B} and \overline{C} are equivalent). But $T_m \leq T_n$ and hence (3.3) holds if m < n.

Next suppose that m > n. Then $K_n \subset G_n \subset G_m$. Recall that $E_m = E - G_m$ and T_m is the hitting time of E_m . Let S be the hitting time $K_n \cup E_m$ and define stopping times as follows: $S_0 = 0$,

(3.5)
$$S_{2k+1} = S_{2k} + T_n \circ \theta_{S_{2k}}, S_{2k+2} = S_{2k+1} + S \circ \theta_{S_{2k+2}},$$

for $k \ge 0$. Then $\{S_k\}$ forms an increasing sequence of stopping times and since E_m is finely open, $S_k \le T_m$ for all k. Also, $X(S_{2k}) \in K_n$ if $S_{2k} < T_m$ and using the definition of K_n this yields

$$(3.6) \qquad E^{x}\{e^{-S_{2k+1}}; S_{2k+1} < T_{m}\} \leq E^{x}\{\exp\{-(S_{2k} + T_{n} \circ \theta_{S_{2k}})\}; S_{2k} < T_{m}\}$$
$$\leq (1 - 1/n)E^{x}\{e^{-S_{2k}}; S_{2k} < T_{m}\}$$
$$\leq (1 - 1/n)E^{x}\{e^{-S_{2k-1}}; S_{2k-1} < T_{m}\}.$$

Consequently, $\lim S_k = T_m$. But f vanishes off K_n and $X_t \notin K_n$ if $S_{2k+1} \leq t < S_{2k+2}$. As a result using (3.2), we obtain

$$(3.7) \qquad E^{x} \int_{0}^{T_{m}} e^{-t} f(X_{t}) \, dB_{t} = \sum_{k=0}^{\infty} E^{x} \int_{S_{2k}}^{S_{2k+1}} e^{-t} f(X_{t}) \, dB_{t}$$
$$= \sum_{k=0}^{\infty} E^{x} \left\{ e^{-S_{2k}} E^{X(S_{2k})} \int_{0}^{T_{n}} e^{-t} f(X_{t}) \, dB_{t} \right\}$$
$$= \sum_{k=0}^{\infty} E^{x} \left\{ e^{-S_{2k}} E^{X(S_{2k})} \int_{0}^{T_{n}} e^{-t} f(X_{t}) \, dC_{t}^{n} \right\}$$
$$= E^{x} \int_{0}^{T_{m}} e^{-t} f(X_{t}) \, dC_{t}^{n}.$$

Thus, (3.3) is established since it reduces to (3.2) when m = n.

Now disjoint the $K_n: J_1 = K_1, \dots, J_n = K_n - \bigcup_{j < n} K_j$. Thus, $\{J_n\}$ is a disjoint sequence of nearly Borel sets such that $\bigcup J_n = E$ and $J_n \subset K_n$ for each n. Define

(3.8)
$$B_t^n = \int_0^t I_{J_n}(X_s) \, dC_s^n.$$

Each B^n is a CAF of X with a bounded one potential. Let $C_t = \Sigma B_t^n$ and let

 $f \in \mathscr{E}_{+}^{*}$. Then for each n

(3.9)
$$E^{x} \int_{0}^{T_{n}} e^{-t} f(X_{t}) dC_{t} = \sum_{k} E^{x} \int_{0}^{T_{n}} e^{-t} (fI_{J_{k}}) (X_{t}) dC_{t}^{k}$$
$$= \sum_{k} E^{x} \int_{0}^{T_{n}} e^{-t} (fI_{J_{k}}) (X_{t}) dB_{t}$$
$$= E^{x} \int_{0}^{T_{n}} e^{-t} f(X_{t}) dB_{t},$$

and letting $n \to \infty$, we obtain

(3.10)
$$E^{x} \int_{0}^{R} e^{-t} f(X_{t}) dC_{t} = E^{x} \int_{0}^{R} e^{-t} f(X_{t}) dB_{t}.$$

Since R > 0 almost surely, this implies that $t \to C_t$ is finite on [0, R) and it is then easy to see that C is a CAF of X. Once again the uniqueness theorem for CAF's tells us that $B_t = C_t$ if t < R. But $C = \sum B^n$ where each B^n is a CAF of X with a bounded one potential, and so Lemma 3.1 is established.

4. Proof of Theorem 3

The proof of Theorem 3 is rather long and so we will break it up into several lemmas. We refer the reader to Section 1 for the statement of Theorem 3. We begin with some notation that will be used throughout the proof. Let G be the finely open set such that $T = T_G$. Let $\psi(x) = E^x(e^{-T})$. Then $K = \{\psi < \eta\}$ where $\eta < 1$ and $K \subset \{\psi \leq \eta\} \subset E - G$. Define $T_0 = 0$ and for $n \geq 0$

(4.1)
$$T_{2n+1} = T_{2n} + T \circ \theta_{T_{2n}}, \qquad T_{2n+2} = T_{2n+1} + T_K \circ \theta_{T_{2+1}}.$$

Thus, $\{T_n\}$ is an increasing sequence of stopping times, and for any x and $n \ge 1$

(4.2)
$$E^{x}\{e^{-T_{2n+1}}; T_{2n} < \infty\} = E^{x}\{e^{-T_{2n}}\psi(X_{T_{2n}}); T_{2n} < \infty\}$$
$$\leq \eta E^{x}\{e^{-T_{2n}}; T_{2n} < \infty\}$$
$$\leq \eta E^{x}\{e^{-T_{2n-1}}; T_{2n-2} < \infty\}$$

because $\psi(X_{T_{2n}}) \leq \eta$ if $T_{2n} < \infty$ and $n \geq 1$. As a result lim $T_n = \infty$.

Suppose for the moment that there is a CAF, B of X for which the conclusion of Theorem 3 holds. If we define

(4.3)
$$u(x) = E^{x} \int_{0}^{T} e^{-t} I_{K}(X_{t}) \, dA_{t} = U_{A}^{1} I_{K}(x),$$

then because $X_t \notin K$ if $T_{2n-1} \leq t < T_{2n}$ we can compute $U_B^1 I_K(x)$ as follows

(4.4)
$$U_{B}^{1}I_{K}(x) = E^{x} \int_{0}^{\infty} e^{-t}I_{K}(X_{t}) dB_{t}$$
$$= \sum_{n=0}^{\infty} E^{x} \int_{T_{2n}}^{T_{2n+1}} e^{-t}I_{K}(X_{t}) dB_{t}$$
$$= \sum_{n=0}^{\infty} E^{x} \left\{ e^{-T_{2n}}E^{X(T_{2n})} \int_{0}^{T} e^{-t}I_{K}(X_{t}) dB_{t} \right\}$$
$$= \sum_{n=0}^{\infty} E^{x} \{ e^{-T_{2n}}u(X_{T_{2n}}) \}.$$

The main part of the proof of Theorem 3 consists in showing that if we define

(4.5)
$$w(x) = \sum_{n=0}^{\infty} E^{x} \{ e^{-T_{2n}} u(X_{T_{2n}}) \},$$

then w is a regular one potential of X, and hence the one potential of CAF of X. By hypothesis, u is bounded and since

(4.6)
$$w(x) \leq ||u|| \sum_{n=0}^{\infty} E^{x}(e^{-T_{2n}}) \leq ||u|| \sum_{n=0}^{\infty} \eta^{n} < \infty,$$

w is also bounded.

LEMMA 4.1. Let K be as above. Then $w = P_K^1 w$. PROOF. For typographical simplicity let $Q = T_K$. Then

(4.7)
$$P_{K}^{1}w(x) = E^{x} \{ e^{-Q}w(X_{Q}) \}$$
$$= \sum_{n=0}^{\infty} E^{x} \{ \exp \{ -(Q + T_{2n} \circ \theta_{Q}) \} u(X_{Q+T_{2n} \circ \theta_{Q}}) \}.$$

Break each summand into an integral over $\{Q < T_1\}$ and over $\{Q \ge T_1\}$. A straightforward induction argument shows that if $k \ge 1$, $Q + T_k \circ \theta_Q = T_k$ on $\{Q < T_1\}$. On the other hand if $Q \ge T_1$, then $Q = T_2$. But then $Q + T_1 \circ \theta_Q = T_2 + T \circ \theta_{T_2} = T_3$ and again one sees by induction that for $k \ge 0$, $Q + T_k \circ \theta_Q = T_{k+2}$ if $Q \ge T_1$. Consequently,

(4.8)
$$P_{K}^{1}w(x) = E^{x}\left\{e^{-Q}u(X_{Q}); Q < T_{1}\right\} + \sum_{n=1}^{\infty} E^{x}\left\{e^{-T_{2n}}u(X_{T_{2n}})\right\}.$$

Therefore,

(4.9)
$$w(x) - P_K^1 w(x) = u(x) - E^x \{ e^{-Q} u(X_Q) ; Q < T_1 \}.$$

But $T_1 = T$, $Q = T_K$, and using the definition of u (see (4.3)), we obtain

(4.10)
$$E^{x}\left\{e^{-Q}u(X_{Q}); Q < T_{1}\right\} = E^{x}\int_{0}^{T}e^{-t}I_{K}(X_{t}) dA_{t} = u(x).$$

Therefore, $w = P_K^1 w$. completing the proof of Lemma 4.1.

220

LEMMA 4.2. If J is any compact set, then $P_J^1 w \leq w$.

PROOF. Let $S = T_J + Q \circ \hat{\theta}_{T_J}$ where $Q = T_K$ as before. Now $X_S \in K \cup K^r$ if $S < \infty$. But $X_t \notin K \cup K^r$ if $T_{2n+1} \leq t < T_{2n+2}$, and so $\{S < \infty\} = \bigcup_n \{T_{2n} \leq S < T_{2n+1}\}$. Also, it is easy to check by induction that for $k \geq 0$, $T_{k+2} = T_2 + T_k \circ \theta_{T_2}$. Hence,

(4.11)
$$w(x) = u(x) + \sum_{n=1}^{\infty} E^{x} \{ e^{-T_{2n}} u(X_{T_{2n}}) \}$$
$$= u(x) + E^{x} \{ e^{-T_{2}} w(X_{T_{2}}) \}.$$

Again one checks that for $k \ge 1$, $S + T_k \circ \theta_S = T_k$ if $S < T_1$. Now $\{S < T_1\} \in \mathscr{F}_{T_1} \subset \mathscr{F}_{T_2}$ and so

(4.12)
$$E^{x} \{ e^{-S} w(X_{S}); S < T_{1} \}$$

= $E^{x} \{ e^{-S} u(X_{S}); S < T_{1} \} + E^{x} \{ e^{-T_{2}} w(X_{T_{2}}); S < T_{1} \}.$

Using (4.11) and the fact that u is one (X, T) excessive, we obtain

$$(4.13) \quad E^{x}\{e^{-S}w(X_{S}); S < T_{1}\} + E^{x}\{e^{-T_{2}}w(X_{T_{2}}); S \ge T_{1}\} \le w(x).$$

We next prove by induction that for all $n \ge 1$.

$$(4.14) \quad w(x) \ge E^{x} \{ e^{-S} w(X_{S}); S < T_{2n} \} + E^{x} \{ e^{-T_{2n}} w(X_{T_{2n}}); S \ge T_{2n} \}.$$

If n = 1, this reduces to (4.13) because S lies in some interval $[T_{2k}, T_{2k+1})$ when S is finite. Assume (4.14) for a fixed value of n. The second summand on the right side of (4.14) may be written

$$(4.15) E^{x} \{ e^{-S} w(X_{S}) : S = T_{2n} \} + E^{x} \{ e^{-T_{2n}} w(X_{T_{2n}}) ; S > T_{2n} \}.$$

It is immediate that if $T_{2n} < S$ then $T_{2n-1} < T_J$. Recall that $S = T_J + Q \circ \theta_{T_J}$ and $T_{2n} = T_{2n-1} + Q \circ \theta_{T2n-1}$. But this together with the fact that K is finely open implies that $T_{2n} < T_J$ if $T_{2n} < S$. Consequently, $T_{2n} + S \circ \theta_{T_{2n}} = S$ if $T_{2n} < S$. Combining these observations with (4.13), we obtain

$$(4.16) \quad E^{x} \{ e^{-T_{2n}} w(X_{T_{2n}}); S > T_{2n} \} \\ \geq E^{x} \{ e^{-T_{2n}} E^{X(T_{2n})} [e^{-S} w(X_{S}); S < T_{1}]; S > T_{2n} \} \\ + E^{x} \{ e^{-T_{2n}} E^{X(T_{2n})} [e^{-T_{2}} w(X_{T_{2}}); S \ge T_{1}]; S > T_{2n} \} \\ = E^{x} \{ e^{-S} w(X_{S}); T_{2n} < S < T_{2n+1} \} \\ + E^{x} \{ e^{-T_{2n+2}} w(X_{T_{2n+2}}); S \ge T_{2n+1} \}.$$

But $\{T_{2n} < S < T_{2n+1}\} = \{T_{2n} < S < T_{2n+2}\}$ and $\{S \ge T_{2n+1}\} = \{S \ge T_{2n+2}\}$. As a result (4.14) holds with *n* replaced by n + 1, and hence it holds for all $n \ge 1$. Now $\lim T_n = \infty$ and so letting $n \to \infty$ in (4.14), we obtain $w \ge P_s^1 w$. But $P_s^1 w = P_J^1 P_K^1 w = P_J^1 w$ since $w = P_K^1 w$ by Lemma 4.1, completing the proof of Lemma 4.2. LEMMA 4.3. The function w is 1-excessive.

PROOF. In light of Lemma 4.2 and Dynkin's theorem (II-5.3), it will suffice to show that $\lim \inf_{t \downarrow 0} P_t^1 w(x) \ge w(x)$ for all x. Suppose first of all that x is not regular for K. Then almost surely P^x , $t + Q \circ \theta_t = Q$ for t sufficiently small, and since $w = P_k^T w$ this yields

(4.17)
$$\lim_{t \to 0} P_t^1 w(x) = \lim_{t \to 0} P_t^1 P_k^1 w(x)$$
$$= \lim_{t \to 0} E^x \{ \exp\{-(t + Q \circ \theta_t)\} w(X_{t+Q \circ \theta_t}) \}$$
$$= P_k^1 w(x) = w(x).$$

Suppose on the other hand that x is regular for K. Then $P^{x}(t < T) \rightarrow 1$ as $t \rightarrow 0$ and so using (4.11) with $T = T_{1}$,

(4.18)
$$P_t^1 w(x) \ge E^x \{ e^{-t} w(X_t); t < T \} \\ = E^x \{ e^{-t} u(X_t); t < T \} + E^x \{ e^{-T_2} w(X_{T_2}); t < T \}.$$

Because u is 1 - (X, T) excessive this approaches $u(x) + E^{x}\{e^{-T_{2}}w(X_{T_{2}})\} = w(x)$ as $t \to 0$, completing the proof of Lemma 4.3.

LEMMA 4.4. The function w is a regular one potential.

PROOF. We must show that if $\{S_n\}$ is an increasing sequence of stopping times with limit S, then $P_{S_n}^1 w \to P_S^1 w$. It follows from (IV-3.6) and (IV-3.8) that we need consider only the case $S_n = T_{B_n}$ where $\{B_n\}$ is a decreasing sequence of nearly Borel sets. In particular each S_n is a strong terminal time and consequently so is their limit S. In checking that $P_{S_n}^1 w(x) \to P_S^1 w(x)$, we may assume that $P^x(S_n > 0) = 1$ since if $S_n = 0$ for all n the conclusion is obvious. Now fix x and let

(4.19)
$$a_{n,k} = E^{x} \{ e^{-S_{n}} w(X_{S_{n}}); T_{k} < S_{n} \leq T_{k+1} \}$$

and

(4.20)
$$a_k = E^x \{ e^{-S} w(X_S); T_k < S \leq T_{k+1} \}.$$

Then $P_{S_n}^1 w(x) = \sum_k a_{n,k}$ and $P_S^1 w(x) = \sum_k a_k$. It will suffice to show that for each $k, a_{n,k} \to a_k$ as $n \to \infty$ because $\sum_{k \ge N} a_{n,k} \le ||w|| E^x(e^{-T_N}) \to 0$ as $N \to \infty$. Suppose first of all that k is even, say k = 2j. If R is any strong terminal time then on $\{T_{2j} < R \le T_{2j+1}\}$ we have $R = T_{2j} + R \circ \theta_{T_{2j}}$, and also because T is the hitting time of a finely open set $R + T_2 \circ \theta_R = T_{2j+2}$. Now using (4.11), we obtain for any strong terminal time R

$$(4.21) \qquad E^{x} \{ e^{-R} w(X_{R}); T_{2j} < R \leq T_{2j+1} \} \\ = E^{x} \{ e^{-R} u(X_{R}); T_{2j} < R; R \circ \theta_{T_{2j}} \leq T \circ \theta_{T_{2j}} \} \\ + E^{x} \{ e^{-R} E^{X(R)} [e^{-T_{2}} w(X_{T_{2}})]; T_{2j} < R \leq T_{2j+1} \} \\ = E^{x} \{ e^{-T_{2j}} E^{X(T_{2j})} [e^{-R} u(X_{R}); R \leq T]; T_{2j} < R \} \\ + E^{x} \{ e^{-T_{2j+2}} w(X_{T_{2j+2}}); T_{2j} < R \leq T_{2j+1} \}.$$

In (4.21), we may replace R by either S_n or S. Observe that the set $\{T_{2j} < S_n\}$ approaches the set $\{T_{2j} < S\}$ as $n \to \infty$ and that $\{T_{2j} < S_n \leq T_{2j+1}\}$ approaches $\{T_{2j} < S \leq T_{2j+1}\}$ as $n \to \infty$. Now u is a regular one potential of (X, T) since it is the one potential of a CAF of (X, T), and $u(X_T) = 0$ because X_T is regular for G; recall $T = T_G$ with G finely open. As a result for any y

(4.22)
$$E^{y}\{e^{-S_{n}}u(X_{S_{n}}); S_{n} \leq T\} = E^{y}\{e^{-S_{n}}u(X_{S_{n}}); S_{n} < T\}$$

$$\rightarrow E^{y}\{e^{-S}u(X_{S}); S < T\}$$

$$= E^{y}\{e^{-S}u(X_{S}); S \leq T\},$$

as $n \to \infty$. Consequently, $a_{n,2j} \to a_{2j}$ as $n \to \infty$. Next consider the case in which k is odd, say k = 2j + 1. Using the fact that $w = P_K^1 w$, we obtain

$$(4.23) \quad a_{n,2j+1} = E^{x} \{ \exp\{ -S_{n} + T_{K} \circ \theta_{S_{n}} \} w(X_{S_{n}+T_{K} \circ \theta_{S_{n}}}); T_{2j+1} < S_{n} \leq T_{2j+2} \}$$

and a similar expression for a_{2j+1} with S_n replaced by S. But on $\{T_{2j+1} < S_n \leq T_{2j+2}\}$ we have $S_n + T_K \circ \theta_{S_n} = T_{2j+2}$ while on $\{T_{2j+1} < S \leq T_{2j+2}\}$, $S + T_K \circ \theta_S = T_{2j+2}$ because K is finely open. From this and the fact that $S_n \uparrow S$, it is immediate that $a_{n,2j+1} \to a_{2j+1}$ as $n \to \infty$. This completes the proof of Lemma 4.4.

We are now prepared to complete the proof of Theorem 3. Since w is a regular one potential there is a CAF, B of X such that $w = U_B^1 1$, that is, w is the one potential of B. Now $D_t = B_{t \wedge T}$ is a CAF of (X, T) and

(4.24)
$$U_D^1(x) = E^x \int_0^T e^{-t} dB_t = w(x) - E^x \{ e^{-T_1} w(X_{T_1}) \}.$$

From Lemma 4.1

(4.25)
$$E^{x}\left\{e^{-T_{1}}w(X_{T_{1}})\right\} = E^{x}\left\{e^{-T_{2}}w(X_{T_{2}})\right\},$$

and so by (4.11), $U_D^1 = u$. Hence, D and $t \to \int_0^t I_K(X_u) dA_u$ are equivalent CAF's of (X, T). Therefore, $E^x \int_0^T e^{-t} f(X_t) dA_t = E^x \int_0^T e^{-t} f(X_t) dB_t$ if f vanishes off K, completing the proof of Theorem 3.

REFERENCES

- R. M. BLUMENTHAL and R. K. GETOOR, Markov Processes and Potential Theory. New York, Academic Press, 1968.
- [2] C. DOLÉANS-DADE, "Fonctionnelles additives parfaites," Séminaire de Probabilités II Université de Strasbourg. Lecture Notes in Mathematics. Vol. 51, Berlin-Heidelberg-New York, Springer-Verlag, 1968.
- [3] P. A. MEYER, Probability and Potentials, Waltham, Blaisdell, 1966.