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In this paper we continue our discussion of the connection between potential
theory and Brownian motion begun in "Classical Potential Theory and
Brownian Motion" that also appears in this Symposium volume. Throughout
this paper, we will be dealing with a two dimensional Brownian motion process.
We will continue numbering the sections from where we left off in the previous
paper.

8. Planar Brownian motion

In Section 5, we saw that for a Brownian motion process in n _ 3 dimensions,
P (limtxIX, = o0) = 1 for all x. In sharp contrast to this situation, a planar
Brownian motion is certain to hit any nonpolar set.
THEOREM 8.1. Let B be a Borel set. Then PX(VB < cX) is either identically 1

or identically 0.
PROOF. A simple computation shows that for any x e R2, 1' p(s, x) ds T co

as t T oc. Thus, for any nonnegative function f having nonzero integral,

(8.1) ~lim J Psf(x) ds = oo.

Let 9(x) = PX(VB < oo). Then for any h > 0,

(8.2) 0. Ps(g _ phi)ds = p9 ds - Ph ds < 2h.

Letting t T cc, we see that

(8.3) 0 _ Ps(p _ phgp) ds _ 2h.

But then it must be that (o = ph9 a.e. Since P'tT t p as t 1 0 and pt(ph9) t ph9
as t 1 0, it follows that 9(x) = Ph9(x) for all x. Using Proposition 2.3, we see that
9(x) _ a for some constant a. Now

(8.4) P,(t < VB < cc) = J qB(t, X, y)(y) dy = aPX(VB > t).
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Letting t t oc. we see that cLPX(VB = cc) = 0. Thus, either PX(VB = °°)-0
or ox = 0. In the first case p(x) _ 1, while in the second case (p(x) 0. This
establishes the proposition.
The difference between planar Brownian motion and Brownian motion in

n _ 3 dimensions has its analytical counterpart in potential theory. We will now
show that the potentials associated with planar Brownian motion are logarithmic
potentials.

Let 1 denote the point (1, 0) and let a"(x) = g"(1) - g"(x). Using (2.30), we
see that for x ¢ y,

(8.5) a'(y - x) = X A (x, dz)aA(y - z) - g),(x, y) + LB(x),
where

(8.6) LB(x) = gA(1)[1 - Ex(exp {-AVB})].
Now

(8.7) a.(x) = JI e-At[p(t, 1) - p(t, x)] dt.

If lxi _ 1,.thenp(t, 1) - p(t, x) _ 0; so for lxi > 1, aA(x) is increasing. On the
other hand, for lxl < 1, p(t, 1) - p(t, x) < 0 so -aA(x) is increasing. In either
case

(8.8) lim a-,(x) = [p(t, 1) - p(t, x)] dt = -log lxi,

and the convergence is uniform on any compact set not containing 0. For
simplicity, we set a(x) = (I/7r) log |xi.
Our principle result in this section will be to establish the following theorem.
THEOREM 8.2. Let B be a nonpolar set. Then g,(x, y) < oc for x ¢ y and

limA,0 LA (x) = LB(X) exists and is finite for all x. Moreover, for x ¢ y,

(8.9) a(y - x) - { HB(x, dz)a(y - z) = -gB(X, y) + LB(X).

Before getting on with the proof, we observe first if E. VB < oo for all x then
LB(X) 0. Indeed,

(8.10) B(x) = 2g'A(l) [1 - E.(exp {-AVB})1

so if EX VB < oo, then the expression in the brackets converges to EX VB < ce,
while AgA(I) -- 0 as A- 0. In particular by Proposition 2.2, L.(x) 0 whenever
BC is relatively compact.
The proof of Theorem 8.2 is long and will be divided into several lemmas.
LEMMA 8.1. Suppose B is relatively compact. Then

(8.11) lim { AI(x, dz)aA(y - z) = HB(x, dz)a(y - z).



LOGARITHMIC POTENTIALS 179

PROOF. If B is polar, there is nothing to prove since both [IB and r1B are
the zero measure, so suppose B is nonpolar. If y j B, then as

A

1 0, a'(y - z)
converges to a(y - z) uniformly in z e B, and thus (8.11) holds in this case.
Suppose y e B. Let D. be the open disk of center y and radius e < 1. We can
write

(8.12) JAH(x, dz)aA(y - z)fnB

= J IIH(x, dz)aA(y - z) + J B(x, dz)aA(y - z).

Since

(8.13) IIA(x, dz)aA(y - z) = E.[exp {-AVB} aA(y - XVB)1D(XVB)]
BRnDC

and aA(y - z) converges to a(y - z) uniformly for z e Bn D', we see that

(8.14) lim J HA(x, dz)aA(y - z) = Ex[a(y - XVB)1DE(XVB)].
On the other hand,

(8.15) - J HA(x, dz)aA(y - z)

= E [exp { - 1VB}[- a.(y - XVB)]1DE(X VB).
Since

(8.16) -exp {-AVB}aA(y - XVB)1DC(XVVB) T -a(y XVB)lD,(XVB),
monotone convergence shows that

(8.17) lim 3J HA(x, dz)aA(y - z) = E.[a(y - XVB)1Dr(XVB)] _ °°
Aj0 BonD.

As

(8.18) - oo < E,[a(y - XVB)lDC(XV) <+VB,
we see from (8.14) and (8.17) that (8.11) holds. This establishes the lemma.
LEMMA 8.2. Suppose B is a nonpolar relatively compact set. Let A be a com-

pact set of positive measure such that A n B = 0. Then

(8.19) lim J gB(x, y) dy = E. ' A(Xt) dt < oo.
A10 A fO

PROOF. For a given xo there is a to > 1 such that

(8.20) Pj0(X5 e B for some s e (1, to))

JR2 p(l, y - xo)P,(VB . to - 1) dy > 0,
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since otherwise

(8.21) !; p(1, Y - xo)PY(VB < oc) dy = PXO(VB < °) 0.

Thus, there must be a compact set F of positive measure such that PY(VB _
to- 1) > 0 for all y e F. As p(1, x) is a strictly positive continuous function, it
follows that

(8.22) inf PX(VB _ to) > inf p(1, y-x)PY(VB _ to- 1) = >0.
xeA XeA JF

Let Ij = [t0, (j + 1)to) and let C = {t: X, e A, VB > t}. Define the index set
r by j e r if and only if Ij n C 7& 0, and enumerate r increasing order by
il < 2 < * Define the times T1 < T2 < ... as follows:

(8.23) T1 = inf {t: t e C} (= oe if there is no such t)

and

(8.24) Tn+1 = inf {t: t e C nm [jnto, cc} (= o if there is no such t).

Let N _ GO denote the number of indices in r. Then

(8.25) PX(N > n, N . n + 2) = PX(Tn < . Tn2 =

> Px(Tn < Xo VB . Tn + to)

Px (Tn < o,XT e dz)PZ ( VB _ to)

> 5Px(Tn < oo) = 6Px(N > n),

so PX(N > n + 2) . (1 - 6)Px(N > n). Thus, ExN < cc, and hence

(8.26) Ex r lA(Xt) dt = Ex CI _ Ex U Ij = toExN < ci,

as desired. This establishes Lemma 8.2.
We can now prove Theorem 8.2 when B is a relatively compact set.
LEMMA 8.3. Suppose B is a nonplanar relatively compact set. Then Theorem

8.2 holds.
PROOF. Let A be as in Lemma 8.2. Since

(8.27) T a (y - x) dy

uniformly in x on compacts, we see that

(8.28) lim f Hl(x, dz) £ aA(y - z) dy = f HB(x, dz) f a(y - z) dy.
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By Lemma 8.2,

(8.29) j (x,y) dy trgB(X, y) dy < oo.

By (8.5)

(8.30) AILAB(x) = J a'(y - x) dy - f A (x, dz) f a (y - z) dy

+ jrA9(x, y) dy.

Since the right side has a finite limit as 2 1 0, we see that L4B(x) must have a
finite limit as 2 1 0. Call this limit function LB(x). By (8.5),

(8.31) -gs(x, y) = a (y - x) - rJ (x, dz)aA(y - z) - LA(x),

and thus for x :6 y,

(8.32) liA [-gB(x'Y) + jI[I(x, dz)aA(y - z)] = a(y - x) - LB(X)

is finite. Now 0 _ gi(x, y) T gB(x, y) < + oo and by Lemma 8.1

(8.33) lim J [IB(x, dz)aA(y - z) = HB(x, dz)a(y -z),
and

(8.34) -° .r B(x, dz)a(y - z) < + 00.

Thus for x =6 y, we see thatgB(x, y) < + °, |B nB(x, dz)a(y - z) > -oo, and
that (8.9) holds.
To handle the unbounded case we need two additional lemmas.
LEMMA 8.4. Suppose A c B. Then g9(X, y) _ gB(X, y) for all x, y.
PROOF. Since A c B, VA > VB and thus for any Borel set F,

(8.35) PX(VA > t, X, c F) _ PX(VB > t, X, c F).
Hence (in the notation of Section 2) for a.e. y,

(8.36) qA(t, x, y) _ qB(t, x, y).
But then

(8.37)
R

qA(t - s, X, z)p(E, y - z) dz > Jr 2 qB(t - £, x, z)p(E, y - z) dz,

and thus letting e 1 0 (see Section 2), it follows that (8.36) holds for all y.
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Integrating on t, we see that

(8.38) gA(x, y) = J qA(t, X, Y) dt > J qB(t, X, Y) dt = gB(x, y)
as desired.
LEMMA 8.5. Let B be any Borel set. Then for x ¢ y,

(8.39) lim IIH (x, dz)aA(y - z) = r- HB(x, dz)a(y - z) > -cc.

PROOF. If B is polar, there is nothing to prove so suppose B is nonpolar.
Suppose y e (B)C. Let D, be a disk of center 0 and radius r > 1 + IYI. Then
Y -z > 1 for z E Dc. Hence, by monotone convergence

(8.40) J H.B(x, dz)aA(y - z) = E.Eexp {-AVB}aA(y - XVB)1Dr(XVB)]fiiDFB
TE.[a(y - XVB)1DF(XVB)] = J B(X, dz)a(y - z) _ 0.

On the other hand, aA(y - z) -- a(y - z) uniformly in z E B n Dr so

(8.41) lim (' nH(x, dz)a (y - z) = nHB(x, dz)a(y -z)
.a4I0nJCDr Jfr"Dr

and

(8.42) -oo < HnB(x, dz)a(y - z) < oo.

Thus, (8.39) holds for y 0 B. Suppose y e B and let AE be the disk of center y
and radius a < 1. We can write

(8.43) J Al(x, dz)aA(y - z) = J ]A(x, dz)aA(y - z)

+ Jf BI(x, dz)aA(y - z)
DrnA6

+ J A(x, dz)ak(y - z).
DF

Choose r so large that B n D. is nonpolar and such that y -z > 1 for
z e D. The second term on the right of (8.43) converges to

(8.44) -cc < JnAE HsB(x,dz)a(y - z) < cc,
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as A 1 0, since aA(y - z) -- a(y - z) uniformly for zeB nDr, nA'. Let Br =
B n Dr, and note that HBr(x, dz) _ [IB(X, dz) for z e Dr. Since -a"(y - z) t
-a(y - z), z e A., it follows from the monotone convergence theorem that

(8.45) - J r A(x, dz)a (y - z)

= E.(exp {-AVB} [-a (y - XVB)1AE(XVB)lD,(XVB))
t E[-a(y - XVB)1AI(XVB)lDr(XVB)]

r-JDTA HB(x, dz)a(y - z).
Since a(y - z) . 0 for z e AE, we see that

(8.46) fDrCA. [IB(X, dz)a(y - z) > fDrflAJ
c.
1Br(,X dz)a(y - z).

By Lemma 8.3,

(8.47) I1Br(x, dz)a(y - z) > oo,

and it is clear that

(8.48) c0 > f( B, (x, dz)a(y - z) > -_ .

Hence,

(8.49) lim rl Al(x, dz)aA(y - z) = f HB(x, dz)a(y - z) > - 00.
A10 fD,rmAt BD,nA.

Finally, as in the case when y e (B)c, monotone convergence shows that

(8.50) lim J' A (x, dz)aA(y - z) = HB(x, dz)a(y - z) _ 0.

Thus, using (8.43), we see that (8.39) holds for y e B. This completes the proof.
We may now easily establish Theorem 8.2.
PROOF OF THEOREM 8.2. Since B is nonpolar some relatively compact subset

A c B must be nonpolar. But then, by Lemma 8.3, gB(x, y) _ gA(x, y) < 00

for x :# y. Also

(8.51) LB(x) = g (1)[1 - Ex(exp {-AVB})]
< g (1)[1 - E.(exp {-AVA})] = LA(x),

so

(8.52) lim sup L14(x) . LA~X) < 00..
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Using (8.5), we see that for x ¢ y,

(8.53) lim [J IV(x dz)aA(y - z) + Li (x) = a(y - x) + gB(X, y)

has a finite limit.
Using (8.52) and Lemma 8.5, we see that

(8.54) lim fi AB(x, dz)aA(y - z) = nfB(x, dz)a(y -z),

must be finite for x ¢ y. Thus, it must be that limA 1 O LA (x) = LB(x) exists and
that (8.9) is satisfied. This establishes the theorem.
One of the main applications of Theorem 8.2 is to show that gB(x, y) < co,

x :6 y, x, y e BC, when B is a compact nonpolar set. As we will see in the next
section, gB restricted to BC x BC (for B a closed set) is just the Green function of
BC. Now if one is interested only in showing that gB(x, y) < o0 for x ¢ y,
x, y E BC and in showing that (8.9) is valid for such x, y when B is a nonpolar
compact set then the proof of the theorem can be considerably shortened. In
fact, all one needs is Lemma 8.2 and the simple parts of Lemmas 8.1 and 8.3.
A simple consequence of Theorem 8.2 is the following result.
THEOREM 8.3. Let B be a nonpolar Borel set. Then

(8.55) lim log (t)PX(VB > t) = 27rLB(X).
t- 00

PROOF. One easily checks that

(8.56) g (1) -2 A log A .1 °

The theorem follows from this and the fact that

(8.57) lim AgAm() [1 EB(e p { B})1L(X)
A1° A

exists by well-known Tauberian theorems.
Of course Theorem 8.3 is uninteresting when EXVB < o since then LB(x) _ O.

When B is relatively compact, however, LB(X) > 0 for all lxi sufficiently large.
In Section 10, we will see that LB(x) = lims -, gB(x, y)wheneverB is relatively
compact.

9. Green function

Now that we have Theorem 8.2 at our disposal, we can easily derive the
properties of gB(x, y) for a nonpolar set B.
THEOREM 9.1. Let B be nonpolar. Then

(i) 0 _ 9B(X, y) < oo for x ¢ y,
(ii) gB(X, y) = gB(y, X),
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(iii) gB(X, y) + a(y - x) is harmonic in y on (B)C,
(iV) gB(X, y) is harmonic in y on (B)C _ {x},
(V) gB(X, y) is subharmonic in y and upper semicontinuous in y on R2 _ {x},
(vi) lim, ,0 gB(X, y) = gB(X. YO) = 0, yo E Br.
PROOF. Part (i) is part of Theorem 8.2. Part (ii) follows from the fact that

it is true for gA and letting i 0. Parts (iii) to (v) follow from (8.9) and the fact
that a(y -x) is harmonic in y + x and that for any finite measure ,

IF log I - xly(dx) is an upper semicontinuous and subharmonic function that
is harmonic in (B)C. Finally, (vi) follows from the upper semicontinuity and the
fact that g`(x, yo) = 0 for all A and x.
An open set C is called Greenian if there exists a function g(x, y) on G x G

such that g(x, y) + a(y - x) is harmonic in y on G. If G is Greenian the
smallest such function is called the Green function of G.
From our work in Section 5, we know that in dimension n . 3 every open set is

Greenian and that gGc restricted to G x G is its Green function. Based on this,
and Theorem 9.1, we would fully expect that the following holds in the planar
case.
THEOREM 9.2. An open set G c R2 is Greenian if and only if GC is nonpolar.

In that case gGc restricted to G x G is the Green function of G.
PROOF. Suppose first that G is a bounded open set such that each point of

aG is regular for GC. Then clearly GC is nonpolar so Theorem 9.1 shows that gc
restricted to G x G is Greenian. To see that it is the smallest of the Greenian
functions, suppose g is another such function. Then by property (vi) of
Theorem 9.1,

(9.1) lim inf [g(x, y) - gG(x, y)] = lim infg(x, y) _ 0.
Y-Yo Y-yo

Thus, by the minimum principle, g(x, y) -g~c(x, y) > 0 on G.
Suppose now that G is any open subset of R2. By Corollary 3.1, we can find

bounded open sets G1 c 1 c G2 U, G, = G, such that each point of
aG, is regular for G' and such that PX(VV5Gn t VaG) = 1 for all x c G.
By Lemma 8.4, the sequence gGc, is increasing and bounded above by g c(x, y).

Since gIS (x, y) + a(y - x) is harmonic in y e G for fixed x e G, Harnack's
theorem tells us that the limit function g*(x, y) < g~c(x. y) is such that in a
given component of G it is either identically infinite or a harmonic function on

G - {x}. Let f _ 0 be arbitrary. Then for any x e G.

(9.2) E., VOGn f(X,) dt = E
VGn f(X,) dt T Ex

V

f(X,) dt, n T oo.

But

(9.3) Er ff(Xt) dt = G(X, y)f(y) dy.
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so monotone convergence gives that

(9.4) £R2 fi ' y)f(y) dy T fR g*(x, y)f(y) dy,

as nT oo. Thus,

(9.5) £RI.C2(x, y)f(y) dy = gcG(x, y)f(y) dy.
Suppose GC is nonpolar. Then as g*(x, y) < gGc(X, y), g*(x, y) < oo for x =6 y,
and thus g*(x, y) + a(y - x) is harmonic in y on G. Since the function f in
(9.5) is any nonnegative function, (9.5) implies that g*(x, y) = goC(x, y) a.e. y.
Since gGc(x, y) + a(y - x) is harmonic in y, we see that g* = on G x G.
Suppose g is any function having the required properties. Then this function
restricted to G. also has the required properties so by what has already been
proved, g(x, y) _ gGS(X, y), x, y e G, Thus,

(9.6) g.c(x, y) = lim gR*(x, y) _ g(x, y).

Hence, gc restricted to G x G is the Green function of G. Finally, suppose GC is
polar. Then G cannot be Greenian. Indeed, if it were Greenian, then let g be a
function with the required properties. But then, as argued above

(9-7) g*(x, y) <- g(x, y) < oo, x =+ y.

But (9.4) shows that g*(x, y) = cc for a.e. y, a contradiction. This completes
the proof.

10. Logarithmic potentials

Let p be a bounded measure having compact support k. The function p, (x) =
-|k a(y - x)4u(dy) is called the potential of u. One easily verifies that (p/,(x) is
a lower semicontinuous function that is superharmonic on R2 and harmonic
on kc.

Let B be a nonpolar relatively compact set. Since a(y - x) - a(y) - 0 as

IY- 00, uniformly in x on compacts, it follows at once from (8.9) that, uni-
formly in x on compacts,
(10.1) lim gB(x, y) = LB(X).

IYI-CO1
As gB(x, y) = gB(y, x), we see that

(10.2) lim gB(x, yj = LB(y).
1xl - OD

Let Dr be the closed disk of center 0 and radius r. The hitting measure,
[IDr(x, dy), is just the unit mass at x for x e D,. For x e D' and 'p a continuous
function on aD, rIDp(X) = HODP(X) is the unique bounded solution to the
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Dirichlet problem for D' with boundary function Ao. As is well known from
texts on complex variables or partial differential equations, the solution to this
Dirichlet problem is provided by the Poisson integral. Thus,

(10.3) HD,(x. dy) = [lxll - r2] or(0 dy), x e D'.

It follows from (10.3) that

(10.4) lim [ID(x, dy) = ar(0. dy),
lxl-,r

in the sense of strong convergence of measures.
Let B be any nonpolar relatively compact set and let Dr be a disk of center 0

and radius r that contains B in its interior. Then for any bounded function cp

(10.5) HBqi(X) = llD,H(x, dz)sB(p(z), x e Dr.

Hence,

(10.6) lim HB(p(X) = X HB(P(Z)Ur(O. dz).
1xl-.0 feD,

Let

(10.7) IB(dy) = I HB(z, dy)ar(0. dz).

Equation (10.6) shows that JUB(dy) = lim1 1O, lB(x, dy) in the sense of strong
convergence of measures. We have thus proved the following important result.
THEOREM 10.1. Let B be a nonpolar relatively compact set. Then gB(X, y) ->

LB(y) as lxi - oo, and HB(x, dy) - /B(dy) as lxi , co in the sense of strong
convergence.
The measure hUB has the obvious probabilistic significance as the hitting prob-

ability of B starting from infinity. We will show that liB should be considered
in potential theoretic terms as the equilibrium measure of B.
THEOREM 10.2. Let B be a nonpolar relatively compact set. Then

(10.8) lim [LB(X) - a(x)] = k(B)
Ixl-

exists and is finite. Moreover.

(10.9) (p,,(x) = k(B) - LB(X).

PROOF. Suppose y ¢ B. Then a(y -z) is bounded for z e B, and thus by
Theorem 10.2.

(10.10) lim f1B(x. dz)a(y -z) = I PB(dz)a(y - z)
Ix|cC Bf
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exists and is finite. Using (8.9), we see that

(10.11) a(y - x) - a(x)-f HB(x. dz)a(y - z) + gB(X, y)

= LB(X) - a(x).

Using (10.10) and (10.2), we see that the left side converges to PIB(Y) + LB(y)
as lxi - on. Hence. the right side must have a finite limit. This establishes
(10.8) and (10.9) for y e (B)c. Suppose y E B. Then (8.9) shows

(10.12) lim I HB(x dz)a(y- z) = LB(Y) - k(B).

The function gB(4, Y) + LB(G) - a(y - ) is clearly bounded in 4 if lQ1 > r

for some sufficiently large r. But then by (8.9),

(10.13) Jf [1B(4, dz)a(y - z) = 9B(4, Y) + LB(4) - a(y -

is bounded in 4 for 1j1 > r. Now for any closed disk Dr of center 0 and radius r
containing B in its interior,

(10.14) IIB(x. dz)a(y - z) = dc) [B(4, dz)a(y - z). x D.

Thus, by Theorem 10.1 and equation (10.7),

(10.15) lim IIB(x, dz)a(y - z) = I , r(0, d4) IIB(, dz)a(y-z)
|x|lM fR feD, fr

= PB(dz)a(y- z).

This establishes the theorem for y E B and thereby completes the proof.
DEFINITION 10.1. Let B be a nonpolar relatively compact set. The measure

/1B in Theorem 10.1 is called the equilibrium measure of B. The constant k(B) in
Theorem 10.2 is called the Robin's constant of B and the potential of MB is called
the equilibrium potential of B.
For a relatively compact polar set, we define k(B) = + cc. Theorem 10.3

given below will show that this is the natural definition of k(B) for a polar set.
PROPOSITION 10.1. Let A and B be two relatively compact sets such that

A c B. Then k(A) > k(B).
PROOF. IfB is polar then A must also be polar. In this case k(A) = k(B) =

+ cc. Suppose B is nonpolar. If A is polar, then k(A) = + Gc and k(B) < cc
so the proposition is valid. Suppose A is also nonpolar. Then LA _ LB (since
LA > LA) and (10.8) shows that k(A) _ k(B).
THEOREM 10.3. Let B be a compact set. Then

(10.16) k(B) = sup {k(U): U open. U D B and U compact}.
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On the other hand, if U is an open relatively compact set, then

(10.17) k(U) = inf {k(A): A compact, A c U}.

PROOF. Suppose B is compact. Let B_ n > 1 be relatively compact open
sets such that B1 D2 B2 - -, %l B, = fl B& = B. Then as was shown
in Proposition 3.2, PX(VBn T VB) = 1 for all x e BCU B'. Suppose that B is polar.
Let f _ 0 be continuous with compact support and have integral 1 and set
Af(z) = JR2 a(y - z)f(y) dy. Then for any x e BC.

(10.18) r gB (X y)f(y) dy = EX. B f(Xt) dtT cc, n oo.

Now Af(x) is a continuous function, and thus for all n

(10.19) FH (X, dz)Af(z) . sup IAf(z)I = M < cc.

Using (8.9), we see that

(10.20) - X gB,(x y)f(y) dy + LB&(X) = Af(x) - L B,(X dz)AfH(z)

. IAf(x)| + M < oo.

Thus, using (10.18), we see that LB&(x) T xc for each x e BC. By (10.9),

(10.21) fR2 (pB,,(x)f(x) dx + R2LB(X)f(x) dx = k(Bn).

But

(10.22) x) dx .Af(x)PBnx) _ M < oc.

and JR2 LB (x)f(x) dxT cc. Thus, k(Bn) T oc. This establishes (10.16) when B is
polar.

Suppose now that B is nonpolar. Let f and Af be as before. Then for
x ecBCu Br

(10.23) r g&(X, y)f(y) dy = E, rBf(Xt) dt E.E
v

r f(Xt) dt

= R2 f(X, y)f(y) dy.

Also as PX(Xv, ,
Bc1) = 1 for all n.

(10.24) lim r VB.(x. dz)Af(z) = lim EAf(XvB)

= EXAf(XvB) = HB(x, dz)Af(z).
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Hence by (8.9), for x e BCu B',

(10.25) lim LB (X)n-

= lim [Af(x) rnB.(x, dz)Af(z) + j 9Bg(X, y)f(y) dy]

= Af(x) - nB(x, dz)Af(z) + 9B(X, y)f(y) dy = LB(X).
B R~~~~~~~~~2

Since (Bt)C n B has measure 0, we see that

(10.26) JfR22LB(X)f(X) dx T .fR2 LB(x)f(X) dx.

Now if D is a disk of center 0 containing B in its interior,

(10.27) lim JR2 B,,(dW() = "M L a(0, dc)EXAf(XvB )

= fa (, d4)EeAf(Xv.)

= fR PB (dxW)f(X) -

Hence, using this fact, (10.26), and (10.21), we see that k(B")Tk(B). This
establishes (10.16). To prove (10.17), note that we can find compacts A. ' U
such that A,1 C A2 C * * *, Un An = U. But then PX(VA. 1 Vu) = 1 for all x. The
remainder of the proof of (10.17) is similar to the proof of (10.16) forB a non-
polar set. We omit these details.

Let A and B be two Borel sets. Then,

(10.28) Px(VAnB _ t) - Px(VA _ t, VB - t)
_ PX(VA . t) + PX(VB < t) - PX(VAUB . t).

Thus, PX(VAnB > t) _ PX(VA > t) + PX(VB > t) - PX(VAUB > t). It follows
from this and (8.6) that

(10.29) L-AnB(X) _ LA(x) + AB(X)- LAB(x).
Letting A 1 0, we see that whenever A and B are nonpolar

(10.30) LAnB(X) + LAUB(X) _ LA(X) + LB(X).
If we take Lk(x) = oo whenever k is polar, then (10.30) is valid for all sets.
Using (10.8), we see that for relatively compact sets

(10.31) -k(Au B) + [-k(A n B)] -k(A) + (-k(B)).
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Also as L.'(x) _ L.(x) for A c B, we see that LA(X) _ LB(X), so for A c B,

(10.32) -k(A) _ -k(B).

Define k*(B) = -k(B) ifB is compact and define k*(U) = sup {k*(B):B c U,
B compact} if U is open. Then (10.16), (10.17), (10.31), and (10.32) show that
k*(Q) is a Choquet capacity on the compact sets. The extension theorem of
Choquet then implies that for any Borel set B,

(10.33) sup {k*(A): A c B, A compact} = inf {k*(U): U v B, U open},

and that the common value k*(B) is such that k*(A) _ k*(B), A c B and

(10.34) k*(Au B) + k*(A B) . k*(A) + k*(B).

Let B be any relatively compact set. Then for any compact set A c: B and
any open set U v B, -k(A) < -k(B) . -k( U). Thus,

(10.35) k*(B) < -k(B) . k*(B).

Equation (10.35) tells us that whenever B is relatively compact, k(B)
-k*(B). For a general Borel set, define k(B) to be -k*(B) and define the
capacity C(B) of B to be ek(B). Our discussion above has shown the following
result.
THEOREM 10.4. Let B be any relatively compact set. Then

(10.36) inf {k(A): A c B, A compact} = k(B) = sup {k(U): U open, U = B}.
COROLLARY 10.1. A Borel set B has capacity O if and only if it is polar.
PROOF. The set B has capacity 0 if and only if k(B) = cc. We have already

shown that for a relatively compact set B this is the case if and only ifB is polar.
IfB is not relatively compact and k(B) = cc, then (10.36) shows that k(A) = oo
for every compact subset of B, and thus (again by (10.36)) k(D) = oo for every
relatively compact subset D of B. But then every relatively compact subset of
B is polar, and as B is a countable union of relatively compact sets, B must be
polar. Conversely, if B is polar, every compact subset of B is polar, so for any
compact subset A cB, k(A) = cxc. Thus, (10.36) shows that k(B) = cx. This
establishes the corollary.

If B is a relatively compact set in dimension n > 3, then as was shown in
Section 6, B has capacity 0 (that is, B is polar) ifand only ifthe only finite measure
p having support on B with a bounded potential is the 0 measure. For potentials
in the plane we have the following analog.
THEOREM 10.5. A relatively compact set B is polar if and only if sup. (P,1(x) =

+ oo for every nonzero finite measure ,u having support on B.
PROOF. Let A be a relatively compact open set containing B. Let aN(x) =

a(x) if a(x) _ -N and let aN(x) = -N if a(x) < -N, N > 0. Then clearly

(10.37) - f2 /i(dx) f 2 aN(Y - X)YA(dy) = - f2 /A(dy) f aN(Y - x)l(dx).
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By monotone convergence as N T cc, we see that

(10.38) fr M(dx)(pA(x) = JA(dx)(p,(x).

Since B c A equation (10.9) shows that the left side is 1u(B)k(A). Thus,
Mi(B)k(A) _ sup. (p,,(x), and hence by Theorem 10.4, g(B)k(B) . sup. (p,,(x).
IfB is polar then k(B) = + cxo. On the other hand, if sup. (p,(x) = + x for all
nonzero pu supported on B, then B must be polar. For, if B were nonpolar then
the equilibrium measure pB of B would be a probability measure on B whose
potential would be . k(B) < + oo everywhere, a contradiction. This establishes
the theorem.
REMARK. By using the maximum principle for potentials 9P, (see, for

example. Hille, Analytic Function Theory, Vol. II), we replace sup. by sup.eB
in Theorem 10.5.


