APPROXIMATION OF CONTINUOUS ADDITIVE FUNCTIONALS

R. K. GETOOR
University of California, San Diego

1. Introduction

The purpose of this exposition is to give correct proofs of two well known and reasonably important propositions concerning continuous additive functionals. We adopt the terminology and notation of [1] throughout. We fix once and for all a standard process $X=\left(\Omega, \mathscr{F}, \mathscr{F}_{t}, X_{t}, \theta_{t}, P^{x}\right)$ with state space E. (See (I-9.2); all such references are to [1].)

The following two theorems are important facts about continuous additive functionals (CAF's) of such a process. (See (IV-2.21) or [2].)

Theorem 1. Let A be a CAF of X. Then $A=\sum_{n=1}^{\infty} A^{n}$ where each A^{n} is a CAF of X having a bounded one potential.

Making use of Theorem 1, one can establish the following result. (See (V-2.1) or [2].)

Theorem 2. Suppose that X has a reference measure (that is, satisfies the hypothesis of absolute continuity). Then every CAF of X is equivalent to a perfect CAF.

Unfortunately, the proofs known to me of Theorem 1 are not convincing. For example, the "proof" in [1] goes as follows. Let A be a CAF of X. Define

$$
\begin{equation*}
\varphi(x)=E^{x} \int_{0}^{\infty} e^{-t} e^{-A_{t}} d t \tag{1.1}
\end{equation*}
$$

Clearly, $0<\varphi \leqq 1$ and φ is universally measurable; actually it is not difficult to see that φ is nearly Borel, but this is not required. Let $R=\inf \left\{t: A_{t}=\infty\right\}$. Then it is easy to check that R is a terminal time and that $P^{x}(R>0)=1$ for all x. Obviously, $\varphi(x)=E^{x} \int_{0}^{R} e^{-t} e^{-A_{t}} d t$. Now if T is any stopping time,

$$
\begin{align*}
E^{x}\left\{e^{-T} \varphi\left(X_{T}\right) ; T<R\right\} & =E^{x}\left\{e^{-T} \int_{0}^{R_{\circ} \theta_{T}} e^{-t} e^{-A_{t} \theta_{T}} d t ; T<R\right\} \tag{1.2}\\
& =E^{x}\left\{e^{A_{T}} \int_{T}^{R} e^{-u} e^{-A_{u}} d u ; R<T\right\}
\end{align*}
$$

This research was partially supported by the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, under AFOSR Grant AF-AFOSR 1261-67.
and so using T15, Chapter VII, [3], one finds

$$
\begin{align*}
U_{A}^{1} \varphi(x) & =E^{x} \int_{0}^{\infty} e^{-t} \varphi\left(X_{t}\right) d A_{t} \tag{1.3}\\
& =E^{x} \int_{0}^{\infty} e^{-t} \varphi\left(X_{t}\right) I_{[0, R)}(t) d A_{t} \\
& =E^{x} \int_{0}^{R} e^{A_{t}} \int_{t}^{R} e^{-u} e^{-A_{u}} d u d A_{t} \\
& =E^{x} \int_{0}^{R} e^{-u} e^{-A_{u}}\left(\int_{0}^{u} e^{A_{t}} d A_{t}\right) d u \\
& =E^{x} \int_{0}^{R} e^{-u}\left(1-e^{-A_{u}}\right) d u \leqq 1
\end{align*}
$$

Next let f_{n} be the indicator function of $\{1 /(n+1)<\varphi \leqq 1 / n\}$ for $n \geqq 1$. Clearly, $\Sigma f_{n}=1$ and so if we define $A_{t}^{n}=\int_{0}^{t} f_{n}\left(X_{s}\right) d A_{s}$, then $\Sigma A^{n}=A$. Also,

$$
\begin{align*}
E^{x} \int_{0}^{\infty} e^{-t} d A_{t}^{n} & =E^{x} \int_{0} e^{-t} f_{n}\left(X_{t}\right) d A_{t} \tag{1.4}\\
& \leqq(n+1) E^{x} \int_{0}^{\infty} e^{-t} \varphi\left(X_{t}\right) d A_{t} \leqq n+1
\end{align*}
$$

Consequently, each A^{n} is a CAF of X with a bounded one potential.
The joker, of course, comes in this last sentence; namely, although $t \rightarrow A_{t}^{n}$ is continuous almost surely, A^{n} need not be an additive functional. To see the issue fix n and let $B=A^{n}$ and $f=f_{n}$. Then

$$
\begin{equation*}
B_{t+s}=B_{t}+\int_{0}^{s} f\left(X_{u}\right) \circ \theta_{t} d_{u} A_{u+t} \tag{1.5}
\end{equation*}
$$

Now $A_{u+t}=A_{t}+A_{u} \circ \theta_{t}$ and so if $A_{t}<\infty, d A_{u+t}=d\left(A_{u} \circ \theta_{t}\right)$ which yields

$$
\begin{equation*}
B_{t+s}=B_{t}+B_{s} \circ \theta_{t} \tag{1.6}
\end{equation*}
$$

if $A_{t}<\infty$. Obviously, (1.6) holds if $B_{t}=\infty$, but there is no reason for (1.6) to hold on $\left\{A_{t}=\infty ; B_{t}<\infty\right\}$. If $A_{t}=\infty$, then $A_{u+t}=\infty$ for all u and so $d A_{u+t}=0$. Therefore, although (1.6) need not hold, at least

$$
\begin{equation*}
B_{t+s} \leqq B_{t}+B_{s} \circ \theta_{t} \tag{1.7}
\end{equation*}
$$

However, something of value can be salvaged from this discussion. Let f_{n} and A^{n} be as above. Note that

$$
\begin{equation*}
A_{t}^{n}=\int_{0}^{t} f_{n}\left(X_{s}\right) d A_{s}=\int_{0}^{t \wedge R} f_{n}\left(X_{s}\right) d A_{s} \tag{1.8}
\end{equation*}
$$

since $d A_{s}$ puts no mass on the interval [R, ∞]. In particular, each A^{n} is a CAF of (X, R) with a bounded one potential; recall that for B to be an additive functional of (X, R) we only require that $B_{t+s}=B_{t}+B_{s} \circ \theta_{t}$ almost surely on $\{R>t\}$ and that B is continuous at R and constant on $[R, \infty]$. Thus, we have proved the following lemma.

Lemma 1.1. Let A be a CAF of X. Then $A=\sum_{n=1}^{\infty} A^{n}$, where each A^{n} is a CAF of (X, R) having a bounded one potential.

Most likely Lemma 1.1 would suffice in many situations. Still it is of interest to know that Theorem 1 is valid. The main purpose of this note is to present a proof of Theorem 1. It is not at all surprising that Lemma 1.1 will be used in our argument. Once Theorem 1 is established Theorem 2 follows as in [1]. However, because our proof of Theorem 1 is rather long, there is some interest in giving a direct proof of Theorem 2 which avoids an appeal to Theorem 1. We present such a proof in Section 2.

Although our proof of Theorem 1 is rather involved, all of the ideas and techniques that we will need are contained in Section $V-5$ of [1]. Since these techniques are of some interest in themselves and not particularly well known, it is perhaps worthwhile to present them here in a situation that is substantially simpler than that of Section V-5 of [1]. Consequently, we will give complete details even though this necessitates repeating certain arguments given in [1].

The key fact that we need is the following interesting result which is essentially (V-5.12).

Theorem 3. Let T be the hitting time of a finely open nearly Borel set and let A be a CAF of (X, T) with a bounded one potential. Let $\eta<1$ and let $K=$ $\left\{x: E^{x}\left(e^{-T}\right)<\eta\right\}$. Then there is a CAF, B of X with a bounded one potential such that for every x and $f \in \mathscr{E}_{+}^{*}$ which vanishes off K, we have

$$
\begin{equation*}
E^{x} \int_{0}^{T} e^{-t} f\left(X_{t}\right) d A_{t}=E^{x} \int_{0}^{T} e^{-t} f\left(X_{t}\right) d B_{t} \tag{1.9}
\end{equation*}
$$

Most likely this theorem is true for an arbitrary exact terminal time T, but our proof makes use of the fact that T is the hitting time of a finely open set. Of course, one could easily abstract the property of T needed for the proof to go through, but this would be of very little interest.

As mentioned before, Section 2 is devoted to a proof of Theorem 2. In Section 3 we prove Theorem 1 assuming Theorem 3, while in Section 4 we prove Theorem 3.

2. Proof of Theorem 2

We begin with some preliminary facts that will also be used in Section 3. We fix an additive functional A of X and for the moment we assume only that A has no infinite discontinuity. We assume without loss of generality that $t \rightarrow$ $A_{t}(\omega)$ is right continuous and nondecreasing for all ω. Recall that $A_{0}=0$ and $t \rightarrow A_{t}$ is continuous at ζ. We will usually omit the phrase "almost surely" in our
discussions. Let $R=\inf \left\{t: A_{t}=\infty\right\}$. By right continuity $A_{R}=\infty$ if $R<\infty$ and since A has no infinite discontinuity, A is continuous at R if $R<\infty$. Of course, A is continuous at R if $R=\infty$ because $A_{\infty}=\lim _{t \uparrow \infty} A_{t}$ by convention. It is easy to see that R is a terminal time and that $P^{x}(R>0)=1$ for all x. Therefore, R is an exact terminal time. Let $R_{n}=\inf \left\{t: A_{t} \geqq n\right\}$. Then each R_{n} is a stopping time and $R_{n}<R$ when $R<\infty$ because A has no infinite discontinuity. Clearly, $\left\{R_{n}\right\}$ is increasing. Let $T=\lim R_{n} \leqq R$. Since $A\left(R_{n}\right) \geqq n$ on $\left\{R_{n}<\infty\right\}$, it is clear that $A(T)=\infty$ on $\{T<\infty\}$. Consequently, $T=R$. Thus, $\left\{R_{n}\right\}$ is an increasing sequence of stopping times with limit R and $R_{n}<R$ for all n if $R<\infty$. Let $\psi(x)=E^{x}\left(e^{-R}\right)$. Because R is an exact terminal time ψ is 1 -excessive and $0 \leqq \psi<1$. Let $E_{n}=\{\psi>1-1 / n\}$. Then each E_{n} is a finely open nearly Borel set, and the E_{n} decrease to the empty set. Finally, let T_{n} be the hitting time of E_{n}. The following lemma is well known. Since a more general and considerably more complicated version is given in [1], we will give the proof here even though only very standard techniques are involved.

Lemma 2.1. Using the above notation $T_{n} \leqq R . \lim T_{n}=R$, and $T_{n}<R$ if $R<\infty$.

Proof. By the usual supermartingale considerations $e^{-R_{n}} \psi\left(X_{R_{n}}\right) \rightarrow e^{-R} L$ where $0 \leqq L \leqq 1$ and since R is a strong terminal time, we have, for any $\Gamma \in \mathscr{F}_{R_{k}}$ and $n \geqq k$.

$$
\begin{equation*}
E^{x}\left\{e^{-R_{n}} \psi\left(X_{R_{n}}\right) ; \Gamma ; R_{n}<R\right\}=E^{x}\left\{e^{-R} ; \Gamma ; R_{n}<R\right\} . \tag{2.1}
\end{equation*}
$$

Letting $n \rightarrow \infty$, we obtain

$$
\begin{equation*}
E^{x}\left\{e^{-R} L ; \Gamma ; R_{n}<R, \forall n\right\}=E^{x}\left\{e^{-R}: \Gamma: R_{n}<R . \forall n\right\} \tag{2.2}
\end{equation*}
$$

for all $\Gamma \in \vee \mathscr{F}_{R_{k}}$. Let $\Gamma=\{R<\infty\} \in \vee \mathscr{F}_{R_{k}}$. Since $R_{n}<R$ if $R<\infty$. we see that $L=\lim \psi\left(X_{R_{n}}\right)=1$ if $R<\infty$ and since ψ is 1 -excessive, this yields $\lim _{t \dagger R} \psi\left(X_{t}\right)=1$ if $R<\infty$.

Now if $0 \leqq t<T_{n} . \psi\left(X_{t}\right) \leqq 1-1 / n$, and consequently $T_{n}<R$ if $R<\infty$ because $\lim _{t \uparrow R} \psi\left(X_{t}\right)=1$. Hence, $T_{n} \leqq R$ and $T_{n}<R$ if $R<\infty$. Also, $\psi\left(X_{T_{n}}\right) \geqq$ $1-1 / n$ if $T_{n}<\infty$ and so

$$
\begin{equation*}
E^{x}\left\{e^{-\left(R-T_{n}\right)} ; T_{n}<R\right\}=E^{x}\left\{\psi\left(X_{T_{n}}\right) ; T_{n}<R\right\} \geqq\left(1-\frac{1}{n}\right) P^{x}\left(T_{n}<R\right) \tag{2.3}
\end{equation*}
$$

Letting $n \rightarrow \infty$, we see that $\lim T_{n}=R$ on $\left\{T_{n}<R ; \forall n\right\}$. But $\lim T_{n}=R$ on $\left\{T_{n}=R\right.$ for some $\left.n\right\}$. and so Lemma 2.1 is established.

The importance of Lemma 2.1 is that the T_{n} are hitting times of finely open sets and hence are perfect exact terminal times.

We now are ready to prove Theorem 2. We assume that A is a CAF of X and we will use the notation developed above. Define $B_{t}^{n}=A\left(t \wedge T_{n}\right)$. Then each B^{n} is a CAF of $\left(X, T_{n}\right)$ and B^{n} is finite on [0, T_{n}): this is clear if $R<\infty$ because then $T_{n}<R$ and it is true a priori if $R=\infty$. But $I_{\left[0, T_{n}\right)}(t)$ is a perfect multiplicative functional of X and so it follows from ($V-2.1$) that each B^{n} is perfect. (The proof of ($\mathrm{V}-2.1$) is valid for all CAF's of (X, M) which are finite on $[0, S)$ where
$S=\inf \left\{t: M_{t}=0\right\}$.) As a result for each n there exists $\Lambda_{n} \in \mathscr{F}$ with $P^{x}\left(\Lambda_{n}\right)=0$ for all x such that if $\omega \notin \Lambda_{n}, B_{t+s}^{n}=B_{t}^{n}+B_{s}^{n} \circ \theta_{t} I_{\left[0, T_{n}\right)}(t)$ identically in t and s. Let $\Lambda_{0}=\left\{\lim T_{n} \neq R\right\}$ and $\Lambda=\cup_{n \geqq 0} \Lambda_{n}$. The proof of Theorem 2 is completed by observing that

$$
\begin{equation*}
\left\{A_{u+t} \neq A_{t}+A_{u} \circ \theta_{t} \text { for some } t \text { and } u\right\} \subset \Lambda . \tag{2.4}
\end{equation*}
$$

3. Proof of Theorem 1

Let A be a CAF of X. Then by Lemma 1.1 we can write $A=\Sigma A^{n}$ where each A^{n} is a CAF of (X, R) with a bounded one potential.

Lemma 3.1. Let B be a CAF of (X, R) with a bounded one potential. Then there exist CAF's B^{n} of X, each having a bounded one potential such that $B_{t}=$ ΣB_{t}^{n} if $t<R$.

Before coming to the proof of this lemma, let us use it to prove Theorem 1. Applying Lemma 3.1 to each A^{n}, we have

$$
\begin{equation*}
A_{t}=\sum_{n} A_{t}^{n}=\sum_{n} \sum_{k} A_{t}^{n, k} \quad \text { if } \quad t<R \tag{3.1}
\end{equation*}
$$

where each $A^{n, k}$ is a CAF of X with a bounded one potential. But if $t \geqq R$, $A_{t}=\infty$, and since the double sum in (3.1) is monotone in t, it also must be infinite if $t \geqq R$. Thus, (3.1) holds for all t establishing Theorem 1 .

It remains to prove Lemma 3.1. We do this assuming Theorem 3 which will be proved in Section 4. As in Nection 2 let $\psi(x)=E^{x}\left(e^{-R}\right)$ and let T_{n} be the hitting time of the finely open set $E_{n}=\{\psi>1-1 / n\}$. Then $T_{n} \uparrow R$ according to Lemma 2.1. Let $G_{n}=\{\psi \leqq 1-1 / n\}$ and let $\varphi_{n}(x)=E^{x}\left(e^{-T_{n}}\right)$. Next define $K^{n, k}=\left\{\varphi_{n}<1-1 / k\right\}$. It is immediate that $K^{n, k}$ increases with both n and k, and so if we let $K_{n}=K^{n, n}$ then $K_{n} \subset G_{n}$ for each n and $\cup K_{n}=E$. Now $t \rightarrow$ $B\left(t \wedge T_{n}\right)$ is a CAF of $\left(X, T_{n}\right)$ with a bounded one potential and so by Theorem 3 there exists a CAF, C^{n}, of X with a bounded one potential such that if $f \in \mathscr{E}_{+}^{*}$ and vanishes off K_{n} then

$$
\begin{equation*}
E^{x} \int_{0}^{T_{n}} e^{-t} f\left(X_{t}\right) d B_{t}=E^{x} \int_{0}^{T_{n}} e^{-t} f\left(X_{t}\right) d C_{t}^{n} \tag{3.2}
\end{equation*}
$$

We need the following compatibility relationship: if $f \geqq 0$ vanishes off K_{n}, then for all m

$$
\begin{equation*}
E^{x} \int_{0}^{T_{m}} e^{-t} f\left(X_{t}\right) d C_{t}^{n}=E^{x} \int_{0}^{T_{m}} e^{-t} f\left(X_{t}\right) d B_{t} \tag{3.3}
\end{equation*}
$$

Suppose firstly that $m<n$. It follows from (3.2) that

$$
\begin{equation*}
\bar{B}_{t}=\int_{0}^{t \wedge T_{n}} I_{K_{n}}\left(X_{u}\right) d B_{u} . \quad \bar{C}_{t}=\int_{0}^{t \wedge T_{n}} I_{K_{n}}\left(X_{u}\right) d C_{u}^{n} \tag{3.4}
\end{equation*}
$$

define CAF's of (X, T_{n}) with the same bounded one potential. Consequently, by the uniqueness theorem for CAF'S, $\bar{B}=\bar{C}$ (that is, \bar{B} and \bar{C} are equivalent). But $T_{m} \leqq T_{n}$ and hence (3.3) holds if $m<n$.

Next suppose that $m>n$. Then $K_{n} \subset G_{n} \subset G_{m}$. Recall that $E_{m}=E-G_{m}$ and T_{m} is the hitting time of E_{m}. Let S be the hitting time $K_{n} \cup E_{m}$ and define stopping times as follows: $S_{0}=0$,

$$
\begin{equation*}
S_{2 k+1}=S_{2 k}+T_{n} \circ \theta_{S_{2 k}}, S_{2 k+2}=S_{2 k+1}+S \circ \theta_{S_{2 k+2}}, \tag{3.5}
\end{equation*}
$$

for $k \geqq 0$. Then $\left\{S_{k}\right\}$ forms an increasing sequence of stopping times and since E_{m} is finely open, $S_{k} \leqq T_{m}$ for all k. Also, $X\left(S_{2 k}\right) \in K_{n}$ if $S_{2 k}<T_{m}$ and using the definition of K_{n} this yields

$$
\begin{align*}
E^{x}\left\{e^{-S_{2 k+1}} ; S_{2 k+1}<T_{m}\right\} & \leqq E^{x}\left\{\exp \left\{-\left(S_{2 k}+T_{n} \circ \theta_{S_{2 k}}\right)\right\} ; S_{2 k}<T_{m}\right\} \tag{3.6}\\
& \leqq(1-1 / n) E^{x}\left\{e^{-S_{2 k}} ; S_{2 k}<T_{m}\right\} \\
& \leqq(1-1 / n) E^{x}\left\{e^{-S_{2 k-1}} ; S_{2 k-1}<T_{m}\right\} .
\end{align*}
$$

Consequently, $\lim S_{k}=T_{m}$. But f vanishes off K_{n} and $X_{t} \notin K_{n}$ if $S_{2 k+1} \leqq t<$ $S_{2 k+2}$. As a result using (3.2), we obtain

$$
\begin{align*}
E^{x} \int_{0}^{T_{m}} e^{-t} f\left(X_{t}\right) d B_{t} & =\sum_{k=0}^{\infty} E^{x} \int_{S_{2 k}}^{S_{2 k+1}} e^{-t} f\left(X_{t}\right) d B_{t} \tag{3.7}\\
& =\sum_{k=0}^{\infty} E^{x}\left\{e^{-S_{2 k}} E^{X\left(S_{2 k}\right)} \int_{0}^{T_{n}} e^{-t} f\left(X_{t}\right) d B_{t}\right\} \\
& =\sum_{k=0}^{\infty} E^{x}\left\{e^{-S_{2 k}} E^{X\left(S_{2 k}\right)} \int_{0}^{T_{n}} e^{-t} f\left(X_{t}\right) d C_{t}^{n}\right\} \\
& =E^{x} \int_{0}^{T_{m}} e^{-t} f\left(X_{t}\right) d C_{t}^{n}
\end{align*}
$$

Thus, (3.3) is established since it reduces to (3.2) when $m=n$.
Now disjoint the K_{n} : $J_{1}=K_{1}, \cdots, J_{n}=K_{n}-\cup_{j<n} K_{j}$. Thus, $\left\{J_{n}\right\}$ is a disjoint sequence of nearly Borel sets such that $\cup J_{n}=E$ and $J_{n} \subset K_{n}$ for each n. Define

$$
\begin{equation*}
B_{t}^{n}=\int_{0}^{t} I_{J_{n}}\left(X_{s}\right) d C_{s}^{n} \tag{3.8}
\end{equation*}
$$

Each B^{n} is a CAF of X with a bounded one potential. Let $C_{t}=\Sigma B_{t}^{n}$ and let
$f \in \mathscr{E}_{+}^{*}$. Then for each n

$$
\begin{align*}
E^{x} \int_{0}^{T_{n}} e^{-t} f\left(X_{t}\right) d C_{t} & =\sum_{k} E^{x} \int_{0}^{T_{n}} e^{-t}\left(f I_{J_{k}}\right)\left(X_{t}\right) d C_{t}^{k} \tag{3.9}\\
& =\sum_{k} E^{x} \int_{0}^{T_{n}} e^{-t}\left(f I_{J_{k}}\right)\left(X_{t}\right) d B_{t} \\
& =E^{x} \int_{0}^{T_{n}} e^{-t} f\left(X_{t}\right) d B_{t}
\end{align*}
$$

and letting $n \rightarrow \infty$, we obtain

$$
\begin{equation*}
E^{x} \int_{0}^{R} e^{-t} f\left(X_{t}\right) d C_{t}=E^{x} \int_{0}^{R} e^{-t} f\left(X_{t}\right) d B_{t} . \tag{3.10}
\end{equation*}
$$

Since $R>0$ almost surely, this implies that $t \rightarrow C_{\mathrm{t}}$ is finite on $[0, R)$ and it is then easy to see that C is a CAF of X. Once again the uniqueness theorem for CAF's tells us that $B_{t}=C_{t}$ if $t<R$. But $C=\Sigma B^{n}$ where each B^{n} is a CAF of X with a bounded one potential, and so Lemma 3.1 is established.

4. Proof of Theorem 3

The proof of Theorem 3 is rather long and so we will break it up into several lemmas. We refer the reader to Section 1 for the statement of Theorem 3. We begin with some notation that will be used throughout the proof. Let G be the finely open set such that $T=T_{\boldsymbol{G}}$. Let $\psi(x)=E^{x}\left(e^{-T}\right)$. Then $K=\{\psi<\eta\}$ where $\eta<1$ and $K \subset\{\psi \leqq \eta\} \subset E-G$. Define $T_{0}=0$ and for $n \geqq 0$

$$
\begin{equation*}
T_{2 n+1}=T_{2 n}+T \circ \theta_{T_{2 n}}, \quad T_{2 n+2}=T_{2 n+1}+T_{K} \circ \theta_{T_{2+1}} . \tag{4.1}
\end{equation*}
$$

Thus, $\left\{T_{n}\right\}$ is an increasing sequence of stopping times, and for any x and $n \geqq 1$

$$
\begin{align*}
E^{x}\left\{e^{-T_{2 n+1}} ; T_{2 n}<\infty\right\} & =E^{x}\left\{e^{-T_{2 n}} \psi\left(X_{T_{2 n}}\right) ; T_{2 n}<\infty\right\} \tag{4.2}\\
& \leqq \eta E^{x}\left\{e^{-T_{2 n}} ; T_{2 n}<\infty\right\} \\
& \leqq \eta E^{x}\left\{e^{-T_{2 n-1}} ; T_{2 n-2}<\infty\right\}
\end{align*}
$$

because $\psi\left(X_{T_{2 n}}\right) \leqq \eta$ if $T_{2 n}<\infty$ and $n \geqq 1$. As a result $\lim T_{n}=\infty$.
Suppose for the moment that there is a CAF, B of X for which the conclusion of Theorem 3 holds. If we define

$$
\begin{equation*}
u(x)=E^{x} \int_{0}^{T} e^{-t} I_{K}\left(X_{t}\right) d A_{t}=U_{A}^{1} I_{K}(x), \tag{4.3}
\end{equation*}
$$

then because $X_{t} \notin K$ if $T_{2 n-1} \leqq t<T_{2 n}$ we can compute $U_{B}^{1} I_{K}(x)$ as follows

$$
\begin{align*}
U_{B}^{1} I_{K}(x) & =E^{x} \int_{0}^{\infty} e^{-t} I_{K}\left(X_{t}\right) d B_{t} \tag{4.4}\\
& =\sum_{n=0}^{\infty} E^{x} \int_{T_{2 n}}^{T_{2 n+1}} e^{-t} I_{K}\left(X_{t}\right) d B_{t} \\
& =\sum_{n=0}^{\infty} E^{x}\left\{e^{-T_{2 n}} E^{X\left(T_{2 n}\right)} \int_{0}^{T} e^{-t} I_{K}\left(X_{t}\right) d B_{t}\right\} \\
& =\sum_{n=0}^{\infty} E^{x}\left\{e^{\left.-T_{2 n} u\left(X_{T_{2 n}}\right)\right\}}\right.
\end{align*}
$$

The main part of the proof of Theorem 3 consists in showing that if we define

$$
\begin{equation*}
w(x)=\sum_{n=0}^{\infty} E^{x}\left\{e^{-T_{2 n}} u\left(X_{T_{2 n}}\right)\right\}, \tag{4.5}
\end{equation*}
$$

then w is a regular one potential of X, and hence the one potential of CAF of X. By hypothesis, u is bounded and since

$$
\begin{equation*}
w(x) \leqq\|u\| \sum_{n=0}^{\infty} E^{x}\left(e^{-T_{2 n}}\right) \leqq\|u\| \sum_{n=0}^{\infty} \eta^{n}<\infty \tag{4.6}
\end{equation*}
$$

w is also bounded.
Lemma 4.1. Let K be as above. Then $w=P_{K}^{1} w$.
Proof. For typographical simplicity let $Q=T_{K}$. Then

$$
\begin{align*}
P_{K}^{1} w(x) & =E^{x}\left\{e^{-Q_{w}}\left(X_{Q}\right)\right\} \tag{4.7}\\
& =\sum_{n=0}^{\infty} E^{x}\left\{\exp \left\{-\left(Q+T_{2 n^{\circ}}{ }^{\circ} \theta_{Q}\right)\right\} u\left(X_{Q+T_{2 n}{ }^{\circ} \theta_{Q}}\right)\right\}
\end{align*}
$$

Break each summand into an integral over $\left\{Q<T_{1}\right\}$ and over $\left\{Q \geqq T_{1}\right\}$. A straightforward induction argument shows that if $k \geqq 1, Q+T_{k}{ }^{\circ} \theta_{Q}=T_{k}$ on $\left\{Q<T_{1}\right\}$. On the other hand if $Q \geqq T_{1}$, then $Q=T_{2}$. But then $Q+T_{1} \circ \theta_{Q}=$ $T_{2}+T \circ \theta_{T_{2}}=T_{3}$ and again one sees by induction that for $k \geqq 0, Q+$ $T_{k} \circ \theta_{Q}=T_{k+2}$ if $Q \geqq T_{1}$. Consequently,

$$
\begin{equation*}
P_{K}^{1} w(x)=E^{x}\left\{e^{-Q^{Q}} u\left(X_{Q}\right) ; Q<T_{1}\right\}+\sum_{n=1}^{\infty} E^{x}\left\{e^{-T_{2 n}} u\left(X_{T_{2 n}}\right)\right\} \tag{4.8}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
w(x)-P_{K}^{1} w(x)=u(x)-E^{x}\left\{e^{-Q_{u}}\left(X_{Q}\right) ; Q<T_{1}\right\} \tag{4.9}
\end{equation*}
$$

But $T_{1}=T, Q=T_{K}$, and using the definition of u (see (4.3)), we obtain

$$
\begin{equation*}
E^{x}\left\{e^{-Q_{u}} u\left(X_{Q}\right) ; Q<T_{1}\right\}=E^{x} \int_{0}^{T} e^{-t} I_{K}\left(X_{t}\right) d A_{t}=u(x) \tag{4.10}
\end{equation*}
$$

Therefore, $w=P_{K}^{1} w$. completing the proof of Lemma 4.1.

Lemma 4.2. If J is any compact set, then $P_{J}^{1} w \leqq w$.
Proof. Let $S=T_{J}+Q \circ \theta_{T_{J}}$ where $Q=T_{K}$ as before. Now $X_{S} \in K \cup K^{r}$ if $S<\infty$. But $X_{t} \notin K \cup K^{r}$ if $T_{2 n+1} \leqq t<T_{2 n+2}$, and so $\{S<\infty\}=\cup_{n}\left\{T_{2 n} \leqq\right.$ $\left.S<T_{2 n+1}\right\}$. Also, it is easy to check by induction that for $k \geqq 0, T_{k+2}=T_{2}+$ $T_{k} \circ \theta_{T_{2}}$. Hence,

$$
\begin{align*}
w(x) & =u(x)+\sum_{n=1}^{\infty} E^{x}\left\{e^{-T_{2 n}} u\left(X_{T_{2 n}}\right)\right\} \tag{4.11}\\
& =u(x)+E^{x}\left\{e^{-T_{2}} w\left(X_{T_{2}}\right)\right\}
\end{align*}
$$

Again one checks that for $k \geqq 1, S+T_{k} \circ \theta_{S}=T_{k}$ if $S<T_{1}$. Now $\left\{S<T_{1}\right\} \in$ $\mathscr{F}_{T_{1}} \subset \mathscr{F}_{T_{2}}$ and so

$$
\begin{align*}
& E^{x}\left\{e^{-S} w\left(X_{S}\right) ; S<T_{1}\right\} \tag{4.12}\\
& \quad=E^{x}\left\{e^{-S} u\left(X_{S}\right) ; S<T_{1}\right\}+E^{x}\left\{e^{-T_{2}} w\left(X_{T_{2}}\right) ; S<T_{1}\right\}
\end{align*}
$$

Using (4.11) and the fact that u is one (X, T) excessive, we obtain

$$
\begin{equation*}
E^{x}\left\{e^{-s} w\left(X_{S}\right) ; S<T_{1}\right\}+E^{x}\left\{e^{-T_{2}} w\left(X_{T_{2}}\right) ; S \geqq T_{1}\right\} \leqq w(x) \tag{4.13}
\end{equation*}
$$

We next prove by induction that for all $n \geqq 1$.

$$
\begin{equation*}
w(x) \geqq E^{x}\left\{e^{-s} w\left(X_{S}\right) ; S<T_{2 n}\right\}+E^{x}\left\{e^{-T_{2 n}} w\left(X_{T_{2 n}}\right) ; S \geqq T_{2 n}\right\} \tag{4.14}
\end{equation*}
$$

If $n=1$, this reduces to (4.13) because S lies in some interval $\left[T_{2 k}, T_{2 k+1}\right.$) when S is finite. Assume (4.14) for a fixed value of n. The second summand on the right side of (4.14) may be written

$$
\begin{equation*}
E^{x}\left\{e^{-s} w\left(X_{S}\right): S=T_{2 n}\right\}+E^{x}\left\{e^{-T_{2 n}} w\left(X_{T_{2 n}}\right) ; S>T_{2 n}\right\} \tag{4.15}
\end{equation*}
$$

It is immediate that if $T_{2 n}<S$ then $T_{2 n-1}<T_{J}$. Recall that $S=T_{J}+Q \circ \theta_{T J}$ and $T_{2 n}=T_{2 n-1}+Q \circ \theta_{T 2 n-1}$. But this together with the fact that K is finely open implies that $T_{2 n}<T_{J}$ if $T_{2 n}<S$. Consequently, $T_{2 n}+S \circ \theta_{T_{2 n}}=S$ if $T_{2 n}<S$. Combining these observations with (4.13), we obtain

$$
\begin{align*}
& E^{x}\left\{e^{-T_{2 n}} w\left(X_{T_{2 n}}\right) ; S>T_{2 n}\right\} \tag{4.16}\\
& \quad \geqq E^{x}\left\{e^{-T_{2 n}} E^{x\left(T_{2 n}\right)}\left[e^{-S} w\left(X_{S}\right) ; S<T_{1}\right] ; S>T_{2 n}\right\} \\
& \quad+E^{x}\left\{e^{-T_{2 n}} E^{X\left(T_{2 n}\right)}\left[e^{-T_{2}} w\left(X_{T_{2}}\right) ; S \geqq T_{1}\right] ; S>T_{2 n}\right\} \\
& =E^{x}\left\{e^{-S} w\left(X_{S}\right) ; T_{2 n}<S<T_{2 n+1}\right\} \\
& \quad+E^{x}\left\{e^{-T_{2 n+2}} w\left(X_{T_{2 n+2}}\right) ; S \geqq T_{2 n+1}\right\} .
\end{align*}
$$

But $\left\{T_{2 n}<S<T_{2 n+1}\right\}=\left\{T_{2 n}<S<T_{2 n+2}\right\}$ and $\left\{S \geqq T_{2 n+1}\right\}=\left\{S \geqq T_{2 n+2}\right\}$. As a result (4.14) holds with n replaced by $n+1$, and hence it holds for all $n \geqq 1$. Now $\lim T_{n}=\infty$ and so letting $n \rightarrow \infty$ in (4.14), we obtain $w \geqq P_{S}^{1} w$. But $P_{S}^{1} w=P_{J}^{1} P_{K}^{1} w=P_{J}^{1} w$ since $w=P_{K}^{1} w$ by Lemma 4.1, completing the proof of Lemma 4.2.

Lemma 4.3. The function w is 1 -excessive.
Proof. In light of Lemma 4.2 and Dynkin's theorem (II-5.3), it will suffice to show that $\lim \inf _{t \downarrow 0} P_{t}^{1} w(x) \geqq w(x)$ for all x. Suppose first of all that x is not regular for K. Then almost surely $P^{x}, t+Q \circ \theta_{t}=Q$ for t sufficiently small, and since $w=P_{\mathbf{K}}^{1} w$ this yields

$$
\begin{align*}
\lim _{t \rightarrow 0} P_{t}^{1} w(x) & =\lim _{t \rightarrow 0} P_{t}^{1} P_{K}^{1} w(x) \tag{4.17}\\
& =\lim _{t \rightarrow 0} E^{x}\left\{\exp \left\{-\left(t+Q \circ \theta_{t}\right)\right\} w\left(X_{t+Q^{\circ} \theta_{t}}\right)\right\} \\
& =P_{K}^{1} w(x)=w(x) .
\end{align*}
$$

Suppose on the other hand that x is regular for K. Then $P^{x}(t<T) \rightarrow 1$ as $t \rightarrow 0$ and so using (4.11) with $T=T_{1}$,

$$
\begin{align*}
P_{t}^{1} w(x) & \geqq E^{x}\left\{e^{-t} w\left(X_{t}\right) ; t<T\right\} \tag{4.18}\\
& =E^{x}\left\{e^{-t} u\left(X_{t}\right) ; t<T\right\}+E^{x}\left\{e^{-T_{2}} w\left(X_{T_{2}}\right) ; t<T\right\} .
\end{align*}
$$

Because u is $1-(X, T)$ excessive this approaches $u(x)+E^{x}\left\{e^{-T_{2}} w\left(X_{T_{2}}\right)\right\}=$ $w(x)$ as $t \rightarrow 0$, completing the proof of Lemma 4.3.

Lemma 4.4. The function w is a regular one potential.
Proof. We must show that if $\left\{S_{n}\right\}$ is an increasing sequence of stopping times with limit S, then $P_{S_{n}}^{1} w \rightarrow P_{S}^{1} w$. It follows from (IV-3.6) and (IV-3.8) that we need consider only the case $S_{n}=T_{B_{n}}$ where $\left\{B_{n}\right\}$ is a decreasing sequence of nearly Borel sets. In particular each S_{n} is a strong terminal time and consequently so is their limit S. In checking that $P_{S_{n}}^{1} w(x) \rightarrow P_{S}^{1} w(x)$, we may assume that $P^{x}\left(S_{n}>0\right)=1$ since if $S_{n}=0$ for all n the conclusion is obvious. Now fix x and let

$$
\begin{equation*}
a_{n, k}=E^{x}\left\{e^{-S_{n}} w\left(X_{S_{n}}\right) ; T_{k}<S_{n} \leqq T_{k+1}\right\} \tag{4.19}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{k}=E^{x}\left\{e^{-s} w\left(X_{S}\right) ; T_{k}<S \leqq T_{k+1}\right\} \tag{4.20}
\end{equation*}
$$

Then $P_{S_{n}}^{1} w(x)=\Sigma_{k} a_{n, k}$ and $P_{S}^{1} w(x)=\Sigma_{k} a_{k}$. It will suffice to show that for each $k, a_{n, k} \rightarrow a_{k}$ as $n \rightarrow \infty$ because $\Sigma_{k \geqq N} a_{n, k} \leqq\|w\| E^{x}\left(e^{-T_{N}}\right) \rightarrow 0$ as $N \rightarrow \infty$. Suppose first of all that k is even, say $k=2 j$. If R is any strong terminal time then on $\left\{T_{2 j}<R \leqq T_{2 j+1}\right\}$ we have $R=T_{2 j}+R \circ \theta_{T_{2 j}}$, and also because T is the hitting time of a finely open set $R+T_{2} \circ \theta_{R}=T_{2_{j}+2}$. Now using (4.11), we obtain for any strong terminal time R

$$
\begin{align*}
& E^{x}\left\{e^{-R} w\left(X_{R}\right) ; T_{2 j}<R \leqq T_{2 j+1}\right\} \tag{4.21}\\
& =E^{x}\left\{e^{-R} u\left(X_{R}\right) ; T_{2 j}<R ; R \circ \theta_{T_{2 j}} \leqq T \circ \theta_{T_{2 j}}\right\} \\
& \quad+E^{x}\left\{e^{-R} E^{X(R)}\left[e^{-T_{2}} w\left(X_{T_{2}}\right)\right] ; T_{2 j}<R \leqq T_{2 j+1}\right\} \\
& =E^{x}\left\{e^{-T_{2 j}} E^{X\left(T_{2 j}\right)}\left[e^{-R} u\left(X_{R}\right) ; R \leqq T\right] ; T_{2 j}<R\right\} \\
& \quad+E^{x}\left\{e^{-T_{2 j+2}} w\left(X_{T_{2 j+2}}\right) ; T_{2 j}<R \leqq T_{2 j+1}\right\} .
\end{align*}
$$

In (4.21), we may replace R by either S_{n} or S. Observe that the set $\left\{T_{2 j}<S_{n}\right\}$ approaches the set $\left\{T_{2 j}<S\right\}$ as $n \rightarrow \infty$ and that $\left\{T_{2 j}<S_{n} \leqq T_{2 j+1}\right\}$ approaches $\left\{T_{2_{j}}<S \leqq T_{2_{j+1}}\right\}$ as $n \rightarrow \infty$. Now u is a regular one potential of (X, T) since it is the one potential of a CAF of (X, T), and $u\left(X_{T}\right)=0$ because X_{T} is regular for G; recall $T=T_{G}$ with G finely open. As a result for any y

$$
\begin{align*}
E^{y}\left\{e^{-S_{n}} u\left(X_{S_{n}}\right) ; S_{n} \leqq T\right\} & =E^{y}\left\{e^{-S_{n}} u\left(X_{S_{n}}\right) ; S_{n}<T\right\} \tag{4.22}\\
& \rightarrow E^{y}\left\{e^{-s} u\left(X_{S}\right) ; S<T\right\} \\
& =E^{y}\left\{e^{-s} u\left(X_{S}\right) ; S \leqq T\right\}
\end{align*}
$$

as $n \rightarrow \infty$. Consequently, $a_{n, 2 j} \rightarrow a_{2 j}$ as $n \rightarrow \infty$. Next consider the case in which k is odd, say $k=2 j+1$. Using the fact that $w=P_{K}^{1} w$, we obtain

$$
\begin{equation*}
a_{n, 2 j+1}=E^{x}\left\{\exp \left\{-S_{n}+T_{K} \circ \theta_{S_{n}}\right\} w\left(X_{S_{n}+T_{K} \circ \theta_{S_{n}}}\right) ; T_{2 j+1}<S_{n} \leqq T_{2 j+2}\right\} \tag{4.23}
\end{equation*}
$$

and a similar expression for $a_{2_{j+1}}$ with S_{n} replaced by S. But on $\left\{T_{2 j+1}<S_{n} \leqq\right.$ $\left.T_{2 j+2}\right\}$ we have $S_{n}+T_{K} \circ \theta_{S_{n}}=T_{2 j+2}$ while on $\left\{T_{2_{j+1}}<S \leqq T_{2 j+2}\right\}$, $S+$ $T_{K} \circ \theta_{S}=T_{2 j+2}$ because K is finely open. From this and the fact that $S_{n} \uparrow S$, it is immediate that $a_{n, 2 j+1} \rightarrow a_{2 j+1}$ as $n \rightarrow \infty$. This completes the proof of Lemma 4.4.

We are now prepared to complete the proof of Theorem 3. Since w is a regular one potential there is a CAF, B of X such that $w=U_{B}^{1} 1$, that is, w is the one potential of B. Now $D_{t}=B_{t \wedge T}$ is a CAF of (X, T) and

$$
\begin{equation*}
U_{D}^{1} l(x)=E^{x} \int_{0}^{T} e^{-t} d B_{t}=w(x)-E^{x}\left\{e^{-T_{1}} w\left(X_{T_{1}}\right)\right\} \tag{4.24}
\end{equation*}
$$

From Lemma 4.1

$$
\begin{equation*}
E^{x}\left\{e^{-T_{1}} w\left(X_{T_{1}}\right)\right\}=E^{x}\left\{e^{-T_{2}} w\left(X_{T_{2}}\right)\right\} \tag{4.25}
\end{equation*}
$$

and so by (4.11), $U_{D}^{1} 1=u$. Hence, D and $t \rightarrow \int_{0}^{t} I_{K}\left(X_{u}\right) d A_{u}$ are equivalent CAF's of (X, T). Therefore, $E^{x} \int_{0}^{T} e^{-t} f\left(X_{t}\right) d A_{t}=E^{x} \int_{0}^{T} e^{-t} f\left(X_{t}\right) d B_{t}$ if f vanishes off K, completing the proof of Theorem 3.

REFERENCES

[1] R. M. Blumenthal and R. K. Getoor, Markov Processes and Potential Theory. New York. Academic Press, 1968.
[2] C. Doléans-Dade, "Fonctionnelles additives parfaites," Séminaire de Probabilités II Université de Strasbourg. Lecture Notes in Mathematics. Vol. 51. Berlin-Heidelberg-New York, Springer-Verlag, 1968.
[3] P. A. Meyer, Probability and Potentials, Waltham, Blaisdell, 1966.

