
LIMIT THEOREMS FOR
RANDOM WALKS WITH BOUNDARIES

A. A. BOROVKOV
INSTITUTE OF MATHEMATICS

NOVOSIBIRSK, U.S.S.R.

1. Introduction

In this review, we consider boundary problems for random walks generated
by sums of independent items and some of their generalizations.

Let 1, 42, . . * be identically distributed independent random variables with
distribution frunction F(x). Let S = 0, Sn = Sk= Ok with n = 1, 2, * -. We
shall study the properties of the random trajectory formed by the sums
S0, S1, 82, . Let n be an integer parameter and let g' (t) be two functions on
the real axis with the following properties:

(1.1) An (0) > 0 > g (0), g(t) > gn(t), t _ 0.

We shall denote by G0 the part of the halfplane (t > 0, x) which lies between
these two curves. In the same halfplane (t, x), let us consider the trajectory
formed by the points

(1.2) (n>Sk) k = 0, 1, 2,**-

One of the main boundary functionals of trajectory (1.2) is the time q. at which
it leaves the region G,:
(1.3) nG = min {n(n'Sk }G}

We shall define the value of the first jump Xc across the boundary of the region
Cn by the equalities

(1.4) XG = 8,G - g
+ (qG) or XG = ghG (1G

depending on whether trajectory (1.2) crosses the upper or lower boundary of
the region G.. Note that in general the random variables PG and XG are not
defined on the whole space of elementary events. We put tiG = oo, where riG
remains undefined. We shall not define the random value XG on the set {riG = °°}-

Problems variously connected with distributions of the functionals ??G and XG
will be called boundary problems for random walks. It is well known that these
problems play an important part in mathematical statistics (in sequential
analysis, nonparametric methods, and so forth) in queueing theory, and in other
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20 SIXTH BERKELEY SYMPOSIUM: BOROVKOV

similar fields of mathematics. For instance, the classical problem of sequential
analysis leads to the elucidation of probabilities of the type

(1.5) P(XG > 0; tlG < °°),
for boundaries g - which are straight line boundaries. This is the probability of
the event that the trajectory (1.2) crosses the upper boundary earlier than the
lower one. The distribution of the maximum, S, = maxOsk<,Sk, is of great
interest in queueing theory. It is evident that this distribution is also connected
with boundary problems because

(1.6) P(9n > X) = P(,1G < 1),

where the region 0, is formed by the straight lines g' (t) = x and g- (t) = -oc.
One could give examples of still more complicated applied and theoretical prob-
lems leading to boundary problems.

Considering limit theorems for boundary problems (that is, methods of the
approximate calculation of distribution tlG, XG, &nwhen n -- oo), we shall dis-
tinguish rather conditionally between the regions ofnormal and large deviations.
If the limit values of the probabilities in question are nondegenerate (different
from 0 and 1), then we shall rmfer to all these cases as problems about normal
deviations. The remaining cases will be referred to as problems on large
deviations.

2. Normal deviationb

The most important problem occurs when

(2.1) E~k = 0, D~k < °°, gn (t) = g ±(t).
Here the g± (t) possess the properties (1.1) and are continuous. Without restrict-
ing generality, we may assume 9Ak to be equal to 1. It is well known that in this
case

(2.2) lim P(n1G < V) = P(V, g+, g9)
n bo

= 1 - P(g-(t) < w(t) < g'(t); 0 < t _ v),
where w(t) is a standard Brownian motion process.

Similar limits also exist for probabilities of the more general type,

(2.3) P(?lG < V, XG > 0, 8 e-E A).

These limits are equal to the probabilities p, (v, g', g-, A) that the trajectory
w(t) during time v left the band

(2.4) G = {(t,x):g(t) < x < g+(t)}
across the upper boundary and that the value w(v) belongs to the interval A.
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It is also possible to show that when y > 0,

(2.5) "M P(?1G < V, XG > y) = p1 (v, g', g-, R)P(y),
n -B

where R = (0, cc) and P(y) = limpe. P (XGN > y) for the regions G, generated
by the straight lines g+(t) = n and gn-(t) = -cc. The latter is the distri-
bution of the first jump of sequence {Sk} across the infinitely remote positive
barrier.

Assertion (2.2) was obtained by Kolmogorov in 1931. Since that time, it has
become clear that the problem of estimating the rate of convergence of distri-
butions (2.2) and (2.3) to their limits is very complicated. The following result
by S. V. Nagaev [1] is the most general in this direction.
THEOREM 2.1. Let conditions (2.1) hold, let C3 = E l4kI3 < xc, and assume

that the functions g+ (t) satisfy the Lipschitz condition with constant L. Then an
absolute constant A exists such that

(2.6) IP(I/G < V) - P(V, 9+, 9-) <Ac3(L + 1)
.\/n

The method of proving this theorem allows one to obtain the same estimates
for the rate of convergence to their limits of the probabilities (2.3).

Obtaining the asymptotic expansions in powers of 1/n, requires more special
assumptions concerning the distribution f(x) and the form of the boundaries
g± (t). One may find a rather comprehensive review ofthe achievements obtained
in this field before 1964 in the paper by A. A. Borovkov and V. S. Koroljuk [3].
For instance, as asymptotic expansion of P(rlG < v) of the form

S

(2.7) E pkn k/2 + o(ns/2)
k = 0

is possible if E|fl2s+6 < cc, and the density of distribution F(x) and the
boundaries g+ (t) have a sufficiently high degree of smoothness (Koroljuk).
The assumptions for one straight boundary, g,+(t) = x = x(n), are more

economical. If F(t) has an absolutely continuous component and E exp {Aik} <
cc for 2I1 < E for some c > 0, then probabilities (2.3) admit the full asymptotic
expansion in powers ofx/n and 1/N/ (Borovkov). If, in the last assertion, instead
of finiteness of E exp {irk }, we demand only the existence of a finite number of
moments, then the following result obtained recently by Nagaev will hold [4].
THEOREM 2.2. Let F(t) have an absolutely continuous component and suppose

that c, = E k Is < cc, for s > 3. Then (g+(t) = x, g-(t) = - c)

(2.8) P(n1G > 1) = P(Sn < x<A)
Z ox ~~~~~~~s-3

= {exp {-4t2} dt + exp {-x2} j(x)n
n ~~~~~~~~~j=1

+ O(min [n- 1/2, (1 + x'-s)-(s-2)12 log2 n]),
where lj (x) are some polynomials in x.
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A similar but somewhat weaker result would hold if we required that

(2.9) lim sup IE exp {iA.k}I < 1,

instead of the existence of an absolutely continuous component.
The nature of the coefficients of polynomials fIj is rather complicated

([4], [5]).
In the assertion mentioned above, we considered the event {PIG > V} for

v = 1. In this regard, we remark that the generality achieved by considering the
events {%1G > v} for arbitrary finite v is illusory. One can restrict oneself to the
value v = 1. Indeed, nI1G is an integer, but for integer nv, the event {;iG > V}
can be written as {iG > 1} for a new value ofparameter i = nv and new functions
g (t) = g (tv)v112.

3. Large deviations

We arrive at the problem of large deviations if, for example, E~k = 0,
D~k = 1, g+ (t) = x(n)g:(t), x(n)/</ - oo with n -+ oo. In real problems, one
can usually reduce determination of the asymptotic behavior of probabilities
of the form

(3.1) P(JIG < 1, XG < 0i!- A)' x = x(n),

or

(3.2) P( 1G < 1, XG > °,-EA x = x(n),

to the same boundary problems but with one boundary. For example, ifg + (t) > 0
and g- (t) < 0, it is easy to see that

(3.3) P(?1G < 1) P{max {Sk -x+()} > 0}

+ P{min {Sk - Qk)} <0}.

Here, the relationship a. - be means that a"/bn -+ 1 for n cc. Accordingly,
we shall restrict ourselves in this section to the case of one boundary when

g (t) = -(x).
Depending on the type of function g+(t) = g(t), when evaluating P(t1G < 1)

asymptotically, we arrive at two qualitatively different types of problems.
The first type of problem arises when g(t) > 0. In this case P(1lG < 1) 0

with n --> o. Asymptotics of this probability are investigated in detail in [6].
The so called level curves play the most important part in their description. In
order to describe these curves, we introduce the deviation function
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(3.4) A(a) = -inf(- A + log (p(A)), (p(A) = E exp {ARk}.
The function A(c) > 0 is defined for all real a. We denote

A, = sup {A: (p(A) < co}, A_ = inf {A: 9(A) < co},
(3.5) a+ = lim [log p(A)], = lim (log (P(A))'.

If A(a) is a point where inf(-Aa + log p(A)) is achieved, then A(a) may be
expressed as

(3.6) A(a) = IA(u)du, a = Eck.

From this it easily follows that A(a) is a convex function, achieving its minimum
equal to 0 at at = a. In the regions (- o, a-), (at+, ao), the function A(ac) is
constant and equals A-+ respectively. Thus, the function A(a) is analytic in each
of three regions, (- o, a_), (ac_, ac+), (a+, cxc). Discontinuity, for example, at
the point at+ is possible only if A+ = oo, a+ < oo (the variable ck is bounded
from above by the value a+) and P(4k = OCk) > 0. If the A± are finite, then A(a)
together with its first derivatives will be continuous at the points OCi.

It is not difficult to find the expansion of the function A(at) valid in the neigh-
borhood of the point a = a, with coefficients of (a - a)k defined by k semi-
invariants of the distribution c.
For example, for the normal distribution 9p(A) = exp {{A2}, a± = ± oo and

A(aC) = C.
For the Bernoulli scheme, qp(A) = peA + qe-A,

(3.7) ac = ±1, A(aC) = ogq(l + at)

For the centered Poisson distribution with parameter A,

(3.8) aC+ = C, O_ = -p, A(aC) = log/> + cc

The probabilistic meaning of the deviation function is given by the equality

(3.9) A(a) = - lim lim -log P n- eAA,Ax-o n-oo n \ n
where A,, is a shrinking neighborhood of the point a.
The "inversion formula,"

(3.10) (A) = exp {-f o(t) dt},
is also valid, where 0(t) is the inverse function of

(3.11) t = ,.aX =
DA(O)
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In what follows, we assume that a = E~k = 0, Dck = 1, AI > 0O A_ < 0.
We call the positive solution (if it exists) for the functional equation

(3.12) tA (a) = A(T), 0 < t < 1,

the level curve a,(t), depending on parameter T.
If 4 is such that A(a+) = oX, then this equation has for each T a unique

solution a,(t), which is a convex increasing function.
If A(a+) < so, then a,(t), possesses the indicated properties only if

(3.13) t E (t?, 1), t4= A((r)

When t e (0, to), the function a,(t) is to be defined as a segment of the straight
line connecting the point (0, 0) with the end of the curve a,(t) at the point t4.
The functions a(t) are also increasing functions of T. For r small, a,(t) - Tr".

(The exact equality, a.(t) = TV/, is true only for the normal distribution law.)
We may return now to the asymptotic description of P(nG < 1). To simplify

the formulations of the results, we put x(n) = n (ifx = en, one may consider the
function g*(t) = eg(t) and x*(n) = n). The main role is played by the maximal
value of the parameter r = T, at which the curve a, = a,9 first intersects the
curve g(t) as r increases. The important fact is how this contact happened.
The following theorem is true.
THEOREM 3.1. Let the set B of the points t, where the values a,, (t) and g(t)

coincide, be contained in the interval (tg,, 1) and be such that mes B > 0. Then

(3.14) P(;1lG < 1, XG < Y) - 0 1 (F, Y. B) -,n exp {nA(,r)}'
where 41(F, y, B) is a functional of known form.
Now let the point of contact v be a single one and in the neighborhood of

this contact let the function g(t) be p times differentiable. Let q be the number
of initial derivatives of the functions g(t) and a,, (t) which are identical. Assume
p > q + 1, then

(3.15) P(n1G < 1, XG < Y) 02(F, y, v, g)nl I l(q+ ) exp {-nA(Tr)},
where 02 > 0 is also a known functional. However, unlike >1, the functional
02 has a local character with respect to g, since it depends only on q + 1 deriva-
tives of the function g(t) at the point v. When x = o(n), the points of contact v
of the functions (x/n)g(t) and aXGf(t) are, in general, mobile (they change with
n) and the formulations of the results become more delicate, although the
character of the dependence of the asymptotics on the value Zg and on the type
of contact remains as before.
The case of several points of contact is easily reduced to the case of a single

point, considered in Theorem 3.1.
It is possible to make the analogous asymptotic analysis for the probabilities



RANDOM WALKS WITH BOUNDARIES 25

(3.16) P nG < 1, XG < Y,-E )-X

The main factor here is the mutual disposition of curve g(t) and the level curves;
however, the level curves themselves are defined differently and already depend
on two parameters rather than on one (see [6]).

4. Large deviations, special case

Consider the special case with a straight line boundary g(t) = d + bt. With
the help of transformation of reversion it is always possible here to reduce the
problem on distribution nG to the investigation of the properties of Sn =
maxo0kn Sk. The interesting case is that in which it happens that E~k = a < 0
after the reversion, and therefore S = < oo with probability 1. As men-
tioned above, a complete analysis of the asymptotic properties of the 8, distri-
bution is in [5]. To those properties we add the following remarks (see [5], [7]).

(The symbols c denotes different constants.)
THEOREM 4.1. Suppose that F(x) has an absolutely continuous component,

and that there exists a root q > 0 of the equation p(A) = 1. Further, let x/n - a,
o = q,'(q). Then if a < to, for a certain e > 0,
(4.1) P(S& > x) - P(S > x) = c exp {-qx}(1 + o(exp {-ex})).
If %o < at < a+, then

(4.2) p(g. > X) _ e1(a)p(S" > X) C200; exp {-nA(-}

If a = ao(A(cco) = q), then the transition from one sort of asymptotics to another
occurs with the help of the normal distribution function 4: for u = (x/f/a) (x/n -
ao) = o(n'16),

- - F [~~~~~~~U2I3j-1(X)l(4.3) P(Sn> X) = P(S > x) [(u) + exp {-u2} E n2

where a is the variance of the distribution Fq(A) = JA exp {qx} dF(x), and Hk(u)
are polynomials of degree k.

Since the asymptotic behavior of P(S,, > x) has been studied well, to describe
the asymptotic behavior of P(9n > x) > P(S& > x) in the general case (when
the conditions of Theorem 4.1 are not satisfied), it is sufficient to know (1) the
rate ofthe convergence of distributions R', and S, and (2) the asymptotic behavior
of S. The answer to the first question is in Theorem 4.2.
THEOREM 4.2. For any A such that .p(A) _ 1,

(4.4) P(S > x) - P(9,, > x) . exp {-IX} n(A).
(One can write exp {-nA(x/n)} on the right side of (4.4) if p[A(x/n)] < 1.)
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If E~k = a < 0, D~k = 1, and c' = E[max (0, )]m < oo for m > 2, then
cm_ ES9'1 < oo and for all n _ no,

(4.5) P(S > x)-P(S9 > x) =
2m+ le+(e +Cmi1
Ialmnm- 1+(x + liain)ml"

where no = no(m, Cm) is known explicitly.
Concerning the asymptotic properties of the distribution of X, it is well known

that if A, > 0, qp(A+) > 1, then P(9 > x) - cie-q, with x -. oo (at A+ = q
we also suppose that qp'(A+) < oc.) Supplement this assertion by the following
one.
THEOREM4.3. If P(A+) < 1 or A+ = ,O p'(0) = a > -coo then P(9 > x)

c2H(x), where c2 = 1al' for A+ = 0, and where H(x) = J' (1 - F(t)) dt.
It is assumed here that for any 0 < h < 1 and t -. oo,

(4.6) exp {hA+} H(t+ h) i+ 1,
0

<
exp {tb+}H(tb) < c(b) < a.(4.6)exp {h)ex{tAH+}

Concerning the distribution of S, we shall also note that there exists a class
of distributions A everywhere dense in the sense of weak convergence in the set
of all distributions, and such that for F E A the distribution of S can be found
in explicit form. This fact is used in conjunction with the "continuity theorem"
showing when the nearness of F, and F2 (in the sense of weak convergence)
implies the nearness of corresponding suprema. The latter will hold if the value

(4.7) f a(t)IFl(t) - F2(t)I dt

is small for a function a(t) > Osuch that a(t) = l when t > , a(t) dt <C).
By itself, weak convergence, F1 => F2, is not sufficient for the convergence of
suprema distributions.
The class St, mentioned above, contains all the distributions for which either

p+ (A) = E(e; i > 0) or -p-(A) = E(eA4; 4 <0 ) are rational functions.
Results close to the latter were also obtained by H. J. Rossberg [8], [9] under

some special conditions.

5. The second type of problem: problems on large deviations

Now let us return to the general boundary problems for large deviations. In
Section 3, we considered the case where g(t) > 0, t e [0,1]. If inf(o, 1) g(t) < 0,
then P(tG _ 1) -. 1, when n -. oo (here again Eck = 0) and we shall investigate
the rate of convergence to zero of the complementary probability P(t1G > 1).
The asymptotic nature of this probability appears to be quite different and
significantly more complicated. Here one can find only the asymptotic behavior
for the logarithm of this probability P(t1G > 1).
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Suppose g(t) has no discontinuities of the second kind and for every t, g(t) =
min (g(t - O),g(t + 0)). Let to be the point where inf(o,1)g(t) = g(to) and let
Bo be the set of points (0, 0), (t, y > g(t)) for 0 . t _ to. We denote by h(t) the
lower boundary of the convex closure of the set Bo. The curve h(t) evidently
realizes the shortest path from point (0, 0) to point (to, g(to)) which does not
intersect Bo. This function will be convex and absolutely continuous. If we put
h(t) = g(to) on [to, 1], then h(t) will keep this property. For such functions h(t),
the functional

(5.1) W(h) = i A- dt = i A d-h dt

is defined. First let x = x(n) n when n -. oo. (As already noted, one can
reduce the case x - an to x n by changing the boundary.)
THEOREM 5.1. If h'(O) > -oo and the interval (h'(0), 0) contains no point of

discontinuity of the function A(a), then log P(rG > 1) - -nW(h).
To describe the asymptotic form of the distribution qc1 in the problem with a

fixed terminal value, that is, the probability of the event {n1G > 1, Sn/x e Ab}
(where Ab is the neighborhood of the point b), it is necessary to construct the
shortest path hb(t) connecting the points (0, 0) with (1, b) and not intersecting
the setB1 ofthe points (t, y > g(t)),0 _ t . 1. (This path will evidently coincide
with h(t) in the segment [0, to] if bto _ g(to).)
THEOREM 5.2. If Ab is a shrinking neighborhood of the point b,

(5.2) lim lim - log Pl G > 1, nCb= -W(hb).

If Xk is lattice-like and P(Sn = bx) > 0, then from the very beginning we
may take a single point b as a Ab.
Now let us consider the case x = o(n). Introduce the functional

(5.3) V(h) =
dh

2

dt =
dh

dh(t).
lo dt / dt

THEOREM 5.3. If x/n -O 0, x(n log n) 1/2 -_ cc, with IA,1 > 0, then

(5.4) logP(?G > 1) - V(h).2n

The analogous result is true for P(t1G > 1, SIx e Ab).
These theorems, obtained in [10], show what the exponential part in the prob-

ability P(ilG > 1) is. As for the power factor, we may conclude on the basis of
different examples that it may be of any form depending on the corresponding
function g(t). It is possible to calculate this factor only for very special kinds of
boundaries g(t), for example, for the broken lines consisting of a finite number
of straight line segments.
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6. Generalization

It is natural to consider the next generalization of these problems. For
example, some asymptotic problems of testing theory for statistical hypotheses
lead to this. Denote by S(t) a random broken line connecting the points (k/n,
Skix) for k = 0, 1, * , n. In the previous parts, the asymptotics of

(6.1) log P(Sn(t) e G)
were investigated when G is the set of functions f(t) < g(t), t E [0, 1].
The question concerns the behavior of (6.1) when n -- o if G is the arbitrary

open set in the space C(0, 1).
The following theorems hold here [10]. Denote by G the closure of G in the

metric of space C(O, 1) and by E c 0(0, 1) the set of all absolute continuous
functions f(t), f(O) = 0, for which there exists a finite number of intervals
AI1, A2, * * * Ar; U Aj = [0, l],wheref'(t) is monotone and bounded. Obviously,
A(f'(t)) is Riemann integrable for f E E. Further, let

W(G) = inf W(f) = inf A(f'(t)) dt,
(6.2) feEnG )tEnG,

V(G) = inf V(f) = inf dt
feEnG feEnG (

THEOREM6.1. Let x n and W(G) = W(G). If|I± = oo, then

(6.3) log P(S.(t) E G) -nW(G).
THEOREM6.2. Letx/n -0,x(nlogn)-112 __ x, V(G) = V(G).IfI)±I > 0,

then

(6.4) log P(Sn(t)
C
G) - -2 V(G).2n

The condition Ai± =|o in Theorem 6.1 implies that p(A) is an entire
function. We are quite sure that this requirement is unnecessary and that the
theorem will hold with finite A±, but this is only a conjecture. We can give here
only one sufficient condition. Namely, if W(G) = W(ig) and there exists a com-
pact K in C(0, 1) such that when n -+ o

(6.5) logP(S&cGnK) > log P(Sj(t)eG) + 0

then (6.3) is true.
Relations (6.3) and (6.4) remain valid in problems with a fixed terminal value

(see Theorem 5.2), but it is necessary to take the infimum of the functionals
W, V forf e Eb n G, where Eb e E contains only the functions for whichf(1) = b.
Many ofthe results given remain valid also for the processes with independent

increments. B. A. Rogozin [11] extends to these cases the theorems on
asymptotic expansions and large deviations for the maximum S.(t), where
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(6.6) Sn(t) = sup SJ(U), Sn(t) = X(nt)
Ou t X

and X(u) is a process with independent increments, satisfying rather weak con-
ditions.

If X(u) is the sum of a Wiener process and of a generalized Poisson process,
that is, if

(6.7) *(i) = log E exp {AX(1)} = AO- + f f (exp {2u} - l) dN(u),

where N(u) is a distribution function, fl > 0 then the assertions of Theorem
6.1 and 6.2 remain completely valid, where G denotes now the set from the space
D(O, 1) containing with f its p, neighborhood p,(f, g) = sup[O ]If(t) -g(t)|.
The closure G is used in the sense of p, convergence. Then if W(G) =W(),
*(i) is an integral function, and for x - n, we have

(6.8) log P(S&(t) e G) - -nW(G).

The case where x = o(n) is similar. From this theorem one can derive, in
particular, the theorem of I. N. Sanov [12] on large deviations of empirical
distribution functions. Since this theorem was obtained by us under somewhat
different conditions, we shall give it here. Let F"(t) be an empirical function
constructed by n independent observations of a random variable with the con-
tinuous distribution function F(t). And let G be a measurable p, open set in
D(O, 1). Put

(6.9) WF(G) = inf Flog dff VF(G) = inf dg dg,
f -GnEF dF geEFnG dF

where EF is the set of distribution functions g absolutely continuous with respect
to F, and such that there exists a finite number of intervals A1, * *, UJ A3 =
[-oo, oo], where dg/dF is monotone and bounded; G denotes the p, closure
of G.
THEOREM 6.3. If WF(G) = WF(G), then log P(FP(t) e G) - -nWF(G).
The following affirmation is also valid.
THEOREM6.4. Ifx/n -. 0,x(n log n) 1/2 cc, VF(G) = VF(G), then

(6.10) log P(F_(t) -(t) e - G) i- (1 - VF(G)).

Theorems of this kind are essential in mathematical statistics.
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