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1. Introduction

A homeomorphism U of a compact metric space onto itself is said to be
uniquely ergodic if it possesses a unique invariant Borel probability measure /U.
For an introduction to the theory of unique ergodicity, we refer the reader to
J. Oxtoby [11]. A point x in the shift space (z, where Q is a finite state space,
is called a uniquely ergodic sequence if the shift S, (Sx)i = xi+1, where i E Z,
x e z, is a uniquely ergodic homeomorphism of the orbit closure Qx =
{S'x: i E Z} ofx. We denote the shift invariant probability measure ofa uniquely
ergodic sequence x by p.,

S. Kakutani [7], M. Keane [8], and K. Jacobs and M. Keane [5] have con-
structed a variety of uniquely ergodic sequences and investigated their measure
theoretic properties. The first examples of weakly mixing uniquely ergodic
systems were given by Jacobs [3]. F. Hahn and Y. Katznelson [2] constructed
uniquely ergodic sequences with arbitrarily high entropy and Ch. Grillenberger
[1] produced uniquely ergodic sequences in flZ whose entropy is arbitrarily
close to log IQI Further constructions of uniquely ergodic sequences were given
by W. Veech (Section 3 of [12]).
We shall prove in Section 3 that for every ergodic shift invariant measure ju

on lz whose entropy h(t) is less than log IQI there exists a uniquely ergodic
sequence x e QZ such that the systems (flZ, p, S) and (C., p., S) are isomorphic
and such that py. is in any given weak neighborhood of it.

This result and the finite generator theorem for ergodic measure preserving
transformations (see [9] and [10]) imply that every ergodic measure preserving
invertible transformation T of a Lebesgue measure space with finite entropy
h(T) is isomorphic to a system (0,, ui,, S), where x is a uniquely ergodic sequence
in Qz and exp {h(T)} < IQI _ exp {h(T)} + 1. In Section 4, we shall show that
every ergodic invertible measure preserving transformation T of a Lebesgue
measure space is isomorphic to a system (U, C, hu), where U is a uniquely
ergodic homeomorphism of the Cantor discontinuum C. This was recently estab-
lished by R. Jewett [6] under the additional assumption that T be weakly mixing,
and conjectured by him to hold in the ergodic case. Our method of proof com-
bines the basic idea of Jewett with the methods that were developed for the proof
of the finite generator theorem for ergodic measure preserving transformations
(see [9] and [10]). We require some tools that we develop in Section 2.

Jacobs has recently shown that every weakly mixing flow on a Lebesgue
measure space is isomorphic to a flow of homeomorphisms of a compact metric
space together with a unique invariant Borel measure [4].
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2. Cesaro properties and admissible sequences

We introduce some notation. Let K) be a finite state space. We denote the
cylinder set of an a e Qe for 0 c Z by

(2.1) Z. = {x E z: (Xi)&eo = a}.

Le' I E N and let *', be the set of probability measures on Q'. On ',, we use
the metric

(2.2) Ip, vl = max 11(a) - v(a)I, p, v e *i,.
We define for L E ',,

(2.3) h(ji) = ju(aj, ,a,.-i,c)log(y p(aj---,a1-1,o))
- Z ,u(a) log p(a).

aefl
Every shift invariant probability measure p on !)z furnishes a measure e(I) ',

(2.4) J1(i)(a) = JU(Za), a E Q.

To every b E QK, K > I, there is a V)[b] E WY, assigned by
K-I + 1

(2.5) V)[b](a) = (K - I + 1)-' 6a,(bj),1i_4 a E (i.
i= 1

Now let pue )VI and E > 0. Also let K, L, MeN, L _ 3M(K + 1). Then
WDL!K(,U, E) will denote the set of all a c QL that have the following property: for
all i, where I _ i _ L-3M(K + 1) + 1, there exist j(k)e N, < k<- K,
such that

(2.6) i_j(k) <j(k + 1) <L, 1 <k <K,

and j(l)-i < 3M, M _ j(k + 1)-j(k) _ 3M, 1 < k < K,

(2.7) IA(')[(ai) 'JIM+i],Il < I,1 _ k < K.

For a e nm, and b e n', m, n E N, we denote by a + b the element c e (m+f that
is given by

(2.8) (cj)i1=I = a, (ci)Tm=+1 = b.

Our first lemma will not be proved here.
LEMMA 2.1. Let L, L' > 3M(K + 1), and a e Wm'L) (p, e), a' e WmLj(Lt, E),

and let

(2.9) (a)t=L-3M(K+1)+1 + (a)3M(K+1) ,eM(6M(K+1))(1 )

Then a + a' e '(ML,LK)(1 E)-
Next, we note a relation between the sets

(2.10) -9M,K (I e) = n {x e QZ: (X,)j +i 3M(K+l)-I e M(3M(K+1))(p,
j= -oo0
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and the sets

(2.11) I&N(I, s) = n nf {X QZ: IAM)[(Xi)j+N1],j < e}, N E N.
j=-oo N'=N

LEMMA 2.2. LetO < e < 1,letIe N, letMeW*1'I,and let K,M,Ne N be such
that

(2.12) M-1i < e K-' < e N-'M(K + 1) _ e.

Then -9M,K(it, 8) C 'N(it, 25).
PROOF. Let x E -9M,K(IU, E), let i' e Z, and let i" 2 i' + N - 1. Since

(Xi)iii eCM,K(IL, £), there is an R e N and j(r, k) e Z, for 1 < r _ R and 1 <
k _ K, such that

O _j(1, 1) - i' < 3M,

(2.13) o . i" - j(R, K) < 3M(K + 1),
(2.1) O <j(r + 1, 1)-j(r,K) < 3M, 1 r < R,

M _ j(r, k + 1)-j(r, k)< 3M, 1 < r _ R, 1 < k < K,
and

(2.14) A(I)[(Xi)j( ,k +1)) < 8, 1 r _ R, 1 < k < K.

This together with (2.12) implies that

(2.15) 1IV)[(xj)'j'='j pl < 25g,

which was to be proved.
Let v e #7,. We say that an a e QJ, J > I, is v admissible if v((ai).+'-1) > 0

for 1 < j . J - I + 1. The set of v admissible sequences in Q' will be denoted
by 6(v, J). We say that an a c 9(v, m) and a b E &(v, n) can be v connected
in k steps if there exists a c e Qk such that a + c E S(v, m + k) and
((a + c)i)i=M+k-I+1 = b.

Now let i be an ergodic shift invariant probability measure on QZ. The
following four lemmas are well known from the theory of Markov chains. For
a e &(ly(u), I), denote by 7ra(t) the smallest of all positive integers p with the
property that a can be p(') connected with itself in kp steps, provided that k is
sufficiently large.
LEMMA 2.3. Let a e g(fU(I), I) and let b e g(y(I), n), where n > I, be such that

a = (b)f'= 1 = (bj)%. I + 1. Then n - I is a multiple of 7r. (L).
PROOF. Let q be the greatest common divisor of 7ra(p) and n - I, and let

M e N be such that, for all M' > M, a can be p(') connected with itself in
M'7rx(u) steps. If t c N, 1 _ e < q-1r,(p), then there are N?, At, B. c N such
that Nj7r0(p) + {q = Ajn.a(u) + B?(n - I). Let

(2.16) k _ Mq-1ir(,u) + max {q-1BI(n - I): 1 _ e < q-17r.(u)},



330 SIXTH BERKELEY SYMPOSIUM: KRIEGER

and let

(2.17) {(k) = k -

M(k) = 2ra()- '(kq - Bt(k)(n - I)).
Then a can be 1,P) connected with itself in kq steps. Indeed, there is a
c E ( I + M(k)it0(y)) such that

(2.18) a = (ci)!= (C)+ M(k)Xa(A)(Ci)i= 1 - (ci)i==M(k)lra(A)+I

Hence,
Be(k)

(2.19) c + E (bi)1=+1 E g(u(I), I + kq).
m = 1

LEMMA 2.4. For a, b E g(1p(I), I), one has 7ra(M) =
PROOF. The ergodicity of u implies that there are N, K E N such that for all

K' > K, b can be /i') connected with itself in N + K'lta (,u) steps. Application of
Lemma 2.3 concludes the proof.
We shall write 7r(y(i)) for i0(,u), a E (,U(I), I). It follows from Lemmas 2.3 and

2.4 that the set g(y(I), I) carries an equivalence relation, where a, b E 8(/1(l), I)
are equivalent if they can be p(I) connected in k7r(p(b') steps for some k E N.
The classes of this equivalence relation will be called Mu') classes.
LEMMA 2.5. Let X c g(p(1), I) be a M(I) class. Then there exists an M E N

such that for all M' > M all a, b E .k can be p(i) connected in M'ir(p(b') steps.
PROOF. For all c E X, there is a kc such that for all k' > kc the sequence c

can be ,u1) connected with itself in k'7r(l°') steps. For a, b Ec, let n(a, b) E N
and cp(a, b) E QK, where e = n(a, b)7r(/F))- I, be such that a + p(a, b) + b is
p(I) admissible. It follows that for all

(2.20) M' _ max n(a, b) + max kc
a,beir cea

and all b E X, there is a f(b) E Q)m, where m = (M' - n(a, b))7r(M('))- I, such
that

(2.21) a + cp(a, b) + b + 0 (b) + b E .f(y(I), I + M'7r(lu('))), a Ec

LEMMA 2.6. Let X c e(,l('), I) be a u(l) class and let a E (pu(I), n) for n > I
and (ai)f=1, (ai)!= -I+, E Y. Then n - I is a multiple of ir(jt(b).

PROOF. There is a k E N such that for some c E Qm, where m - k7r(p(l) - I,

(2.22) (aj)l=,_1+1 + c + (ai)!=1 e(i(),I + k7r(y(' )).

Hence,

(2.23) a + c + (ai)= 1 E g(,j(I), n + k7r(!( ))).

By Lemmas 2.3 and 2.4, n + kir(y('))- I is a multiple of n(y()'), which con-
cludes the proof.
We shall need the following fact which was already used in the proof of

Lemma 3 of [10].
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LEMMA 2.7. For I N, / c-eI, s > 0, there exists an N e N and an t > 0
such that

(2.24) I{a E QN': I(')[a], ,'I < tj < exp {(K(y) + s)N'}, N' > N.

PROOF. Let J _ I. Any vector k = (ka), a e Q' in Zn' such that ka_> 0, for
all a e Q', and such that

(2.25) E ka = J-I + 1
aasl

determines a Vk E 'fI
(2.26) vk(a) = (J- I + I)-lka, ae-'.

Using Stirling's formula, we have, for all such vectors k,

( E k(a1,,a-_i,ae)) !
(2.27) {ae Q: V(')[a] = Vk} I < IQI'- Hn eeQ

<
(1)f,j 1/2

aeflI,kn k(J exp {h(vk)J}.
Let 0 < il < p = 2minaenI,p(a)>o y(a) be such that forK e 'I, |I, KC| < implies
that Ih(O), h(K) < js, and let N e N be such that

(2.28) In)-1p-lnjz/2N1Ifl11 < exp {JUN'}, N' > N.

Then from (2.27),

(2.29) I{a e QN': [A'IIa], ItI < 1 < exp {(k(jI) + s)N'}. N' > N,
which was to be proved.

3. A construction of uniquely ergodic sequences

We write Up for the Borel measure that is obtained when the Borel measure
ju is transported by means of the Borel mapping U.
LEMMA 3.1. Let 0 < e < 1, I E N. Let 0 be a;finite set and let there be given

I(S), K(S), M(S) E N, c9 > 0, and its e 'V'p, S E 6. Let there further be given a
nonatomic ergodic shift invariant probability measure p on QZ such that

(3.1) t( n -M(.),K(.9)(P., B.)) = 1
9e 0

and

(3.2) L _ max6M(S)(K(S) + 1),
&eO

(u(L))- h(4u) > 0. Then there exists a shift invariant Borel set X c QZ, j1(X) = 1,
a one to one Borel mapping U: X -+ Qi that commutes with the shift, and there
exist K,M,L'eN such thatK > s-'I,M > -1,L'> max(L,6M(K + 1)),
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(3.3) u(Z,)AU-I1Z(,,e,) < X, at E Q

(3.4) u(n GM(S),K(S)(S 8&)) = UJu(qM,K(u'X, E)) = 1
3e0

and

(3.5) 1((UM)(L)) > h(p).
PROOF. Let n be the number of elements in Q2, and set 210nb = -(H(L))-h(u).

The proof will be given in four parts.
We begin the first part of the proof by selecting a ,u(L) class X C,g((L), L),

|X| > 1. By Lemma 2.5, there exists an m E N, mlr(p(L)) > L, such that all
elements of X can be ,I(L) connected in m7r(p(L) steps. We choose for all a,
a' E A' a /3(a, a') E QkP, where p = mr(,(L))- L, such that a + f(a, a') + a is
/(L) admissible. By Lemma 2.3, we can find a(, a(1)e , teN, ti(u(L)) > 1,
as well as b(°), bW) E g(p(L), L + tit(p(L))) such that

(3.6) a(°) a

and
(0) - (0)L - (1) L (0~)LL+t.(pu(L))a(°) = (b ))i 1 = (bM ))i1 (bo )j=tlC(P(L))+ l,

(3.7) a(1= =
( 3 * 7 ) a( 1) = (b i) = tXC($L) ) + 1 X

and 3uch that a(°) cannot be /1(L) connected with itself in less than t7r(u(L)) steps.
We denote

(3.8) c = (b(o) )L + tX9(U(L))

By the individual ergodic theorem, we can find an N1 E N such that for

(3.9) F1 = fl {X E Q: |R[(xi),--k'Ii M(')I < 2-5&},
k',k" 2 °

k;+ky'>Nl

(3.10) p(F1 ) > I - 2- 24g262n - 1.

By the Shannon-McMillan theorem, we can find a J1 E N such that

(3.11) I{a e 4(p(L), J): (aj)f=1 Ec | > exp -(E(p(L)) 6)J} J _J1>

(See Lemma 3.1 of [9].) Let A = (4m + t)lr(p(L)) + 4tm7r(,I(L))2 - L, and let
P E N be such that

(3.12) B = Pt7r(u(L)) + L > max (2's-16-2n1A, N1, JI).

We form the sequences so = a(°) + lc1C. The set {a Ec(,(L) B): (a)L=1 E }
of which 80 is an element, plays the role of an alphabet in this proof, and we
denote it by cat. From (3.11) and (3.12), we have

(3.13) | > exp {(A(M(L)) - 26)(A + B)}.
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Next we choose d, e(l), e(2) E -%, e(l) * e , and we form sequences (op, E

g(y(L) A) by setting
4m,r(p(L))

A= C,

(3.14) =

)= f(d, a(°)) + b(l) + j3(a(l), e(P)) + e(p) + P(e P), e(a)) + e(a)
+ fl(e(a), a(°)) + a(°) + (6c)4mt7r(P(L))2-L p, a = 1, 2.

Let h e Qq, where q = (2m - t)n(M(L)) + 4tm7r( p(L))2 - L be such that bWI) +
h + bWI) is ,1(L) admissible. Forfe Qk,f I Qk', k, k' > L, such that (fi)k=k-L+ 1,
(f ).=1 e , we form sequences y(f, f') e (,u(L) A),

(3.15) Y(ff') = P((fi)=kk-L+1, a(0)) + b(1) + h + b(l) + f(a('), (f)

Next, let J(O) e N be such that

(3.16) k(p(J'°))) < h(j) + 5.

By Lemma 2.9, there is a J2 e N and an t1 > 0 such that

(3.17) [{a c- Ql: IV() [a], y(J() < n}
< exp {1((p(J(O))) + b)J}
< exp {(h(p) + 26)J}. J _ J2

We have from the individual ergodic theorem that there is a Q e N,

(3.18) Q > 6-1nJ2,

such that for

(3.19) F2 = n {X E QZ: |IA" [(x)U -k']7 A(J!o < C
k', k" 2 0

k'+ k" >Q(A+ B)

(3.20) L(F2 ) > 1 -2 - 24S262n -

Let ReN,

(3.21) 25&'-Q < R < 26-1Q.

We set M = (R + Q) (A + B), choose a K E N, K > & 1I, and set L' =
6(R + Q) (A + B) (K + 1). Once more appealing to the individual ergodic
theorem, we see from (3.11) and (3.20) that there is an N2 e N,

(3.22) N2 > 2's-16-2nL'
such that for

F3 = n {Xelz: (1 + k' + k") _ XF_ F2(SX)
k' k" 2 ° i= -k'

(3.23) k'+k"2N2 > 1 -

y(F3 ) > 1 -2 - 5S622n- 1.
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Next, as the second part of the proof, we prepare for the construction of X
and U to be given in the third part of the proof. For the actual construction of
X and U, we shall need for every ? _ N2 a mapping a -+ q (a) e N, (a e QY) and
a mapping FD: KY - Uk1 sk, where (Dea e 4fqe(a), a e Q. We proceed to describe
these mappings. Let s, 1 < r < 4, be different elements ofs, all different from
so, and let .?% = - {sr: 1 < r _ 41. By (3.11) and (3.13),

(3.24) | |1> exp {(36)(L))-3)(A + B)}.

Denote

Ce = [e(A + B)-1] - 1,

Dt = [C (Q + R) ],
Ke,1 = [6QD], K =

(3.25) M. = [(1 - 25b)Q], Me,2 = [6-5nQ],
j, = [e62n-'Cj]
Ae = {k(Q + R) + k': 0 _ k _ DI, 1 < k' _ Q},

r'. = {1, , ctl - Ae,
and let j(F) be the set of subsets of size j of [e, 1. j < RD.. Further, for
a e Qg, let

(3.26) r(a) = {k e Ft: IV)|[(ai)( (A+B)+A+1], 4('I| < 2-5s},
and let .#e be the set of a e E' such that Ir(a)I < jt and such that

(3.27) 1{° _ j < Dt: V2(0 )[(ai)ij(Q(+ R (RA(+ B)+ sQ(A +B)] ,u(J'°l > }1< 62n- 'D.
We see from (3.12), (3.21), (3.22), and (3.24) that there is a one to one mapping

(3.28) 9g: Q-C0B
and we set

Ce - 1

one29 e, la = pe (ai)~kA+B)+A + (ai)f=Ce(A+B)+1) a Ek=O

We compute with the help of (3.12), (3.21), (3.22), and (3.24), that there are
one to one mappings

je

(3.30) e,2 U(,j(Ft) X njB) _fl4Ke,

4f 2, 2: RDeB ~ffKe, 2

For a E CY, we set

f ,2,1(](a), Z (ai)'=(+B) A+1) if IF(a)l _ j.,
(3.31) ~e,a =ker(a)

(3 31) .2a = | .( Z (ai B )(A+B)+A+ 1) if I-(a)I > ic.
k e
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and

(3.32) Kta = {KI,I if Ir(a))
,K12 if IF(a) I >ijt.

We find from (3.17), (3.18), and (3.24) that there is a one to one mapping

(3.33) TPt: QQ(A+B) vSIOMe, i U 42Me' 2

such that

(3.34) Tta c- 45;me if |,('°))[a], yju2'°)| < q.

Let, for a e QQ(A+B)

(3.35) Ml{aMt, I if jA(1(0))[a], yiiV(0))j < ii
- M, 2 elsewhere.

We define for a e Ql,

(3.36) (Dta = (80) + (t,,a + (si) + ce,2a + (82)
De -1

+ (((ai)jQ 1) + (83)) + (84),
j=O

De- 1

(3.37) qe(a) = 22 + Dt + K, 1 + Kca + E Mt((ai)j I

j=O

We have from (3.18),

(3.38) q((a) . 22-lb-'nQDe, a Q.,

and we have

(3.39) qc(a) . (1 - 46)QDe, a e- .

Observe that we have constructed the (D in such a way that F(a) is uniquely
determined by (Dea and that a is uniquely determined by (Dta and the
(ai)i =(k-) (A+B)+A+1, k e [> - F(a).
For the third part of the proof, let

(3.40) E C U SLZa
aeX

be a Borel set of positive p measure such that

(3.41) Er-iS E = , 1 i _ N2,

and such that for all x e E the sets {i e N: S'x e E} and {i e N: S-x e E} are

infinite. Let
2nL'

(3.42) E = U E,
r= 1

be a partition of E,
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(3.43) 2p(E,) = n-L'u(E), 1 _r _ NVL-
We denote for x E U, _ 0 SE,

i-(x) = min{i . 0:S-xeE},
(3.44) i+(x) = min {i E N: Si 1x E E},

{(x) = i(x) + i+(x).

We shall construct a shift invariant Borel set

(3.45) X c U SiE
i= -X

and one to one Borel mappings

(3.46) Ur:X QZ, 1 _r_2nL,

that commute with the shift. The construction of these Ur will be achieved by
assigning to every x E E () X

(3.47) u (k) E a?, 1 _ k Ct(X).
and

(3.48) uX(Ct(X) + 1) E g(U(L) {(X) - Ct(X)(A + B) - A).
We shall have

(3.49) u.(1) = 80, xeEnX.

Moreover, the uX(C(X) + 1) will have the property that their first L elements
and hence also their last L elements form sequences that are in -.' Hence,
according to Lemma 2.6, it will be possible to define the Ur by the requirement
that they commute with the shift, and by setting Urx, x E E f X, equal to y,
where

CecX)

(3.50) (yXNX)1 = (0p(x),0(x) + SO + E (y(u.(k), ux(k + 1)) + ux(k + 1)),

fI if xeEr,

(351 P(X) 2 if x 0 E,(35) 1l if S-"'(s-'x)xc-E,av(x) = 2 if S"s-'(~x)x5oE,.
In order to define the uX(Ct(x) + 1), for all 6 _ N2, let d(g) be an element of

g(p(L) e - Ct(A + B) - A) that ends in d and does not contain b(°) as a sub-
sequence. Then set

(3.52) ux(Ce(x) + 1) = d("(x)). x eE.

In order to produce the u.(k), 1 _ k _ Ct(x), we shall first construct certain
vx(j) E -4, 1 _ j < QDe(x). For this we need the mappings qe and Dt as defined
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in the second part of the proof. We set

(3.53) q(x) = qg(X)((xi)=+-(x)-+1)) xe U SEE.
i=-co

We have from (3.21) and (3.23) that

(3.54) ({x oZ: (xi)i--i-(x)+l C (x)}) > 1 - 25S62n-
From this and from (3.38) and (3.39), we compute that

(3.55) f z (x)1 (q(x) - QDt(x))du(x) < -2 76C(A + B)-1.

Hence, by the individual ergodic theorem, the set

(3.56) X = {x e U SE: , (q(Skx) - QD?(Skx))XE(SkX) = -
i=-a0 k= 1

has ,l measure one. We set for x e X

(5 - {(i, j) e Z x N: Six c E r) X, 1 < j _ q(S'x)},

x = {(i,j)EZ x N:S'xeEnXr 1 _j < QD.(six)}.
Exploiting the defining property of X, we obtain for all x e X a mapping

.x ^ x by setting for (i,j) Ex,

(3.58)
ix(i,j) = min {i > i: j - QDt(six) + E (q(Skx) - QDt(Skx))XE(Skx) _

i<kSi'

j(i, j) = j - QDg(six) + Z (q(Skx) - QDe(Skx))XE(Skx) + q(S'( flx),
i<k<i(i,j)

and by setting

(3.59) TX(i,j) = (0x(i,j),jx(i, j)).
The TX are one to one (see the second part of the proof of Theorem (2.1) of [9]).
Denote now

(3.60) (wx(j))I(x) = @D(x)((xj)j=X) x eE r) X,

and set for x e E n X,

(3-61) vx(j) = { six(j') if (1j) E x(zx) and ifTx(i,j) = (1j),
(3.61)v~U 83 if (1,j) rx( x).

Finally, we choose a g e d4,

(3.62) WjaT91, /.,()I < 2- 5E,

and we let C stand for a one to one mapping of At onto {1,* , QDt}. We
define then for x c E n X, 1 _ k _ C(x),
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(xi=(k1)(A +B)+A+l if k e rf(X) - =(k-)(A+B)+A+ l

(3.63) u.(k) = g if k E ((I)i=(k-1)(A+B)+A+1)
vx (C?(x)k) if k E A

This construction is such that (3.49) holds.
Let A be the mapping that assigns to an x E X the

(3.64) c( k-I )

that is given by

(D(.,)((i)(x ) if S'x e- E,(3.65) zi= ) if S'xE.

The mapping that carries a = Ax, x E X, into the

(3.66) ie( k-}UO )l

that is given by

((vx (k))QD-jx, if S~x e- E,(3.67) i = k= 1 S xEE,

is one to one and commutes with the shift as can be shown by an argument
that is similar to the one that was given in the second part of the proof of
Theorem (2.1) of [9]. Let

B L

a(°) + E c,

(3.68) B = 4mt2(u(L))2 + P.

The (o., y(f, f'), and the d(") were structured such that x E E r)X if and only if

(3.69) (UrX)i=AB+B-+ll = s, 1 _ r < 2nL.
These two facts and the observation that was made at the end of the second part
of the proof allow us to conclude that the U, are one to one.
For the fourth and final part of the proof of Lemma 3.1, we proceed to show

that all of the U, have the properties (3.3) and (3.4) and that at least one of
them has also property (3.5).
We have from (3.12), (3.21), and (3.22) that

(3.70) p({xeX: I{ie Z: -i-(x) < i < i+(x), (Urx)i ¢ Xi}l < 2,'(x)}) > 1 -2
1 r . 2nL'

Hence, the individual ergodic theorem shows that the U, have property (3.3).
The U, were also constructed such that we can infer from (3.11), (3.21), and
(3.62) that for all x EE n X,
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(3.71) I =)(j+1(Q+R)(A+B)+ < £, j <

1 . r < 2nL-

From this and from (3.1) and (3.2) together with Lemma 2.1, we see that the U,
have property (3.4).

Last but not least there is an ro and an a e QL' such that

(3.72) (aB) 1=

and

(3.73) 1(E,o) > j(U1O'ZrnE ,) > 0.

With
G_ = {xe Za: Xi)i=h-A-B+1 {(0),1, (°1,2}},

(3.74) G+ = {x e Za: (x)+ I e {(O1,2, (02,2}},

k(x) = min k > L: (xi),-k+l e {COp,6 + 5o p, af 1, 2}},

we have from (3.43) and (3.73),

0 < UOju(Zar' G_) < UrO(Z.)
(3.75) 0 < UroI'(Za() G+) < UroI(Za),
and

(3.76) Uro (Zarl r( G+) = 0.

Hence, U = U,O has property (3.4).
LEMMA 3.2. Let 0 < £ < 1, I E N, and let u be a nonatomic ergodic shift

invariant measure on (Z such that h(qt) < log II-. Then there exist a shift
invariant Borel set X c Q)Z ji(X) = 1, and a one to one Borel mapping U: X - z

that commutes with the shift and K, L, M E N, such that

(3.77) K > -1I, M > -1, L > 6M(K + 1),

and such that

(3.78) UY(9M,K(P('), £)) 1

and

(3.79) h(U)L)> h(p).
The proof of this lemma is similar to the proof of Lemma 3.1.
THEOREM 3.1. Let 0 <3 < 1, I e N, and let y be a nonatomic ergodic shift

invariant probability measure on (z

(3.80) h(p) < log IQI
Then there exists a uniquely ergodic sequence x e QZ such that the systems
(QZ, ,u, S) and (O., Ix, S) are isomorphic, and such that

(3:81) l/1(Za) - Ix(Za)l < 5, a eQ.
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PROOF. We are going to construct inductively a decreasing sequence Xi C QZ
of shift invariant Borel sets, Mu(Xj) = 1, and a sequence Vj: Xj -+ Qz of one to
one Borel mappings that commute with the shift. At the same time, we shall
obtain inductively also A(j), K(j), M(j) e N, j c-e j, and sets

(3.82) le(a, j) fl Q, czQ,
-A(j)<i<A(j)

such that for all je N with n = IQI
(3.83) M(j) > jn2j,
(3.84) K(j) >n
(3.85) L(j) _ 6 max M(k)(K(k) + 1),

(3.86) h((Vj )(L(,I)) > h(u),
j

(3.87) VjXj In §M(k),K(k)(Pk, n- 2),

(3.88) I,(U (Vj7i' Z(. AVj-1Z(a))) < 6I- 2 -Jn - 3A'(j 1), A'(j) m A (k
1 _k_j

(A'(0) = 0, V0 = 1),
(3.89) ku(Z(.)AVj-( U Za)) < 2

ae,(aj)
We set A(1) = 1 and we use (3.80) and Lemma 3.2 to obtain a set X1 and a
mapping V1 as well as K1, L1, M1 with the desired properties, setting

(3.90) W(a, 1) = {(a)}, a Q.

Assume now that we have already carried out the construction up to index j.
Because of (3.85), (3.86), and (3.87), we can apply Lemma 3.1 to the measure
Vjg with 0 = {1, ,j} and

(3.91) k=2k, 1 k j,

and produce a shift invariant Borel set Y VjXj, ( Vj- 1Y) = 1, a one to one
Borel mapping U: Y -Q lZ that commutes with the shift, and K(j + 1),
L(j + 1), M(j + 1), such that

M(j + 1) > (j + I)n2j+2
(3.92) K(j + 1) > n2j+2,

L(j + 1) _ 6 max M(k)(K(k) + 1),
such that 1_kSj+1

(3.93) Vjl'( U (Z(.)AU 'Z(a))) < NI-12-j-ln -3A'(j)
aes t

such that

(394a h{jpu(L(j+ 1))) >h()
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and such that with

/I+ 1 = (UVjp)lj+1),
(3.95) UY c n -9M(k),K(k)(Ulk n -2k).

1 _k<j+ 1

We set then

(3.96) Xj+1 = jIlT,
Vj+IX = UVjx, xexj+ I

We find from (3.93) that

(3.97) (U (Vj 1Z(.)AVJ++lZ(.))) < 6I -12-j-1n-3A'(i)
aeQ

Since Vj+1 is one to one, we can find an A(j + 1) and

(3.98) '(a,n + 1) c H Q, K2,
A(j+l1)<i_A(j+l1)

such that

(3.99) L(Z(.)AVj-1( U Za)) < 2-J-1.
aee(a,j+ 1)

This concludes the induction.

It follows from (3.88) that there is a Borel mapping W: QZ QZ that com-
mutes with the shift such that for M-a.a. x e Q2,
(3.100) (Wx)j = lim (Vjx)j, i e Z,

n0-

and

(3.101) Y(Z(a)AW 1z(a)) < M-1. a Q.

We infer from (3.88) that for all j e N,

(3-102) ,u(VJ z(.)Aw z(a))
(VZ (-1(a)AVC+ lZ(Oa)) < 2-in ()
k.j

Hence,

(3.103) p(Vj'ZaAW-1Za) < 2-in-2A(J) ae H fQ.
A(j)<iSA(j)

Hence, also

(3.104) /l(Vj1( U Za)AW1( U Za)) < 2 j, a C Q,
ae(,(aj) aeW(aj)

and from (3.89),

(3.105) p(Z(.)AW1( U Z.)) < 2-j+1 o E Q.
aeW(a,j)
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Exploiting shift invariance, we conclude from this that there exists a shift
invariant Borel set X c fn, Xj, ,u(x) = 1, such that W if restricted to X is
one to one. We claim that, for all x E X, Wx is a uniquely ergodic sequence such
that

(3.106) lWx = W,u.

To establish this, we prove first that

(3.107) WX c n( M(j), K(j)(Ilj, n 2j).
j=1

Indeed, for j E N, i' E Z and x E X there is a j' _ j such that

(3.108) (Wx)i = (Vj,x)i, i' . i < i' + 3M(j)(K(j) + 1),

and by (3.87), Vjx -M(j) K(j) (pj, n- 2 ) and (3.107) follows. By Lemma 2.2, for

(3.109) N(j) = n2jM(j)(K(j) + 1),

If'X C VN(j) (yj, 25n -2 j), j ECN.
From the individual ergodic theorem, therefore, for all j E N,

(3.110) uyj, (Wt)(j)j < 25n-
Hence,

(3.111) WX c nfl N(jN(J)((W j). 26n-.
j= 1

This implies that every element in WX is uniquely ergodic and that (3.106) holds.
Equation (3.81) follows from (3.101).
COROLLARY 3.1. For every ergodic invertible p preserving transformation T

of the Lebesgue measure space (E, X4, p) with finite entropy h(T) there exists a
uniquely ergodic sequence x e Q, eh(T) < I eh(T) + 1, such that the systems
(E, p, T) and (C9S., 1u, S) are isomorphic.

PROOF. We know from the finite generator theorem (see [9] and [10]) that
there is a shift invariant probability measure j on QZ eh(T) < IQI < eh(T) + 1,
such that the systems (E, p, T) and (QZ, p, S) are isomorphic. Hence, the corollary
is a consequence of Theorem 3.3.

4. Infinite entropy

We define for a mapping 4: 0 -+ 0':

(4.1) Qx = (4Xdl-- xeoZ.

For the case of infinite entropy, we need yet another version of Lemma 3.1.
LEMMA 4.1. Let 0 < e < 1, I E N. Let 0 be a finite set and let there be given

I(9), K(9), M(s) EN, e > 0, finite sets Fr, mappings 'p,: Q -r ['q, and prob-
ability measures y& on [9', S E 0. Let there further be given a nonatomic ergodic
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shift invariant probability measure pu on Qz such that h(y) < log IQI and

(4.2) ,(f (P ) = 1.
Se8

Then there exists a shift invariant Borel set X c Qz, /u(X) = 1, a one to one
Borel mapping U: X -. Qz that commutes with the shift such that

(4.3) Y(Z(X)AU-IZAa)) < 8, asQ-f2
and also M, K e N, such that

(4.4) M > V1, K>-

and such that

(4.5) Up(fln -9M(S),K(S)(Y&1 8E)) = Up(-MK(p4I), £)) = 1.
960

In the proof of our last theorem, we shall use the shift space ({0, 1, 2}N)Z.
Again, we say that an x E ({O, 1, 2}N)Z is uniquely ergodic if the shift is a uniquely
ergodic homeomorphism of C., = {Six: i E Z} and we denote the corresponding
invariant probability measure again by u,.
THEOREM 4.1. For every ergodic invertible p preserving transformation T of

a Lebesgue measure space (E, AR, p) there exists a uniquely ergodic point x in
({O, 1, 2}N)Z such that the systems (E, p, T) and (Q, ul, S) are isomorphic.

PROOF. Let (E, AR, p) be the unit interval together with Lebesgue measure and
let {F(j): j E N} be a collection of Borel subsets of E that generates X4. We set

(4.6) Pj,ka = (ai)j= 1, a E {O, 1, 2} j, j > k.

We are going to construct inductively a decreasing sequence Xj c E of T invari-
ant Borel sets, p(Xj) = 1, and a sequence Vj: Xj -* ({O, 1, 2}J)Z of Borel map-
pings such that the diagrams

(4.7) E E

lIvj l±vj
({O, 1, 21j)zs ({O, 1, 21j)z

are commutative. At the same time we shall obtain inductively also K(j),
M(j) E N, probability measures yj on ({O, 1, 2} j)j, such that for allj E N,

(4.8) M(j) < j32J,
(4.9) K(j) > 32

(4.10) VjXj -c n0J,k -9M(k),K(k)(Ilk, 3 )
k= 1

and A(j) E N and sets

(4.11) W(1j, k) C H {0, 1 2}j, 1 _ k _ j,
A(j) < i _ A(j)
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such that

(4.12) p(F(k)AVj-;( U Za)) < 2-i, 1 . k _ j.
aef(j,k)

Also, we shall have with A'(j) = max, .k jA(k),

.(4.13) P Vi_11Z(a)AVj ( U Z((al bai a))) < 2-i 3Aj 1

a=O ~~~ac-O, 1, 21j-',j> 1.
Let

(4.14) VOx = (XF(l)(Six));=i e0c {0, 1, 2}z, xe E.

We can apply Lemma 3.2 to obtain M(1), K(1) > 9, a shift invariant Borel
set Y1 c {0, 1, 2}z, p(V&'Y,) = 1, and a one to one Borel mapping

(4.15) U1: Y1 -+ {0, 1, 2}1
that commutes with the shift such that

(4.16) Ul Y c: -M(1),K(1)((U1 Vop)( ) 3 -)

We can set

(4.17) XI = V6- Y,

V1x = U1VOx, xeX.

Since VI is one to one there exist A (1) and t'(1, 1) with the required properties.
Assume that the construction has already been carried out up to index j e N.

We define then a Borel mapping Q: Xi - ({0, 1 2}i+1)Z by setting

(4.18) QX = ((Vjx)i + (XF(j+1)(SiX)))l-X X e X.

We apply Lemma 4.1 to the measure Qp and to Fk = {0, 1, 2}k, (Pj, k and
Sk = 3 2k2'1 < k < j, to obtain

(4.19) M(j + 1) > (j + 1)32( 1)2 K(j + 1) > 32(j+1),
a shift invariant Borel set Y +l C ({o, 1 2}J+1)Z, p(Q-1Yj+1) = 1, and a one
to one Borel mapping

(4.20) Uj+1: Yj+ I({O, 1,2j}i+1)Z
such that with

(4.21) =j+1 (Uj+ I vjp)(j+ 1),
j+1

uj+lyj+l CnO(j,k -9M(k),K(k)(14, 32k)
k = 1

and such that

(4.22) p(Q1(Z(a)AU,+1lZ(a))) < 2-j-13-3A(j) ae {0, 1, 2}
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We set

(4.23) Xj+1 = QY11y+, Vj+1x = Ui+1Qx. xeXj+1.
Since Uj+ 1 is one to one, we can infer the existence of suitable A(j + 1, k)

and W(j + 1, k).
It follows from (4.13) that there exists a Borel mapping W: E -X ({0, 1, 2}N)Z

such that for p-a.a. x E E,

(4.24) (Wx)e,i = lim (Vjx)e,i, eE N, i E Z.
j = 00

Since X is generated by {F(j): j E N}, we can infer from (4.12) and (4.13) that
there exists a T invariant Borel set X , fl_ 1 X., p(X) = 1, such that W if
restricted to X is one to one. Set

(4.25) 'Y (Yk)k= 1' ye {0, 1, 2}N, je N.

To establish that for all x E X, Wx is uniquely ergodic such that

(4.26) Pw,X = Wp,

it is, by (4.8), (4.9), Lemma 2.2, and by the individual ergodic theorem, enough
to show that for all j E N,

(4.27) Ij/WX E 2M(j), K(j) (Ij' 3-2i).

That this is indeed so follows from (4.10) and (4.24).
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