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1. Statement of the problem

The work of A. Wald [11] and H. Robbins [10] played an important role in
stimulating interest in the investigation of sums of a random number of inde-
pendent random variables. Of late a large number of papers related to this
topic have been published and their importance for numerous applied questions
as well as theoretical mathematics has been shown.

Results of research, conducted over the last three years by myself and my
students in connection with problems in the theory of reliability, theory of
queuing, physics, and production organization, are presented in this paper. We
shall begin the presentation with the consideration of one of these problems.
Some of the formulations of problems and theorems which will be included here
have been presented before when I delivered lectures at the Universities of
London, Sheffield, Rome, Budapest and Warsaw where I was a guest in recent
years. Several statements of problems and their solutions originated there.

Geiger-Muller counters are used in nuclear physics and also in the study of
cosmic radiation. A particle having struck the counter and having been counted
by it causes a breakdown in it lasting some time z. Any particle striking the
counter in the period of the breakdown is not registered by it. Usually one
assumes that r is a constant; however, a more realistic assumption is that T is a
random variable with some distribution G(x). Our problem is to determine the
distribution of the length of the time interval from the first registration of a
particle to the first loss. Here we shall assume that the time intervals between
successive entries of particles are independent and identically distributed with
distribution function F(x).

It is obvious that the counter does not lose a particle until the duration of the
breakdown is as large as the interval between successive entries of particles.
(See Figure 1.) This permits us to write the following equality:

(1.1) n = (t + 42 + ... + (V'

where 4k is the time between the arrival of the kth particle and the (k + 1)st
particle and v = min {k, 4k < Tk}.
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FIGURE 1

Entry of particles.

We introduce the notation a = P{4 _ T}. It is clear that the random variable
v has the geometric distribution

(1.2) Pk = P{v = k} = ak 1(I - a), k = 1,2,3,---.

Note that the number of terms in the sum (1.1) depends on the values which
the summands (k take. Since the event {v = k} does not depend on the (n, for
n > k, one can use Wald's identity

(1.3) Erl = E4l Ev,

for computing the mathematical expectation of t. Because Ev = 1/(1 -a), then

(1.4) ErE=

Computation of the distribution function of the variable 17 requires more
complicated reasoning to which we now turn. Let 4D(x) = P{rl < x}, 4>(x) =
1 -4(x). It is not difficult to see that

(1.5) ¢?(t) = F(t) + f,4D(t - x)G(x) dF(x).

This equation is solved in terms of the Laplace transform:

(1.6) 9(8) = (s) - g(s)
1- g(s)

where

(1.7) 9(s) = L esxddD(x), f(s) = L esxdF(x),
g(s) = J esx G(x) dF(x).

Very often counters work under conditions where the duration of the break-
down is, as a rule, significantly smaller than the interval between entries of
successive particles into the counter. In other words, there is interest in con-
sidering the case

(1.8) a = P{_> T} t 1-
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More precisely, we shall assume at the beginning that there is an integral
parameter n on which the function G(x) = G.(x) depends in such a way that
as n -+ oo

(1.9) an = f5 Gn(x) dF(x) -+ 1,

but an,, 1.
One may ask if it is possible to prove some general regularities in the behavior

ofthesumsSn = 4 + s2 + ***+ X, as n - oo-.

2. Convergence to an exponential distribution

The purpose of this section is to prove the following two theorems.
THEOREM 1. If the random variables 4k have afinite mathematical expectation

and condition (1.9) is satisfied, then as n oo

(2.1) P{S <X} 1-eX.

PROOF. Let T. = ES,. Then the Laplace transform of the distribution of
Sn/ES,, is

(2.2) ?(s) f(8/T.) - g(8/T.)\T. 1 - g(8/T.)
For brevity we introduce the notation

(2.3) fiT.=(#) T.

It is obvious that for arbitrary s _ 0,

(2.4) fl(8) _ P. (0) = 1 - g(0) = (1 - G0(x)) dF(x) = 1 -a
Our immediate problem is to prove that, as n -.oo

(2.5) P.'(s)
uniformly in every finite interval of s _ 0. To this aim, we consider the difference

(2.6) 0 < P.(0) - fn()= f (1 - exp {-gx/T1})(I - G(x))dF(x).

Since for any z > 0,1 - e -Z _ z, one can write the following chain of
inequalities:
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(2.7) /3(O)- f8)- x(1 - Gn(x)) dF(x)

< I-[T;j'[1 - Gn(x)] dF(x) + j xdF(x)].
T.~~~~~~~~~~~~~~~~~~~~~~~~~~:

Since T, = a//,3(O), where a = E4k, we arrive at the inequality

(2.8) () -n(s) -a-- () (a+ x

From the hypotheses of the theorem, both terms on the right side of the in-
equality tend to zero as n -+ oo. This completes the proof.
But

(2.9) (P - = ' s/fn()
(2 9) "T.) (S)/f (O)) - [(f(f8) - 1)/ fn(o))1

Hence, from what has just been proved and the relation

fif(SIT.) - 1I f(SIT.) - 1(2.10) lim f() = sa- lim s/T(o) = _

we conclude that

(2.11) liM 9no (

The theorem has been proved.
It is natural to ask oneself about the set of all those F(x) for which, with suit-

ably chosen normalizing factors Bn > 0, the distribution functions of the sums

(2.12) Sn + *-- + Xvn
Bn Bn,

approach the exponential distribution cD(x) = 1 - e.-X. The answer to this
question is given by the following theorem.
THEOREM 2. In order that the distribution functions of the sums

(41+ *** + cv,IBJ) with suitably chosen nonrandom Bn > 0 converge as n -+ oo

to the exponential distribution, it is necessary and sufficient that the condition

(2.13) lim x[l F(x)] O0X% J [1 - F(z)] dz

is satisfied.
We refer to [4] for the proof of this theorem. However, we note that con-

dition (2.13) was mentioned as long ago as 1935 by A. Ya. Khinchin [7]. In
this work he introduced the concept of relative stability of sums which was a
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generalization of the law of large numbers for nonnegative random variables
41, 42, * - - . The sums S, = cj + 42 + * - - + (n are called relatively stable
if there exist normalizing factors Bn > 0 such that for arbitrary £ > 0

(2.14) P{| " - < } I

as n - cc.
For identically distributed summands, condition (2.13) is necessary and

sufficient for the relative stability of sums. This theorem was proved in [7].

3. The class of limit distributions

The limit theorems which were proved in the preceding paragraph permit an
important generalization. We ask ourselves about the class of limit distributions
for the normalized sums

(3.1) S. = I + 42 + ... + (v.

ofindependent, identically distributed, nonnegative random variables 1, 2,*
with suitably chosen constants Bn. The random variables vn are defined as before
and satisfy condition (1.9). In addition, we assume that as n increases, the mathe-
matical expectations of the variables vn do not increase too rapidly. More pre-
cisely, we assume that as n -. oo

(3.2) Evn+ n1 -
Ev 1 - Xn+1

This section is devoted to the proof of the following theorem.
THEOREM 3. Under the conditions just formulated, the distribution function

T(x) can be a limit of the distributions of sums (3.1) if and only if its Laplace
transform has the form

1
(3.3) i(s) = 1 + CSY1 + CsY'

where C and y are nonnegative constants, 0 < y _ 1.
We shall preface the proof of this theorem with several lemmas.
LEMMA 1. If nonnegative functions CP1(x) and p2(x) are respectively non-

decreasing and nonincreasing, F(x) is a distributionfunction and all integrals under
discussion exist, then

(3.4) r 91(PX)(P2(X) dF(x) < I p1(x) dF(x) X 2(X) dF(x).

PROOF. Indeed, let a = lo' 92(x) dF(x) and z = sup {x, q2() _ a}. Then,
for x > z the inequality T2(X) < a is satisfied. Now it is obvious that
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(3.5) r P(x)P2(x) dF(x) - p1(x) dF(x) fo P2(x) dF(X)

J P1(X) [2 (X) -a] dF(x)

= J: ( (X) [P2 (X) -a] dF(x) + P1(x) [(2 (X) - a] dF(x)

-< 1(z) f [ 2(X)- a] dF(x) + qpl(z) I [P2(X) - a] dF(x) = 0.

This inequality proves the lemma.
LEMMA 2. (f3(s))/(f3(0)) 1 uniformly in every finite interval of s as

n - 00.
PROOF. It is clear that

(3.6) 0 < _ fln(8)
An (0)

3(0) - fl. (s)
/3(0)

=:fl(0) [f [1 - G.(x)] dF(x) -
ee-sx!Bn[I - G.(x)] dF(x)]

=n (0) 0
(1 - e-sx,Bn)(I - G (x)) dF(x).

According to Lemma 1,
00

(3.7) (1 - e-sx1B)(1 - Gn(x))dF(x)

< (1 - e-sxlBn) dF(x) { (1 - G (x)) dF(x)

= f3n(0) -f

Since Bn -xoo as n - cc, the lemma is proved.
Lemmas 1 and 2 were proved by A. D. Soloviev. The first lemma is essentially

nothing more than the assertion of the negativeness of the correlation coefficient
of two random variables, one of which decreases when the other increases.
We note that by Lemma 2, if the limit distribution of the sums (3.1) exists

and its Laplace transform is 0(s), then the limit

(3.8) lim 1 f(s/B) = a(s)
n B,.(0)
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exists and

(3.9) ?(s)=
1+ c(.s)

Our problem now is to find the class of possible functions c(s). With this
goal, we note that for any s > 0 and s' > 0 one can find an integer m = m"(s'/8)
such that as n - oo

(3.10) Bn s/s' 1.
Bm

One can write the following identity:

(3.11) 1 f(B) 1 f(Bn8S/WS) Am(°)
fl (°) pm(°) # (°)

Since the limit as n -+ oo of the left side of this equality exists as well as the
limit of the first factor on the right side, the limit of the second factor must exist
also, that is,

(3.12) a(s') = a(s) k(-

But since a(s) for Re s > 0 is an analytic function, we have the decomposition

(3.13) a(s') = a(s) + a'(s)(s' - s) + o(s' - s).
Using this decomposition, the preceding equality takes the form

(3.14) a'(s)(s' - s) = oa(s)[k(-s)-] + o(s' -s).

Note that k(l) = 1. We divide the last equality by a(s)(s' -s),

(3.15) 0a'(s) _ k(s'/s) -k(1) .1 + o(1),
ot(8) (s'/s) I1

and let s' -+ s. We obtain, as a result, the equation

(3.16) a'(s) _ y

1a(s) s

where y = [k'(s)],= 1. The solution of this equation has the form a(s) -C'Y
where C is an arbitrary constant.

Thus, if the limit distribution exists, its Laplace transform must have the
form 0(s) = 1/(1 + Csy).
We need to determine for which C and y these functions can be Laplace

transforms. It is easy to verify that this is possible only for C > 0 and for
0 < y < 1, and also that every such function is a Laplace transform. The
theorem has been proved.



544 SIXTH BERKELEY SYMPOSIUM: GNEDENKO

The proof presented here was proposed for a closely related problem by
I. N. Kovalenko [8].

4. Properties of the limit distributions

We shall now formulate a series of properties of the distributions of the class
which we found. For brevity we shall denote this class by the symbol K.
PROPERTY 1. All distributions of class K are infinitely divisible. This pro-

perty can be proved by many methods. We shallprove it as a corollary to Theorem 6.
PROPERTY 2. Distributions of class K have densities;for y * 1, these densities

are unbounded.
PROPERTY 3. All distributions of class K are unimodal with the mode at the

point a = 0.
PROPERTY 4. For C = 1 and y = 0.5, the density of the distribution has the

following form: for x > 0

1 2ex (' 2

(4.1) f(x) = - J -Z dz.
17-rx /-

The proof of all these statements can be found in [4].
We need to introduce a certain concept for the formulation and proof of the

following property.
Let us consider a sequence of nonnegative random variables 41, 2,*-

independently distributed according to a law T(x). We mark on the axis OX the

points 0, 1, 1 + 42, 1 + ' 2 + 3, * - - . Now letp be any number in the inter-
val 0 < p . 1. We shall perform the following operation: we begin to eliminate
with probabilityp each of the marked points, excluding the point x = 0. We will
call this operation screening with probability p. We denote by 4Dp(x) the prob-
ability distribution of the abscissa of the first point retained.
We will call the distribution T(x) stationary with respect to screening if for

every p there exists ap > 0 such that for all x, the equality

(4.2) p(x) =T

holds, or in terms of the Laplace transform cpp(s) = 0(a,s).
Property 5 is characteristic of the laws of the class K; therefore we shall

formulate it in the form of the following theorem.
THEOREM 4. The distribution T(x) belongs to class K if and only if it is

stationary with respect to the operation of screening.
PROOF. Since the probability that the first retained point will be the kth

point in order is equal to pk-lq, k = 1, 2, ,we have

(4.3) 4Dp(x) = E pk l-qT(k)(X).
k= 1



RANDOM NUMBER OF VARIABLES 545

In terms of the Laplace transform this equality takes the simple and elegant
form

(4.4) (pr(s)= 1
q(s)

In one direction this theorem is proved immediately by substitution in the
last equality. Actually, if /(s) = l/(Csy + 1), then

(4.5) (pP(s) =
q +q = 1

= c(q Yys
q +csy 1 + C(q'l1ys)y

We have convinced ourselves that the operation of screening does not change
the type of a distribution of the class K. The constants ap are associated with
the screening parameter p in the transform by the simple relation ap = q -/y,
q = 1-p. In particular, for p = 0, ap = 1. This is obvious and immediate
since for p = 0, the distribution W(x) is not affected by screening.
We shall now prove the converse of the theorem-that is, every distribution

which does not change its type with screening belongs to the class K. For this
we shall assume that, for arbitrary p, (O . p _ 1) we have the identity

(4.6) (pp(s) = qi/i(8) = 0(aps),1 -pi/(s)

where ap depends on p, but does not depend on s. Hence

(4.7) /(aps) - /(s) = p O(s)(i(s) - 1)1 - PC/is)
or

(4.8) 0(aps) - 0(s) p /((/(s) - 1)
(ap- 1)s ap-1 s[ - P/O()]

Let s > 0. We pass to the limit in the last equality, assuming that p -O 0. The
limit of the left side exists and is equal to 0'(s). The second factor on the right
side also tends to a limit which is (1/s) /i(s)(i/(s) - 1). Consequently the limit of
the first factor on the right side exists; we will call this y. By our assumption y
does not depend on s. As a result we arrive at the equation

(4.9) i'(s) = s 0(s) [ -(s)
It is easy to verify that the general solution of this equation has the form /(s) =
1/(1 + Csy). We have earlier convinced ourselves that the only functions among
these that are Laplace transforms of distribution functions are those with C _ 0
and 0 < y . 1. We have arrived at the class K of distributions. The theorem has
been proved.
The operation of screening was introduced by A. Renyi [9], and subsequently

studied by Yu. K. Belyayev [1] and I. N. Kovalenko [8].
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5. Domain of attraction of distributions of class K for y # 1

Now we shall consider a problem that is in a sense the reverse of the above.
We shall determine the conditions which the distribution F(x) must satisfy in
order that it lead to the given distribution of class K as a result of summation of
a random number of random variables with suitable normalizing constants B".
For brevity of speech with respect to such distributions, we will say that they
belong to the domain of attraction of this limit law. Theorem 2 of this paper
gives us necessary and sufficient conditions for the distribution F(x) to belong
to the domain of attraction of an exponential distribution. Our immediate prob-
lem is to determine the domains of attraction of all the remaining distributions
of class K. The answer is contained in the following theorem.
THEOREM 5. The function F(x) belongs to the domain of attraction of the

distribution T(x) with Laplace transform /(s) = 1/(1 + Csy), if and only if, for
every c >0 1 F(cx)
(5.1) lim = c'.

1-'' F(x)
The proof of this theorem is contained in a joint paper by two authors [4]

and is not reproduced here. I will note only that it, as well as the proof of
Theorem 2, is based on a Tauberian theorem (see [2], Chapter XIII).
The following fact merits attention: the formulation of Theorem 5 literally

coincides with the theorem on the domain of attraction of stable laws in the
classical theorem on limit distributions (see [6], Section 35, Theorem 2).

Coincidences with classical theorems already noted here twice, as well as the
fact that in class K, the parameter y can only take values in the interval 0 < y _ 1
(we recall that stable distributions of nonnegative random variables are also
possible only for values of the characteristic exponent in the interval zero to
one) lead to a thought about a deep connection existing between the problem
which we have been considering and the classical limit distributions for sums.
Our task now is to demonstrate this connection.

6. A general limit theorem

We shall consider sequences of independent and identically distributed (for
every n) random variables

(6.1) Xn.1' 4n,2' n,3

We introduce the notation

(6.2) FP(x) = P{Rn,k < x}, fn(8) =f e-xdP"(x).

We shall assume further that the random variables of the sequence {v"} take on
only nonnegative, integral values and for every n, the variable v, is independent
of all variables Xn k, 1 _ k < oo.
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THEOREM 6. If there exists a sequence of integers kn such that as n -*oo

(i) k -x),

(ii) p E (nk < X -+ (X),
tk=l

(iii) P{vn, < xkn} - A (x),
where ¢?(x) and A (x) are distribution functions, then

(iv) the distributions of the sums

(6.3) SV, = (", I + Xn, 2 + + 'Yn,vn

converge to the limit distribution function UP(x) whose Laplace transform is defined
by theformula

(6.4) /(s) = L (pX(s) dA(x),

where cp(s) is the Laplace transform of the function @D(x).
PROOF. The Laplace transform of the sum S,, is

(6.5) 0/'(s) = .jf()j
j=0

wherep",j = P{v,, =j}.
We put

(6.6) A"(x) = P{v,, < x},

and then obviously

(6.7) n(s) = Jfnx(s) dAn(x).
Now let

(6.8) AN(z) = P < z} = A,(k.z).

In our notation

(6.9) i. (s) = J'0 (f, (S))z dA.(z).

From the assumptions of this theorem and known theorems on convergence
of integrals

(6.10) ifr (s) - i/(s) = fBpz(S) dA(z)

as n -+ oo.
The theorem has been proved. It is a special case of a result in [5].
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According to the classical result of A. Ya. Khinchin, the function 9(s) must
be infinitely divisible. Thus 9(s) = exp {w)(s)},

(6.11) s(s) = e dM(x),

M(u) is monotonic, and J1 (l/x) dM(x) < oxo.

As my students, D. Saas and B. Freier, have shown in the case considered
here, one can prove two theorems that are in a sense converses of Theorem 6.
Namely, if requirements (i), (ii), and (iv) are satisfied, then (iii) holds. If (i), (iii),
and (iv) hold, then (ii) is satisfied.

In the problems studied here, the vn are distributed geometrically. Thus con-
ditions (i) and (iii) are satisfied. By Theorem 3, condition (iv) is satisfied and
the v, increase regularly. From the results of D. Saas and B. Freier just cited,
condition (ii) must be satisfied. But this limit distribution must be stable. Let
9p(s) = e-CSY where C > 0 and 0 < y < 1. And because A(x) = P{(vJ/n) < x} =

1 - e-X, then all limit distributions of the sums Sv. have the form f(s) =

1/(1 + CS.).
We have obtained the result of Theorem 3.
In a similar way we can obtain the results of Theorems 2 and 4.
We must make only a small comment relative to what has been said. In

Theorem 6 the variables v,, are assumed to be independent of c,, k. In the problem
we considered there was not this independence but only asymptotic indepen-
dence. But it is easily shown that with asymptotic independence, Theorem 6 is
still valid.
From a result of V. M. Zolotarev, if in formula (6.4) the distribution A(x)

is infinitely divisible, then the distribution T(x) is infinitely divisible also. Hence,
the infinite divisibility of distributions of the class K follows automatically.
A generalization of the results presented here for the case of summands of

arbitrary sign is given by B. Freier ([3], Theorem 6).
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