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1. Introduction

We will be concerned with real, continuous Gaussian processes. In (A) of
Theorem 1.1, a result on the growth rate of the supremum as t - oo is given.
The processes covered by Theorem 1.1 all have stationary increments. The law
of the iterated logarithm, given as (C) below, is a consequence of (A).
Theorem 1.1 will be stated and discussed in this section. The proof of this

theorem and supporting propositions are given in Section 2. An analogous
result for small times is given in Section 3. That the method of proof can also be
successfully employed in dealing with certain Gaussian processes not possessing
stationary increments is illustrated by Theorem 4.1. The results of Section 1 were
announced in [5].

Let (Ye, t _ 0) be a real, separable Gaussian process with Yo = 0, E[Yj] _ 0,
and set

(1.1) w(s, t) = E[YSY,], Q(t) = jw(t, t).
Then let

(1.2) Xt= (2Q(t))112

In this section and the succeeding two sections, (Y,) will be taken to have
stationary increments, so that

(1.3) w(s, t) = Q(s) + Q(t) - Q(t - s), 0 _ s _ t.

THEOREM 1.1. Suppose there exists a monotone nondecreasing function v(t),
defined on the nonnegative reals and vanishing at t = 0, and there exist positive
constants so, ,B, #2, /33, with #3 < 2,1 + 1, such that

(1.4) lim Q (s + t) -Q(s) = 1 uniformly in s,
t-.0 V(s + t) - v(s)

and

(1.5) v(t) _ (-) v(s) > 0, t > s > sO,
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(1.6) v(t)<() v(s), t _ s > sO,

(1.7) Q(t) - O(t2), t I O.

Then with probability one

(A) rim (sup Xt -(2 log log T)112) = 0,
T-oco t.T

and hence also

(B) lim sup (X -(2 log log t)112) - 0,

(C) lim sup Xt/(2 log log t)1/2) = 1.

Before discussing this theorem, we state a result of [6], to which Theorem 1.1
will, in fact, be reduced.
THEOREM 1.2 (Pickands). Let (Z,, t _ 0) be a real stationary, separable

Gaussian process with mean 0 and covariance y (It -s ) such that for some a > 0

(1.8) 1 - Zy(t) = O(t), t I ,

and

(1.9) y(t) = o((log t)1), t - cs.

Then with probability one

(1.10) sup Z -(2 log T)112 0.
trT

REMARK 1.1. It is only necessary to prove (A); the implications from (A) to
(B) and from (B) to (C) are trivial.
REMARK 1.2. Instead of introducing the function v, one could, of course,

formulate hypotheses on Q above. However, our hypotheses are convenient;
frequently, it is evident that a suitable function v exists, while conditions imposed
directly on Q would be harder to check.
REMARK 1.3. One class of examples is obtained by taking Y, ='I Ys ds,

where (Y., s > 0) is a real stationary Gaussian process with continuous sample
functions. Let q(lt - sl) be the covariance of the Y' process and set R(t) =
Jo q(s) ds. Then Q(t) = lo R(s) ds. If v(t) is a differentiable function satisfying
conditions (1.5)-(1.7), v(0) = 0 and v nondecreasing, and if R(t) - v'(t) as
t - oo, then (1.4) will hold. In particular, if R(t) converges to a positive limit K
as t -+ o, the hypotheses of the theorem will be satisfied with v (t) = Kt,
#I = f3 = 1, and /2 = 2. This will be the situation whenever q(t) is everywhere
positive and q(t) is integrable, for example, if Y,' is the Ornstein-Uhlenbeck
process with covariance e - ItsI. Related to this class of examples is a law of the
iterated logarithm given in [3].
REMARK 1.4. Theorem 1.1 applies to the case Yt = Bt, where B, is Brownian

motion. In this case, however, the results are not new, for Bet e t12 is the
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Ornstein-Uhlenbeck process and (A) is an immediate consequence of Pickands'
theorem applied to the Ornstein-Uhlenbeck process. For the Ornstein-
Uhlenbeck process Newell [4] and Pickands [6] also proved delicate limit
theorems for the distribution of the supremum which translate to interesting
statements about sup {t-12Bt :1 _ t . T}. Condition (C) in this case is, of
course, the classical law of the iterated logarithm of Khintchin, and (B) can be
deduced from the Kolmogorov test for upper and lower functions.

2. Key propositions

The plan is to compare X* = Xez with stationary processes to which Pickands'
theorem is applicable. Such a comparison is made possible by Slepian's lemma.
LEMMA 2.1 (Slepian). Let Xf, XJ' for j = 1, 2, ,N, be real Gaussian

sequences of length N, with mean 0 and covariances

(2.1) E[X-X-] = y-(i,j), E[X+Xt+] =y(ij),
and suppose

(2.2) y(i, i) = yN(i, i), _ _
-(i,j) < y+(i,j), 1 i <N, 1 <j _ N.

Then for any choice of constants aj, forj = 1, 2, * , N,

(2.3) n [X -aj ] < P' n
This extremely useful result is given in [8].

Defining
(2.4) y(s, t) = E[X5X],
one obtains from (1.3) that

(2.5) y(s t) = Q(s) + Q(t) - Q(t - s) O s t.(2.5) Y(s' t) ~~2[Q(s) Q(t)]112 s

The notation

(2.6) X-= Xe, y*(s, t) = y(es, e')
is to be in force up to the end of this section.
PROPOSITION 2.1. Under the conditions of Theorem 1.1, except that (1.6)

need not be assumed, one has with probability one

(2.7) lim sup (sup Xt- (2 log log T)1/2) . 0.
T- o t_T

PROOF. The crux of the argument is the establishing of (2.19) which, along
with (2.10), provides a suitable lower bound for y*(s, t).
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Define 6 (s, t) for nonnegative s and t by

(2.8) Q(s + t) - Q(s) = (v(s + t) -v(s))(I + 6(s, t)),

so that condition (1.4) of Theorem 1.1 implies that 6 (s, t) tends to 0 uniformly
in s as t approaches infinity. Using (1.3), one may write for t > s,

(2.9) w(s, t) = v(s)(I + 6(0, s)) + (v(t) - v(t - s))(I + 6(t - s, s)),
and since v is nonnegative and nondecreasing, it is clear that there exists an s,
such that

(2.10) w(s, t) _ 0, t _s _s1.

Relation (2.5) and a trivial estimate show that, if t > s,

(2.11) 1 - y*(s, t) = 1 - Q(es) + Q(et)- Q(e - es)< Q(e' - e')

Using assumption (1.4) and the monotonicity of v, it follows that there exists 82
such that

(2.12) 1 - y*(s, t) _
Q ( es) t _ S _ S2,

and, furthermore, there exists 83 such that

(2.13) ~~Q(e' - es)<2v(e' - es)et e> 8

(2.13) v(ec) v< (e3) ), e'-esv _S3.

Now let 84 = So V 83 and consider the following cases.
Case a: 84 < e' - eS < es, 8 > 82. Then condition (1.5) is applicable to give

(2.14) v(es) _ (t ,) v(e' - es),

and since the left side of (2.12) is less than the right side of (2.13) one obtains

(2.15) 1 - y*(8, t) _ 2(e'-s 1 )Pi.
Case b: 0 < e' - es _ 84, 8 > 82. By condition (1.7), Q is continuous at 0,

hence everywhere. So it follows from (1.7) that for 0 _ ,B . ,B2 there exists a
finite constant c(,B) such that

(2.16) Q(t) < c(l)tP, 0 _ t _ S4.
Substituting into (2.12) and using condition (1.5), one obtains

c(f) (e' - es)fl 8Pi ci(I3)ePs(e'-s -I)
(2.17) 1 - y*(s, 1) < c( ve0) - eS

where cl (,B) is a finite constant and 0 _ /B _ ,2 . Choosing Po = #I A P2 gives,
with c = cl (o1)),



GROWTH RATE OF GAUSSIAN PROCESSES 447

(2.18) 1 - y*(s, t) _ ci(et-S - 1)o.
From (2.15) and (2.18), it follows that there is a constant c such that

(2.19) 1 -Y*(s, t) _ c(t-s)Po, 82 < S < t <s + 1.

Let y- (t) be an even function such that y - (s - t) is a covariance satisfying

(2.20) y (0) = 1, y-(t) <1-cto, 0 _ t< 1,
7-(t) = O, t > 1.

By Polya's criterion such functions exist. Let (X-) be a separable stationary
Gaussian process with covariance y-(s, t) and mean 0. Pickands' theorem
applies to (X-) and implies

(2.21) lim sup [sup {X-; Si V 82 <t T} - (2 log T)1/2] < 0
T-Xo t

1V8

with probability one.
It follows from (2.10), (2.19) and (2.20) that

(2.22) y-(s, t) < v*(s, t), t _ S _ 81 V 82,
y- (s, s) = y(s, s), s > 0.

That (2.21) holds with probability one is equivalent to the existence for every
e > 0 ofa T(s) > 0such that for every choice of n, Tn _ Tn -1 * * * T1 > T(E),

(2.23) P{n [sup {X7; 81 V t2_ < T;} - (2 log T)12 < _ 1 - ,

which in turn is equivalent to the assertion that for every choice of m, and ti j,
V1v 82 < ti,j < Ti forj = 1, 2, * , m, and i = 1, 2, * , n, one has

n m

(2.24) P{(Pn n [X j < (2 logTi)112 + T. 11-e
i=1 j=1

Now because of (2.22), Slepian's lemma can be applied to conclude that the
corresponding assertion for X; holds, and so Proposition 2.1 follows.
PROPOSITION 2.2. The conditions of Theorem 1.1, except that (1.7) need not

be assumed, imply that for every e > 0,

(2.25) lim P[sup X, - (2 log log T)112 < -£] = 0.
T-oor t<T

PROOF. The crucial inequality in this proof is (2.32), which provides an
upper bound for y* (s, t).
To establish the proposition, it suffices to show that there exists a A > 0 such

that

(2.26) lim P[sup {X*A: n = 0, 1, , N} > (2 log N)12 -_] = 1,
N-oo

where N varies through the integers.
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From (2.8), it appears that there exists 85 > so such that

(2.27) W(S, t) < 3[v(s) + (v(t) - v(t -_s))], t _ S _ 85.

Observe that if /3I and P3, satisfying the conditions of Theorem 1.1, exist, then
/3 can always be chosen to be greater to or equal to 1, and we shall assume it to
be thus chosen.
Assume now that t = As > 2s > s5 and use (1.6) twice to obtain

(2.28) v(s) + [v(t) -v(t - s)] = v(s) + [v(As) - v((A- )s)]

< v(s) + v((A - 1)s)[(,2 i - '1

< v(s)[I + (A-1)l[(J) ' -]

= v(s)[1 + /33(A - C)P3
where c is a constant between 0 and 1 and the last step uses the mean value
theorem. Therefore,
(2.29) w(s, t) < 2V(S)[1 + #3(- C)t] . 5s)1, t =.As _ 2s _ 2s5.
Recalling (1.4) and (2.5) and using assumption (1.6), one obtains the existence
of a constant 86 such that

(2.30) y(s, t) (v()v(t))12 83--(P2) 6 < 8, t = As > 2s.

Let a = [3 - 1 - (p / /2)], so that a > 0 by assumption. Then there exists a
constant 87 such that

(2.31) y*(s, t) _ 5e t _ s + log 2 > S > S7.

Therightsideof (2.31) islessthanexp {- o(t - s)}whent -s > 2a- log 5.
So choose A > 2a-' log 5. Then A > log 2, and so for any integer No
exceeding S7,

(2.32) y* (mA, nA) _ exp {- !a|n - ml},
n = No, No + 1, *-- ;m = No, No + 1, *..

The right side of (2.32) defines a covariance y+(In - ml) belonging to a
stationary Gaussian sequence (X"+) to which Pickands' theorem applies.
Actually, we need here only a discrete parameter version of Pickands' theorem,
which follows already from the results of Berman [1]. Hence,
(2.33) lim P[sup X"+ - (2 log N)12 > - = 1

N-coo nSN

for e > 0, and again Slepian's lemma may be applied to deduce (2.26).
PROOF OF THEOREM 1.1. Conclusion (B) is an easy consequence of Proposi-

tions 2.1 and 2.2. As for (A), half of this assertion is contained in Proposition 2.1,
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but Proposition 2.2 does not quite give the other half. What is needed is the
following proposition.

PROPOSITION 2.3. Under the condition of Proposition 2.2,

(2.34) lim inf (sup X, - (2 log log T) l 0
T-'co t<T

with probability one.
PROOF. To establish this proposition, it does not suffice simply to apply

Pickands' theorem; rather, one must retrace a small part of the argument used
in the proof.

Let G., n = 0, 1,*, be a real Gaussian sequence with mean 0. Then

(2.35) P[lim inf (sup Gk - (2 log N)112) _ 0] = 1
N- 00 k<N

is an easy consequence of

(2.36) lim (log NP[sup Gk _ (2 log N)112 0, > 0.

If (Gk) is stationary and the covariance g(m, n) = g(m -nl) is such that
g(0) = 1, g(n) = o[(log n)- 1] as n -ao, then Pickands shows that (2.36) holds.
Returning now to the last part of the proof of Proposition 2.2, (2.36) holds with
Xk in place of Gk. Slepian's lemma is available to allow one to conclude (2.36)
for Xk in place of Gk, and therefore, finally, (2.35) holds with X , in place of Gk.
The truth of the proposition follows immediately.

3. Behavior for small times

We continue to assume that (Ye) has stationary increments, but now we look
at small values of t.
THEOREM 3.1. Suppose there exist positive constants f,l and P3 and To with

P3 < 2P1 + 1 such that

(3.1) Q(T)->T5 Q(S)' 0 < S < T < To,

(3.2) Q(T) (-) Q(S) 0 < S < T < To.

Then with probability one

(A') lim ( sup Xt - (2 logI log TI)112) = 0,
T-O T.tSll

and hence also

(B') lim sup (X1 - (2 log log ti)"12) = 0,
t-0'

(C') lim sup (Xt(2 log Ilog tI)"12) = 1.
t-0O
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REMARK 3.1. Recently, a number of studies have been published showing
continuity properties of Gaussian sample functions. Some of these contain
results partly overlapping with Theorem 3.1. (See, for instance, [2], [7].) There
are also interesting examples in [2] of instances when (C') fails, that is, the
iterated logarithm is no longer the correct normalization.
The proof is similar to that in Section 2, only now we let S = e 5 and

T = e-t, and consider X* = Xs with corresponding covariance y*(s, t) =
y(S, T). The details are so similar to those of the proof of Theorem 1.1 that
we will not supply them.

4. Nonstationary increments

The argument in the preceding sections may on occasion be fruitfully employed
when dealing with Gaussian processes which do not possess stationary incre-
ments. We proceed to a class of examples.

Let (Y 0, t _ 0) be Brownian motion, and define

(4.1) yn) = f Y(' l) ds, Xt() = Y,('){E[(Y())2]1/2, t > 0, n = 2

THEOREM 4.1. For every nonnegative integer n, (Xe(")) satisfies conclusion (A)
(hence, also (B) and (C)) of Theorem 1.1, and also conclusion (A'), (hence also
(B') and (C')) of Theorem 3.1.
PROOF. Let w(n)(S, t), y(n)(s, t) be the covariance of (Yn(")) and (X(")),

respectively. Note

(4.2) w(1)(s,t)= -s3 + 1s2t, 0 < s < t,

and use induction to verify that
n ~~~~~~~~~~~n

(4.3) W(n)(S t) -=Z 82n+ 1 -ktk, a = aak) > 0.
k=O k=O

Of course,

(4.4) y(n) ([,t) = (t) s > t.

Consider the proof of (A). In the proof of Theorem 1.1 the important
inequalities are the lower bounds given by (2.10) and (2.19) and the upper
bound (2.32). The positivity of w(n)(, t) is easily proved by induction. In dis-
cussing the other two inequalities, let us fix n and write w(s, t), y(s, t) in place
of w(n)(s, t), y(n)(s t), respectively. Note that y(s, t) is differentiable with respect
to t off the diagonal t = s. So by the mean value theorem for s < t, there
exists a t* between s and t such that, with y*(s, t) = y(es, et), one has

(4.5) y*(s, t) = 1 + yo, 1 (es, et*)es(ets - 1),

and so a lower bound of the form (2.19) with c > 0 and Po = 1 follows from
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the existence of a finite K such that

(4.6) yo, (es, et)e' _ K, s < t < s + 1.

The existence of such a K follows from (4.3) and (4.4).
To obtain an upper bound corresponding to (2.32), substitute (4.3) into (4.4)

and observe that the resulting expression is bounded by a constant times
(t/s)- 1/2, where t > s. This leads at once to the desired bound. The proof of
(A) then proceeds as in Theorem 1.1.

Again the proof of (A') proceeds in the same manner, making the change of
variables t into eC.
REMARK 4.1. Conclusion (C') of Theorem 4.1 for the case of n = 1 can

also be deduced from results of [9]. An example in that paper uses the result
developed there to obtain information about the lim sup behavior of
It Y1(0)I ds for ox > 0.
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