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1. Introduction

Since Laplace discovered the remarkable correspondence between set theoretic
operations and operations on formal power series, and put it to use with great
success to solve a variety of combinatorial problems, generating functions (and
their continuous analogues, namely, characteristic functions) have become an
essential probabilistic and combinatorial technique. A unified exposition of their
theory, however, is lacking in the literature. This is not surprising, in view of the
fact that all too often generating functions have been considered to be simply an
application of the current methods of harmonic analysis. From several of the
examples discussed in this paper it will appear that this is not the case: in order
to extend the theory beyond its present reaches and develop new kinds ofalgebras
ofgenerating functions better suited to combinatorial and probabilistic problems,
it seems necessary to abandon the notion of group algebra (or semigroup
algebra), so current nowadays, and rely instead on an altogether different
approach.
The insufficiency of the notion of semigroup algebra is clearly seen in the

example of Dirichlet series. The functions

(1.1) n -+ l/ns

defined on the semigroup S of positive integers under multiplication, are charac-
ters of S. They are not, however, all the characters of this semigroup, nor does
there seem to be a canonical way of separating these characters from the rest
(see, for example, Hewitt and Zuckerman [32]). In other words, there does not
seem to be a natural way of characterizing the algebra of formal Dirichlet series
as a subalgebra of the semigroup algebra (eventually completed under a suitable
topology) of the semigroup S. In the present theory, however, the algebra of
formal Dirichlet series arises naturally from the incidence algebra (definition
below) of the lattice of finite cyclic groups, as we shall see.
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The purpose of this work is to begin the development of a theory ofgenerating
functions that will not only include all algebras of generating functions used so
far (ordinary, exponential, Dirichlet, Eulerian, and so on), but also provide a
systematic technique for setting up other algebras of generating functions suited
to particular enumerations. Our initial observation is that most families of
discrete structures, while often devoid of any algebraic composition laws, are
nevertheless often endowed with a natural order structure. The solution of the
problem of their enumeration thus turns out to depend more often than not
upon associating suitable computational devices to such order structures.
Our starting point is the notion of incidence algebra, whose study was briefly

begun in a previous paper, and which is discussed anew here. Section 3 contains
the main facts on the structure ofthe incidence algebra of an ordered set; perhaps
the most interesting new result is the explicit characterization of the lattice of
two sided ideals. It follows from recent results of Aigner, Prins, and Gleason
(motivated by the present work) that for an ordered set with a unique minimal
element the incidence algebra is uniquely characterized by its lattice of ideals;
this assertion is no longer true if the ordered set has no unique minimal element.
In particular, the lattice oftwo sided ideals is distributive, an unusual occurrence
in a noncommutative algebra. Our characterization of the radical suggests that
a simple axiomatic description of incidence algebras should be possible, and we
hope someone will undertake this task.

Section 4 introduces the main working tool, namely, the reduced incidence
algebra. This notion naturally arises in endowing the segments of an ordered set
with an equivalence relation. Such an equivalence is usually dictated by the
problem at hand, and leads to the definition of the incidence coefficients, a
natural generalization of the classical binomial coefficients. After a brief study
of the family of all equivalence relations compatible with the algebra structure,
we show by examples that all classical generating functions (and their incidence
coefficients) can be obtained as reduced incidence algebras. We believe this is a
remarkable fact, and perhaps the most cogent argument for the use ofthe present
techniques.

Section 5 extends the notion of reduced incidence algebras to families of
ordered structures. The notion of multiplicative functions on partitions of a set
and the isomorphism with the semigroup of formal power series without
constant term under functional composition (Theorem 5.1) are perhaps the most
important results here. Because of space limitations, we have given only a few
applications, which hopefully should indicate the broad range ofproblems which
it can solve (for example, enumeration of solutions of an equation in the
symmetric group G., as a function of n). Pursuing the same idea, we obtain an
algebra of multiplicative functions on a class of ordered structures recently
studied by Dowling [19], which were suggested by problems in coding theory.
Finally, we obtain the algebra of Philip Hall, arising from the enumeration of
abelian groups, as a large incidence algebra.
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Section 6 studies the strange phenomenon pointed out in Section 4, that the
maximally reduced incidence algebra does not coincide with the algebra obtained
by identifying isomorphic segments of an ordered set. The structure of such an
algebra is determined.

Sections 7, 8, and 9 make a detailed study of those algebras of generating
functions which are closest to the classical cases. Algebras of Dirichlet type are
those where all the analogs of classical number theoretic functions can be defined,
including the classical product formula for the zeta function. Algebras of
binomial type are close to the classical exponential generating functions, and
naturally arise in connection with certain block designs. Under mild hypotheses,
we give a complete classification of such algebras.

Several applications and a host of other examples could not be treated here.
Among them, we mention a general theory of multiplicative functions, and their
relation to the coalgebra structure (as sketched in Goldman and Rota [25]),
and large incidence algebras arising in the study of classes of combinatorial
geometries closed under the operation of taking minors, in particular the coding
geometries of R. C. Bose and B. Segre, of which the Dowling lattices are special
cases.

This work was begun in Los Alamos in the summer of 1966. Since then, the
notion of reduced incidence algebra was independently discovered by D. A.
Smith and H. Scheid, who developed several interesting properties. The bulk of
the material presented here, with the obvious exception ofsome ofthe examples,
is believed to be new.

2. Notations and terminology

Very little knowledge is required to read this work. Most ofthe concepts basic
enough to be left undefined in the succeeding sections will be introduced here.
A partial ordering relation (denoted by < ) on a set P is one which is reflexive,

transitive, and antisymmetric (that is, a < b and b _ a imply a = b). A set P
together with a partial ordering relation is a partially ordered set, or simply an
ordered set. A segment [x, y], for x and y in P, is the set of all elements z which
satisfy x _ z . y. A partially ordered set is locally finite if every segment is
finite. We shall consider locally finite partially ordered sets only.
An ordered set P is said to have a 0 or a 1 if it has a unique minimal or maximal

element.
An order ideal in an ordered set P is a subset Z of P which has the property

that if x E Z and y < x, then y E Z.
The product P x Q of two ordered sets P and Q is the set of all ordered pairs

(p, q), where p E P and q E Q, endowed with the order (p, q) > (r, s) whenever
p _ r and q _ s. The product of any number of partially ordered sets is defined
similarly. The direct sum or disjoint union P + Q of two ordered sets P and Q
is the set theoretic disjoint union of P and Q, with the ordering x _ y if and



270 SIXTH BERKELEY SYMPOSIUM: DOUBILET, ROTA AND STANLEY

only if (i) x, y E P and x _ y in P or (ii) x, y E Q and x . y in Q. Note that if
p E P and q E Q, then p and q are incomparable.

In an ordered set P, an element p covers an element q when the segment [q, p]
has two elements. An atom is an element which covers a minimal element.
A chain is an ordered set in which every pair of elements is comparable. A

maximal chain in a segment [x, y] of an ordered set P is a sequence (xo, x1,
... , xn), where xo = x, xn = y, and xi+1 covers xi for all i. The chain
(xo, x1, * x") is said to have length n. An antichain is an ordered set in which
no two distinct elements are comparable.
The dual P* of an ordered set P is the ordered set obtained from P by inverting

the order.
A lattice is an ordered set where max and min of two elements (we call them

join and meet, and write them v and A) are defined. A complete lattice is a
lattice in which the join and meet of any subset exist. A sublattice L' of a lattice
L is a subset which is a lattice with the induced order relation and in which join
and meet of two elements correspond with the join and meet in L. For the
definitions of distributive, modular, and semimodular see Birkhoff.
A partition of a set S is a set of disjoint nonempty subsets of S whose union is

S. The subsets of S making up the partition are called the blocks of the partition.
The lattice of partitions H(S) of a set S is the set of partitions of S, ordered by
refinement: a partition t is less than a partition a (or is a refinement of a) if every
block of 2 is contained in a block of a. The 0 of HI(S) is the partition whose blocks
are the one element subsets of S, and the 1 of Hl(S) is the partition with one block.
There is a natural correspondence between equivalence relations on a set S and
partitions of S, since the equivalence classes of an equivalence relation form the
blocks of a partition, and hence, there is an induced lattice structure on the
family of equivalence relations of S.

At the beginning of Section 3, we define the incidence algebra I(P, K) of a
locally finite ordered set P, over a field K. We assume throughout that K has
characteristic 0, except for the last paragraph of Section 6 when it is explicitly
stated that another characteristic is being considered. We also assume that K
is a topological field, and if the topology ofK is not specified, we regard K as
having the discrete topology.
A certain familiarity is assumed with pp. 342-347 of Foundations I ([49]),

when the definitions of M6bius function and zeta function are given and some
elementary properties of the incidence algebra are derived.

3. Structure of the incidence algebra

3.1 Basic identifications. As mentioned in Section 2, we define the incidence
algebra I(P, K) of a locally finite ordered set P, over a field K, as follows. The
members of I (P, K) areK valued functions f(x, y) of two variables, with x and y
ranging over P and with the sole restriction that f (x, y) = 0 unless x < y. The
sum of two such functions, as well as multiplication by scalars, are defined as
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usual, and the product f*g = h is defined as follows,
(3.1) h(x, y) = E f(x, z)g(z, y).

zeP

In virtue of the assumption that the ordered set P is locally finite, the variable z
in the sum on the right ranges over the finite segment [x, y].

It is immediately verified that this product is associative. It is also easily verified
that the incidence algebra is commutative if and only if the order relation ofP is
trivial, that is, if and only if no two elements of P are comparable. Whenever
convenient, we shall omit mention of the field K and briefly write I(P), with the
tacit convention that K is to remain fixed throughout.
The identity element of I(P) will be denoted by 5, after the Kronecker delta.

In addition, we use the following notation for certain elements of I(P). Ifx E P,
let

(3.2) e1(u, v) = if u=v =x,
(3.2) e0,v) = O otherwise,

and for x _ y, let

(3.3) b6(u, v) = JI if u = x and v = y,
(O otherwise.

Clearly, the elements ex are idempotent, and the 6xc are analogous to the
matrix units of ring theory (see Jacobson [35]). Note that ex = bx,x
The following easily verified identities will be used in the sequel:

JO if u 7
(3.4) if g = x y*f, then g(u, v) = 0f(y v) if u =x,

(3.5) if g = f*6z2, then g(u, v) = if v w,
tf(u, z) ifv W

rO if u 7Ex or v ¢w(3.6) if g = x, *fJ*z, w, then g(u, v) = 0f(y z) if u = x and v = w

that is, bx y*f* = f(y, .x In particula , ex*f*ey = f(x, y)x' y and
bx, y * 6z, w = 5(Y, Z)6x,w

3.2 The standard topology. A topology on I(P) is defined as follows. A
generalized sequence {U } converges to f in I(P) if and only iff"(x, y) converges
tof (x, y) in the fieldK for every x and y. We call this the standard topology of I(P).

PROPOSITION 3.1. Let P be a locally finite ordered set. Then the incidence
algebra I(P), equipped with the standard topology, is a topological algebra.

PROOF. In the right side of the definition (3.1) of the product, only a finite
number of terms occur for fixed x and y; this implies at once that the product
(f, g) -. f*g is continuous in both variables. The verification of all other
properties is immediate. Q.E.D.
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In the sequel, we shall often have occasion to use infinite sums of the form

(3.7) f= E f(x,y).,y,
x, yeP

and we shall presently discuss the meaning that is to be attached to the right side.
Let (D be a directed set of finite subsets ofP x P, with the following properties:
(i) D is ordered by inclusion; (ii) for every pair x, y E P there exists a member
A E ' such that (x, y) E A. We call such a directed set standard.
PROPOSITION 3.2. Let 4D be a standard directed set. Then the set {fA :A E 4D)

defined as

(3.8) fA = Y f(x, Y) bx,,
(x, y)eA

converges in the standard topology of the incidence algebra I(P) to the element f.
PROOF. TakeA E ( so that (x, y) E A. Then for everyB E 0, B > A, we have

fB(x, y) - f(x, y) = 0. Q.E.D.
Speaking in classical language, the preceding proposition states that the "sum"

on the right side of (3.7) converges to the element f together with all its
"rearrangements". This justifies the use of the summation symbol on the right
side of (3.7), and we shall make use of it freely from now on.

3.3. Ideal structure. We shall now determine the lattice of (two sided, closed)
ideals of the incidence algebra I(P), endowed with the standard topology. For
P finite, all two sided ideals are closed, so Theorem 3.1 below determines the
lattice of all ideals.

Let J be a closed ideal in I(P), and let A(J) be the collection of all elements
bx,y belonging to J. We call A(J) the support of the ideal J. Then, any finite or
infinite linear combination of the bx,y in A(J) gives a member of J. Conversely,
iff E J, then, by 3.6 above,

(3.9) ex*f*ey = f(x, y)5x,Y;
hence, iff(x, y) * 0, it follows that bx y E A(J). This proves the following.
LEMMA 3.1. Every closed ideal J in the incidence algebra I (P) consists of all

functions f E I(P) such that f (x, y) = 0 whenever bx y 0 A(J).
Now, let Z(J) be the family of all segments [x, y] such that f(x, y) = 0 for all

f E J. Then we have
LEMMA 3.2. If [x, y] E Z(J) and x _ u < v < y, then [u, v] E Z(J).
The proof is immediate: Let f E J. By (3.6) again,

(3.10) bx, *f*6,y = f (u, v) 6x,y
Thus, if bx y 0 J, thenf(u, v) = 0, and [u, v] E Z(J).
We are now ready to state the main result.
THEOREM3.1. Inalocallyfinite ordered setP, letS(P) be thesetof all segments

of P, ordered by inclusion. Then there is a natural anti-isomorphism between the
lattice of closed ideals of the incidence algebra I(P) and the lattice of order ideals
of S(P).
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PROOF. Let J be an ideal of P, and let Z(J) be the family of segments defined
above. Lemma 3.1 shows that Z(J) uniquely determines J, and Lemma 3.2 shows
that Z(J) is an order ideal in S(P).

Conversely, let Z be an order ideal in S(P), and let J be the set of all f E I(P)
for which f(x, y) = 0, if [x, y] E Z. Then J is an ideal. Indeed, if g E I(P) is
arbitrarily chosen, iff e J, if [x, y] E Z, and if h = f*g, then

(3.11) h(x, y) = E f(x, z)g(z, y) = 0,
xz<y

since allf(x, z) = 0 for z between x and y. The case is similar for multiplication
on the left. Since we can take arbitrarily infinite sums as in (3.7), it follows that
J is closed, and the proof is complete.
COROLLARY 3.1. The lattice of closed ideals of an incidence algebra is

distributive.
COROLLARY 3.2. The closed maximal ideals of an incidence algebra I(P) are

those of theform

(3.12) Jx = {f (P)If(x, x) = O},

where x E P.
3.4. The radical. We recall the well-known and easily proved fact (see

Smith [55], or Foundations I) that an element f of the incidence algebra has an
inverse if and only if f(x, x) :6 0 for all x E P. From this it follows (Jacobson
[35], p. 8, and following) that an element f E I(P) is quasiregular if and only if
f(x, x) + 1 for all x E P. Hence, an element f has the property that g*f*h is
quasiregular for all g and h, if and only if f(x, x) = 0 for all x e P. From
Proposition 1 on page 9 of Jacobson, we make the following inference.

PROPOSITION 3.3. The radical R of the incidence algebra I(P) of a locally
finite ordered set P is the set of allf E I(P) such that f (x, x) = Ofor all x E P.

3.5. The incidence algebra as a functor. We now determine a class of maps
between locally finite ordered sets so that the association of the incidence
algebra to such sets can be extended, in a natural way, to a functor into the
category ofK algebras (where K is the fixed ground ring or field). A function a
from an ordered set P to an ordered set Q will be called a proper map if it satisfies
the following three conditions:

(a) a is one to one;
(b) a(p1) . o(P2) implies p1 _ P2;
(c) if q1 and q2 are in the image of a, and q1 _ q2, then the whole segment

[q1, q2] is in the image.
Note that in view of (a) and (b), condition (c) can be replaced by

(c) if (pl) _ U(p2) andq e [a(p1), (p2)], then there is a uniquep e [PI,P2]
such that a(p) = q.

It is clear that the identity function on any partially ordered set is a proper
map, and it is not hard to verify that the composition of proper maps is a proper
map. Thus, ordered sets together with proper maps form a category. Let d? be
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the subeategory of locally finite ordered sets together with proper maps. We then
have the following proposition.

PROPOSITION 3.4. (i) The mapping I from sl to the category of K algebras,
given by I (P) = incidence algebra of P (with values in K) and

(3.13) [I() (f)] (p1,'P2) = f(a (p ), a(P2)),
where a:P -+ Q andf EI(Q), is a contravariantfunctor.

(ii) If p: P -+ Q is afunction and I (p) (as defined above) is a homomorphismfrom
I(Q) to I (P), then p is a proper map.

PROOF. (i) Iff E I(Q) and P1,P2 E P, then [1(a) (f)] (P1, P2) ¢ 0 implies that
f(U(P1), C(P2)) # 0, which implies that a(p1) . U(P2) (sincef E I(Q)) and hence
(by condition (b)), that p1 _ P2, and so I(a)(f) E I(P). Thus, I(a) is a mapping
from I(Q) to I(P).

It is clearly a linear map. Furthermore, I(a) takes the identity of I(Q) to the
identity of I(P), since by condition (a)

(3.14) [I(a) (6Q)](PI,P2) = 6Q(C(Pl), C(P2)) = 6P(P1,P2).
Finally, l(a) preserves multiplication, since

(3.15) [I(a) (f*g)] (P1,P2) = f*g(7(PJ), a(P2))

= E f(u(p1),q)g(q,a(P2))
qet[(p,), "(p2)]

= E f(U(pl), Cp))g(9a(p), U(P2))
pe[pi, P21

= E [I(a) (f)] (P1, p) [I(c) (g)] (P, P2)
Pe[PI, P2] .

=([I(f) (f)]* I(f) (g)]) (P1MP2)-
(The third equality follows from (c').)

Thus, I(a) is an algebra homomorphism from I(Q) to I(P). To verify that I is
a functor, it remains to show that I(idp) = idi(p), where idp is the identity map
on P, and where idl(p) is the identity map on I(P), and that I(aozT) = I(T)oI( f)
when the composition is defined; but these are clear.

(ii) Now, let p :P Q be a function for which I(p) is a homomorphism from
I(Q) to I(P). Then

(3.16) 6Q(P(P1), P(P2)) = [I(P)( Q)](Pl,P2)
= 6p(P1,P2)

since I(p) is a homomorphism, so that p is one to one, that is, p satisfies (a).
That p satisfies (b) follows from the fact that if P(P1) _ P(P2), then

CQ(P(P1), P(P2)) = 1; that is, [I(P)(CQ)](P1,P2) = 1, and so Pl _ P2, since
I(p)(CQ)eI(P). Finally, let q1 = p(p1), q2 = P(P2), q1 _ q2, and qe[q1, q2]-
Then we have
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(3.17) E 6q,,,(ql,p(p)) 6bq,,2(p(p),q2)
P6(PI, P2]

= Z [I(P)('qi,q)](P1,P)*[I(P)(3q,q2)](P,P2)
pe[pI, P2]

= ([I(P)(6q1,q)]*[I(P)(5q,q9)])(P1P2)
= [I(P)(6q,,q*6q,q2)](P1,P2) = 6qj,q*6q,q2(qI,q2) = 1.

Thus, p(p) = q for some p E [PI P2], and so p satisfies (c). Q.E.D.
We conclude with a number of examples of proper maps.
EXAMPLE 3.1. Any one to one map from an ordered set to an antichain is

a proper map.
EXAMPLE 3.2. The proper maps from the integers (with the standard

ordering) to themselves are those of the form f(x) = x + k, where k is some
fixed integer.
EXAMPLE 3.3. IfP is any finite or locally finite countable ordered set, a proper

map ontoP from a chain ofintegers is obtained by labeling the elements ofP with
integers so that pi < pj only if i < j, and then taking the map a(i) = pi. A result
of Hinrichs [33] guarantees that such a labeling of P exists.

3.6. Isomorphic incidence algebras. In this subsection, we prove the result of
Stanley [58] that an ordered set P is uniquely determined by its incidence algebra
I(P).
THEOREM 3.2. Let P and Q be locally finite ordered sets. If l(P) and I(Q) are

isomorphic as K algebras (even as rings), then P and Q are isomorphic.
PROOF. We shall show how the ordered set P can be uniquely recovered from

the ring I(P). If R is the radical of I(P), then I(P)/R is isomorphic to a direct
product nHcpKx of copies of the ground field K = K., one for each element x of
P. The K. are intrinsically characterized as being the minimal components of
I (P)/R. Note that the element e. is an idempotent whose image in I (P)/R is the
identity element of K.. Moreover, the e. are orthogonal, that is, e.ey = eye,
if x * y.

Define an order relation P' on the e. as follows: e. < ey if and only if
e.I(P)ey * {O}. It is clear from equation (3.6) that e. _ ey if and only ifx _ y
in P. Thus, P' _ P.
The proof will be complete if we can show that given any set {f|Ix E P} of

orthogonal idempotents in I(P) such that the image of f, in I(P)/R is the
identity element of K., then the order relation defined on the fx in analogy to
the e. is isomorphic to P'.

It suffices to prove that there is an automorphism a of I(P) such that
a(ex) =fx for all x eP. We will explicitly exhibit an inner automorphism
a(g) = hgh1, for some fixed invertible h e I(P), with the desired property.
Define

(3.18) h = fxeX.
xeP

Clearly, h is a well-defined invertible element of I(P), since h(x, y) = fy(x, y).
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Now by orthogonality of the e. and the f, we have hex = f,e. and f.h = f,ex.
Hence, he.h-1 = f, for all x E P, and the proof is complete.

4. Reduced incidence algebras

4.1. Order compatible relations. In most problems of enumeration it is not
the full incidence algebra that is required, but only a much smaller subalgebra
of it; for example, the algebras of ordinary, exponential, Eulerian and Dirichlet
generating functions are obtained by taking subalgebras of suitable incidence
algebras (see Examples 4.1 through 4.12). These subalgebras are obtained by
taking suitable equivalence relations on segments of a locally finite ordered
set P, and then considering functions which take the same values on equivalent
segments. We are therefore led to the following.

DEFINITION 4.1. An equivalence relation - defined on the segments of a
locally finite ordered set P is said to be order compatible (or simply compatible)
when it satisfies the following condition: iff and g belong to the incidence algebra
I(P) and f(x, y) = f(u, v) as well as g(x, y) = g(u, v) for all pairs of segments
such that [x, y] [u, v], then (f*g)(x, y) = (f*g)(u, v).
EXAMPLE 4.1. Set [x, y] - [u, v] whenever the two segments are isomorphic;

then - is an order compatible equivalence relation.
There is in general no simple criterion, expressible in terms of the partial

ordering, to decide when an equivalence relation on segments is order com-
patible. A useful sufficient criterion is the following.

PROPOSITION 4.1 (D. A. Smith). An equivalence relation - on the segments
of an ordered set P is order compatible if whenever [x, y] - [u, v] there exists a
bijection cp, depending in general upon [x, y], of [x, y] onto [u, v] such that
[xi, Y1] [p(x,), p(yl)] for all x1, y1 such that x _ x1 _ y1 _ y.
The easy proof is left to the reader.
We shall be first concerned with the family of all order compatible equivalence

relations on P. Its elementary structure is given by the following.
PROPOSITION 4.2. The family of order compatible equivalence relations on a

locally finite ordered set P, ordered by refinement, is a complete lattice C(P), in
which joins coincide with joins in the lattice L(P) of all equivalence relations
(partitions) on the segments of P.

PROOF. In proving that joins in C(P) coincide with joins in L(P), it is con-
venient to use the language of partitions of the set of segments of P. Thus, let F
be a family ofpartitions each ofwhich defines a compatible equivalence relation.
Let ir be the join of F, defining an equivalence relation -. Suppose that
f(x, y) = g(u, v) for all pairs of segments such that [x, y] - [u, v]. Then
a fortiori for all ~in F, we shall have f(x, y) = g(u, v) for all pairs of segments
such that [x, y] [u, v]. It follows that (f*g) (x, y) = (f*g) (u, v) for all such
pairs of intervals. But, by definition of join of partitions, [x, y] - [u, v] if and
only if there is a sequence 1, _ 2, * * *, __n in F and segments [xi, Yi] such
that [x, y] - 1 [xi, Y1] * * * n-1 [Xn-1,Yn-1] n[u, v]. It follows thatf (x, y) =
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f(x1, Yi) = * , similarly for g. Recalling that 1 is order compatible, we have
(f*g)(x,y) = (f*g)(x1,yl), and so forth, giving finally (f*g)(x,y)=
(f*g)(u, v).
The ordered set C(P) has a 0, namely, the equivalence relation where no two

distinct segments are equivalent, and therefore arbitrary meets exist by a
simple result of lattice theory. Q.E.D.

Observe that meets in C(P) do not in general coincide with meets in L(P), so
that C(P) is not a sublattice of L(P). Unless P is finite, it follows that C(P) is
not locally finite, for it is easy to stretch an infinite chain between 0 and 1 in
C(P) by successively "identifying" pairs of segments [x, x] and [u, u].

It is tempting to presume that the maximal element I of C(P) is the equivalence
relation described in Example 4.1, where every pair of isomorphic segments is
equivalent. Surprisingly, this presumption is not generally true, even for finite
ordered sets, as the following example indicates.
EXAMPLE 4.2. Let P be the ordered set obtained by taking the lattices L1 and

L2 of subspaces of two nonisomorphic finite projective planes of the same order
and identifying the top ofL1 with the bottom ofL2. Define [x, y] - [u, v] when-
ever the two segments are isomorphic or whenever [x, y] ; L1, [u, v] ; L2.

4.2. The incidence coefficients. Let - be an order compatible equivalence
relation on P, which will remain fixed until further notice. Denote by Greek
letters a, P, * * * the nonempty equivalence classes of segments ofP relative to ,
and call them types (relative to '-) for short.

Consider the set of all functions f defined on the set of types, with addition
defined as usual, and multiplication f * g = h defined as follows:

(4.1) h(cf g=

The sum ranges over all ordered pairs ,B, y of types. The brackets on the right
are called the incidence coefficients, and are defined as follows:

(4.2) [;]

stands for the number of distinct elements z in a segment [x, y] of type a, such
that [x, z] is of type fi and [z, y] is of type y.
To see that the incidence coefficients are well defined, define h" E I(P) by

(4.3) h.h(x, y) =
I if [x, y] is of type c,
0 otherwise.

If [u, v] is of type a, then clearly

(4.4) (hp*h7)(u, v) = p y

Since - is order compatible, the left side of (4.4) is independent of whichever
interval [u, v] of type a is chosen, so that the incidence coefficients are well
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defined. The incidence coefficients are a generalization of the classical binomial
coefficients, as the examples below will show. The corresponding generalization
of the algebra of generating functions is given next.

PROPOSITION 4.3. Let P be a locally finite ordered set, together with a com-
patible equivalence relation - on the segments of P. Then the set of all functions
defined on typesforms an associative algebra with identity, with theproduct defined
by (4.1), called the reduced incidence algebra R(P, -.) modulo the equivalence
relation -. The algebra R(P, ~-) is isomorphic to a subalgebra of the incidence
algebra of P.
To complete the proof (much of which has already been given above), all that

needs to be shown is that R(P, - ) is isomorphic to a subalgebra of I(P) which
contains 6. This will imply that the algebra R(P, '-) is associative.
For fE R(P, - ), define fe I(P) as follows: f(x, y) = f (a) if the segment

[x, y] is of type a. The only properties to be checked are that the mapping is an
isomorphism and that 6 = f for some f E R(P, - ). Since each type is by defini-
tion nonempty it follows that f -+ f is well defined; it is obviously one to one.
Furthermore, from the definition of the incidence coefficients, we find
immediately that the product is

(4.5) h(x, y) = f f(x, z)g(z, y),
xSzSy

and thus coincides with the definition (4.1) of the product in R (P, -.). The fact
that 6 = f for some f E R(P, - ) follows from part (i) of the following lemma.
LEMMA 4.1. Let be an order compatible equivalence relation on the segments

of P, and let [x, y] - [u, v]. Then
(i) v([x, y]) = v([u, v]), where v([x, y]) = number of z in [x, y];
(ii) for every n, [x, y] and [u, v] have the same number of maximal chains of

length n.
PROOF. Part (i) follows from the fact that v([x, y]) = 42(x, y) and that C is

constant on equivalence classes of -.

From (i), it follows that the function h defined by

(4.6) h(x, y) = I if v([x, y]) = 2, that is, y covers x,
O otherwise,

is constant on equivalence classes of -; hence, so is h" for every n, which proves
(ii).
COROLLARY 4.1. Iffor all types a, Pi, y we have [pAy] = [h] then the reduced

incidence algebra R(P, ' ) is commutative.
This follows immediately from definition (4.1) of the product.
Now let - and - be two order compatible equivalence relations on the

segments ofP. Suppose that [x, y] - [u, v] implies [x, y] = [u, v]. Then, much
as in the preceding proposition, R(P, =) is isomorphic to a subalgebra of
R (P, - ); the isomorphism is obtained as follows: Let a be a type relative to the
equivalence relation =. For fE R(P, ), set fE R(P, -') to be f(o) = f (a),
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where aL is any type in R(P, ' ) such that the segments of type ax are of type a in
R(P, =).

Furthermore, R (P, -.) strictly contains a natural isomorphic image ofR (P, )
unless - equals -, as is immediately seen by considering functions equal to one
on a given type, and zero elsewhere. Thus, the lattice C(P) is anti-isomorphic to
the lattice of reduced incidence algebras, ordered by containment.

If - is as in Example 4. 1, then we call R (P, - ) the (standard) reduced incidence
algebra R(P); if - is the maximal element of the lattice C(P), we call R(P) =
R(P, .-) the maximally reduced incidence algebra.

PROPOSITION 4.4. If - is a finer order compatible equivalence relation than
, andforf E R(P, ~ ) the imagef (as above) in R(P, -) is invertible in R(P, -'),

then f is invertible in R (P, j).
PROOF. Identify both algebras with subalgebras of I(P), as in the proof of

Proposition 4.3, so that f = f We must show that f-1 is constant on -

equivalent segments. Since f is invertible, it takes nonzero values on one point
segments. Let d E I(P) be the function which equalsf on one point segments and
is zero elsewhere. Then d is constant on - equivalence classes (by Lemma 4.1 (i)),
and d-1 is also, since d-1 is the inverse of d on one point segments and zero
elsewhere. Let g = f - d. Then g E R(P, - ) and

(4.7) f' = (d + g)-1 = (1 + (d-1*g))-*d-1
= (1 - (d-1*g) + (d-1*g)2 - (d-1*g)3 + )*d-1

which is well defined, since d-1 *g is zero on one point segments; and hence,
f-1' R(P,~).

It follows that the zeta function and the Mdbius function belong to all reduced
incidence algebras.
We conclude with a simple characterization of reduced incidence algebras.

In the finite case, it is purely algebraic, but in the infinite case, topological con-
siderations come in. Recall that the Schur product of two elements f, g of I(P)
is the element h defined by

(4.8) h(x, y) = f(x, y) -g(x, y)
for all x, y in P.
THEOREM 4.1. Let P be a locally finite ordered set, and A a subalgebra of I(P)

having the same identity as I (P). If P is finite, then A is a reduced incidence algebra
of P if and only if.A contains C and is closed under Schur multiplication. If P is
infinite, then A is a reduced incidence algebra if and only if A contains C,, is closed
under Schur multiplication, and is closed in the standard topology.

PROOF. The necessity of the conditions is evident, with the possible exception
that A must be topologically closed. But iff E I(P) is in the topological closure
ofA then it must clearly be constant on equivalence classes and so f E A.
Now, assume P finite, and let A be a subalgebra of I(P) containing 4 and

closed under Schur multiplication. Let - be the equivalence relation on segments
ofP defined by [x, y] - [u, v] if and only iff (x, y) = f (u, v) for all f E A. Once
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we have shown that the set of all functions constant on the equivalence classes of
is precisely A, then it will follow that - is order compatible (since A is closed

under convolution) and that A is R(P, -). Let fll, * **, P. be the equivalence
classes of -'. For each i ¢ j, let hi j be an element of A such that hi, j(f,i)
hi, j(pj), and'Iet

(4.9) h- j
-

-ci, j
bi,j -cij

where bi,j = hi,j(pi), ci,j = hi,j(pj). Then bi = Ij hi,j (Schur multiplication)
is in A, and bi is the indicator function of Pi . Now any function which is constant
on equivalence classes is a linear combination of the functions bi, and hence is
in A, proving our result.
A slight modification proves the infinite case, since bi is the limit offinite Schur

products of hij for j #k i, and every function constant on equivalence classes is
a limit of finite linear combinations of indicator functions. Q.E.D.
The assumption that A be topologically closed in the infinite case is necessary,

as the following examples demonstrate.
EXAMPLE 4.3. Let P be an infinite locally finite ordered set in which there is a

finite upper bound on the size of segments of P. Then the subset A of I(P) con-
sisting of all functions which take only finitely many values is a subalgebra closed
under Schur multiplication and containing 4, but is clearly not a reduced
incidence algebra, since the equivalence relation it generates is the trivial one,
while A is not all of I(P).
EXAMPLE 4.4. Let P contain chains of arbitrarily large (finite) length, and let

A be the closure under the operations ofscalar multiplication, addition, convolu-
tion, and Schur multiplication of {1, C} in I(P). Then A is a subalgebra closed
under Schur multiplication and containing C, but is not a reduced incidence
algebra, since by Lemma 4.1 (ii), any reduced incidence algebra ofP must have
uncountable vector space dimension over the ground field, whileA has countable
dimension.
We now consider various examples of reduced incidence algebras and their

connection with classical combinatorial theory.
EXAMPLE 4.5. Formal power series. Let P be the set of nonnegative integers

in their natural ordering. The incidence algebra of P is evidently the algebra of
upper triangular infinite matrices. On the other hand, we shall now see that the
standard reduced incidence algebra R (P) is isomorphic to the algebra of formal
power series.

Indeed, an element of R (P) is uniquely determined by a sequence {a,: n =
0, 1, 2, - * } of real numbers, by setting f(i, j) = aj- , for i _ j. The product of
such an element by another element g (i, j) = bj of the same form is an element
h of I(P) obtained by the convolution rule

(4.10) h(i, j) = Y f(i, k)g(k, j) = E ak-ibj-k
iSk<j i_k_j
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Settingr = k - iandj - i = n,weobtainh(i,j) =
=0ba,b_ = c.In other

words, h is the element of the reduced incidence algebra which is obtained by
convoluting the sequences {a"} and {bn }. It follows that the map ofpower series
into R(P) defined by

(4.11) F(x) = E anx" f(i,j) = aj-j, j _ i
n=O

is an isomorphism. Under this isomorphism, the zeta function corresponds to
1/(1 - x), and the M6bius function corresponds to the formal power series
1 - x. The incidence coefficients equal either 0 or 1.
EXAMPLE 4.6. Exponential power series. Let B(S) be the family of all finite

subsets of a countable set S, ordered by inclusion. We shall prove that the
reduced incidence algebra of B(S) is isomorphic to the algebra of exponential
formal power series under formal multiplication, that is, a series ofthe form

(4.12) F(x) = !x, G(x) = E xn H(x = Y- Xn.
=0 nX, - n0n

It is immediately verified that the product FG = H of two such formal power
series amounts to taking the binomial convolution of their coefficients,

(4.13) Cn= () akbn-k-

We obtain an isomorphism between the algebra of exponential formal power
series and the reduced incidence algebra of B(S) by setting

(4.14) F(x) = , n-!x ff(A,B) = av(B-A), A c B,

where A and B are finite subsets of S and v (B - A) denotes as usual the number
of elements of the set B - A. The zeta function corresponds to ex, and the
M6bius function to e-X. The M6bius inversion formula reduces to the principle
of inclusion-exclusion, that is, to multiplication by e-X.
The incidence coefficients coincide with the binomial coefficients, and the

types naturally coincide with the integers.
EXAMPLE 4.7. Let G be the additive group of rational numbers modulo 1,

and let L(G) be the lattice of subgroups excluding G itself. It is well known that
every proper subgroup of G is finite cyclic. Let [X, Y] - [U, V] in L(G) when
the quotient group Y/X is isomorphic to V/U. The types correspond naturally
to the positive integers; the incidence coefficients equal zero or one, and the
product in R(L(G), -) is given by the Dirichlet convolution cn = ij=nabj.
Thus, R(L(G), - ) is isomorphic to the algebra offormal Dirichlet series

(4.15) y = f(s)
n21 n

under ordinary multiplication.
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EXAMPLE 4.8. Let P be the set ofpositive integers, ordered by divisibility, and
let - be the equivalence relation defined by [a, b] - [m, n] if and only if b/a =
n/m. Then, as in the previous example, R(P, - ) is easily seen to be isomorphic
to the algebra of formal Dirichlet series. The standard reduced incidence algebra
is isomorphic to a subalgebra of the algebra of formal Dirichlet series, namely
tothoseseries ,,I afl/n inwhichlak = a,,ifk = Ppa2 * andn = Pb,P2.*
where Pi, P2, * are the primes, the ai and bi are nonnegative integers, and the
bi are obtained by permuting the a,.
EXAMPLE 4.9. Let V be a vector space of countable dimension over GF(q),

and let L(V) be the lattice of finite dimensional subspaces. Let - be the
equivalence relation defined by [S, T] - [X, Y] if and only if T/S ; Y/X, that
is, dim T - dim S = dim Y - dim X. Then the types are in one to one corres-
pondence with the integers, and multiplication in R(L( V), -) is given by

(4.16) (f*g)(n) = E (qf 1)(q- q) (qf fqr_l) g(n-r)
r0 (q-r 1) (qr q) . .. (qr~ qqr-1

n(1- q')(1 - qn-) * . . (1 _ qn-r+l)

r=O (1 -rq)(l -ql) -rgn-(1 q)r)
Hence, R(L(V), '-) is isomorphic to the algebra of Eulerian power series, the
isomorphism being given by

(4.17) n.O (1- q)(I q2)* (1- qn) X.
We now present three examples in which we arrive very simply at previously

known results by using the reduced incidence algebra. Let P be a locally finite
ordered set, and let c E I(P) be the function which assigns to a segment [x, y]
the total number of chains, x = xo < x1 < ... < x. = y. Since (4 _ 6)k (X, y)
is the number of chains, x = xo < xi < ... < Xk = y, of length k, we have

(4.18) c(x, y) = ( - )k(x, y)

= [3- ( - (XI y)
= (26 - (x, y).

EXAMPLE 4.10. Let P be as in Example 4.5. Then c(x, y) is the number c, of
ordered partitions (or compositions) of n = y -x, the chain x = io < il <
... < ik = y corresponding to the composition

(4.19) Y - x= (il -io) + (i2 -il) + ***+ (ik - ik-l)
Hence,

00 ~ 1X .
n

(4.20) Y c = - = = 1 + Y 2
so =2n=-2 if I>O(awellk n=1

so c,, 2"- if n > 0 (a well-known result).



GENERATING FUNCTION 283

EXAMPLE 4.11. Let P be as in Example 4.6. Then c(x, y) is the numberfn of
ordered set partitions (or preferential arrangements) of the set y - x, where n is
the number of elements in y - x. (See Gross [29].) Hence,

(4.21) E fn X e

a basic result of Gross.
EXAMPLE 4.12. Let P be the positive integers ordered by divisibility, with

[u, v] - [x, y] if v/u = y/x. Then c(x, y) is the numberf (n) of orderedfactoriza-
tions of y/x = n (into factors > 1). Hence,

00 1
(4.22) E f(n)n -

a result of Titchmarsh ([59], p. 7).
More' generally, the theory of weighted compositions, as developed by Moser

and Whitney [39] and by Hoggart and Lind [34], can be expressed in terms of
the reduced incidence algebra of a chain. Thus, this theory can be extended to
other ordered sets in the same way that Examples 4.11 and 4.12 extend the usual
concept of composition given in Example 4.10.

5. The large incidence algebras

5.1. Definitions. Several enumeration problems lead not to a single ordered
set, but to a family of ordered sets having some common features; for example,
the family of lattices of partitions of finite sets or the family of all lattices of
subgroups of finite abelian groups. It then becomes necessary to extend the
notions of incidence algebra and reduced incidence algebra to these situations.
Recall that we assume the ground field K to have characteristic 0. This avoids
complications inherent in dividing by positive integers, such as n! in exponential
generating functions. We are now led to the following setup.
Two ordered sets (P, '-) and (Q, - ) each with an order compatible equiva-

lence relation (denoted by the same symbol for convenience) are said to be
isomorphic when there is an isomorphism 4 of P to Q which preserves the
equivalence relation, that is [x, y] [u, v] in P if and only if [0(x), +(y)]
[4(u), 4 (v)] in Q. IfS is a segment of P, then the equivalence relation - induces
a compatible equivalence relation on S. (Note that this conclusion does not
hold in general if S is only assumed to be an ordered subset of P.)
Now let C be a category whose objects are pairs (P, ~-) as above, where P is

a finite ordered set with 0 and 1, and where morphisms 4 of (P, ' ) into (Q, -)
are isomorphisms of (P, - ) onto a segment of (Q, .-) with the induced
equivalence relation (not all such maps need be included in the category as
morphisms). It is further assumed that every segment of an object (P, '-) is in C,
with the induced equivalence relation. Finally, it is assumed that if 0 and i are
two morphisms of (P, -') into (Q, -) having the segments [x, y] and [u, v] as
images, then [x, y] [u, v] in Q.
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Under these conditions, we can define the large incidence algebra I(C) of C as
follows: the elements of I(C) are functions f on the isomorphism classes (in the
category C) or "types" of the objects of C such that f(a) = f(,B), if some object
(P, -.) contains - -equivalent segments of types a and ,B (with values, as usual,
in a fixed field). The sum of two such functions is defined as usual, and the
product is defined by

(5.1) (f*g)(c) =g

where the brackets are taken in any object P belonging to the isomorphism
class cx. Our assumptions imply that the product is well defined; that is, the
product remains the same if it is computed in any object of type ax, and also that
f*g is in I(C). Thus, we obtain an algebra which is associative by Proposition 4.3.
The functions C and 6 of the ordinary incidence algebra have obvious counter-
parts in the large incidence algebra, and the result that a function is invertible
if and only if it is nonzero on all types containing one point segments (see
Foundations I) also carries over. Hence, the M6bius function can be defined as
the inverse to the zeta function; and clearly, for each object ([0, 1], -) of
the category, the value of the M6bius function on the type containing [0, 1]
equals y(O, 1).
Most of the classes of incidence algebras (such as binomial type and

Dirichlet type) can be trivially extended to large incidence algebras. Also note
that we need make no distinction between reduced and nonreduced large
incidence algebras, for the degree of reduction is built into the category itself,
depending on the equivalence relations in the objects and on the morphisms.
EXAMPLE 5.1. Let L be a locally finite ordered set. Construct a category C

as follows. The objects are all segments of L and the morphisms are the
inclusion maps. The equivalence relation is the trivial one (no two distinct
segments are isomorphic in C). Note that two isomorphic segments are not in
general isomorphic in C. The large incidence algebra I(C) is isomorphic to the
incidence algebra of L.
EXAMPLE 5.2. Let L be as above; let the objects of C be again all segments

of L, but let the morphisms be all isomorphisms; and let - be isomorphism.
Then I(C) is isomorphic to the standard reduced incidence algebra of L.
EXAMPLE 5.3. Let the objects of C all be finite Boolean algebras; let - be

isomorphism of segments; and let morphisms all be isomorphisms. Then I(C)
is isomorphic to the algebra of exponential power series of Example 5.6.

In the next three subsections, we consider situations which are better looked
at from the point of view of the large incidence algebra than from that of the
regular incidence algebra.

5.2. Partition lattices. The incidence algebra of the family of all partition
lattices of finite sets can be studied by taking the lattice n(S) of all partitions of
an infinite set S having exactly one infinite block and finitely many finite blocks,
ordered by refinement. However, it is more pleasingly done in the context of the
large incidence algebra, as follows.
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Let the objects of a category Hl be all lattices of partitions of finite sets and
all segments thereof, and let the equivalence relation be an isomorphism of
segments whose top elements have the same number of blocks. Let the
morphisms of H all be isomorphisms onto a segment such that the top element
of a segment has the same number of blocks as the top element of the image
segment. It is immediate that H satisfies the required conditions.

The class of a segment [a, 7t] is a sequence of nonnegative numbers
(k1, , k., ), where ki is the number of blocks in it which are the union of
precisely i blocks in a. It is clear that k1 + 2k2 + 3k3 + - equals the number
of blocks in a and k1 + k2 + k3 + -.. equals the number of blocks in it, and
that a segment of class (k1, k2, * is isomorphic to nH', x ri22 x , where
ni is the lattice of partitions of an i set, so it follows that two segments have the
same class if and only if they are of the same type in H. We denote by
(k.."..,kn) the number of elements T in a segment [a, 7t] of type (60,n 31,,-*)
(that is, [a, 7t] is isomorphic to Hln and a has n blocks) for which [a, T] has type
(k1, k2, * * , kn- O. O, (and hence, [T, t] has type * where
m = k, + * + kn). To compute (k1, .,n. k, first note that any object [a, 7t]
of type k, = = k_1 = 0, kn = 1 is an upper segment of some finite
partition lattice; that is, X = 1 in some finite lattice of partitions. Thus, it is
easy to see that

(5.2) (k. . ,kn) = l!kl kl! 2!k2 k2! ...n!k- kn!

when k1 + 2k2 + * + nkn = n, and equalsO when k, + 2k2 + + nk,, = n.
For a partition it of some finite set S, we define the class of it to be the class

of the segment [0, i] of rI(S), as defined above.
The fundamental concept associated with the large incidence algebra I(H) is

that of multiplicative function. A function f in I((H) is said to be multiplicative
when there is a sequence of constants (a1, a2, a3, ) such that

(5.3) ff(7t, a) = ak ak2 ak3 . . .

when [7r, a] is a segment of class (k1, k2, k3, *. The function f is said to be
determined by the sequence (al, a2, * ). Similarly, a function of one variable
F(a) for a E LI(S) for some finite set S is said to be multiplicative when

(5.4) FP(a) = all ak2 ***

where (k1, k2, ) is the class of a.
The following elementary result is fundamental.
PROPOSITION 5.1. The convolution of two multiplicative functions is multi-

plicative.
PROOF. This follows from the fact that if [a, it] is of type (k1, k2, ),

then [a, 7r] is isomorphic to fk, X nk2x , and that iffE I(P) and g E I(Q)
(where, P and Q are any locally finite ordered sets) and if f x g E I(P x Q)
is defined byf x g((x,x'), (y,y')) =f(x,y) g(x',y'),then(f x g)*(f' x g') =
(f*f') x (g*g').
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COROLLARY 5.1. If F(7r) is multiplicative and f(ir, a) is multiplicative, then so
are

(5.5) G(a) = E F(7r)f (7t, a)
and

(5.6) H(a) = E f(a, 7r)FP(i),
1c er

where the sum is taken in the partition lattice containing a.
EXAMPLE 5.4. The zeta function of I(n) is multiplicative and is determined

by the sequence (1, 1, 1, * * - ). By Proposition 3 of Section 7 of Foundations I,
the M6bius function of I(HI) is multiplicative, and determined by the sequence
(a1, a2, - - ), where an = (- 1 )(n -1)! The delta function 6 is multiplicative,
determined by (1, 0, 0, *, but ,1 = - 6 is not multiplicative. Hence, the sum
of multiplicative functions need not be multiplicative.

Let M(H) denote the subset of 1(II) consisting of multiplicative functions.
By Proposition 5.1, M(n) is a subsemigroup of the multiplicative semigroup of
I(Hn). Iff is in M(n), letf(n) denotef(Hl"); that isf (rc, a), where [i, a] has class
k, = ... = k"-1 = 0, kn = 1. Then, for f, g E M(II), we get from (5.2) that
(f* g) (n) is equal to

(5.7) n! f(l)kl -.f(n)kng(ki + *-- + kn).
kl+2k2+'" +nkn=n l!2 k2! .2 . nk

THEOREM 5.1. The semigroup M(n) is anti-isomorphic to the algebra of all
formal exponential power series with zero contant term over K in a variable x,
under the operation of composition. The anti-isomorphism is given byf -. Ff, where

(5.8) Ff (x) = s _f(n)Xn.
n=1 n

Thus, Ff.9 (x) = Fg(Ff (x)).
PROOF. Clearly, the map defined by (5.8) is a bijection, so we need only check

that multiplication is preserved. Now,

(5.9) Fg(Ff(x)) = E j! ( i! x).
j=1 \i=1 /

The coefficient of xn in the expansion of (-- 1 (f(i)/i!)xi) is

f(nl) ... f (nj) j! f(1)kl .. .f(n)kn
(5.10) nl"+.."= =1 !- * I1!***k! 1!k. * !k-

where the summation is taken over k1 + 2k2 + *-- + nkn = n, k1 + *-- +
kn = j, since there arej !/k1! ... kn! ways of ordering the partition k1 + 2k2 +
. . . + nkn = n. When we multiply (5.10) by g(j)/j! and sum over allj, we get
(5.7), and the proof follows.
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EXAMPLE 5.5. Under the isomorphism of the proposition, the zeta function
corresponds to ex - 1, and the delta function to x, so the M6bius function
corresponds to thepower seriesF such thatF(ex- 1) = x, that is, to log (1 + x).
Hence, y(0, 1) = (-1)n'-1 (n - 1)! for [0, 1] = r,,. This is yet another way of
determining the M6bius functions for lattices of partitions.
COROLLARY 5.2. Letf be a multiplicativefunction of one variable determined

by the sequence (a,, a2, ). For every positive integer n, let

(5.11) bnb = E f(it), q= E f(tX) (7c, 1).
'ienn neHn

Then

(5.12) 1 + expax + 22 + a3 +
n= n,=xpax 2! +3!

and
00 q /2X2 3X

5.13) E 'inxX = log + alx +2X + a3x+
n=1n!+ x+ 2! 3! /

PROOF. For (5.12), letf be the function in M(II) determined by (al, a2,
and let b =f*4. Then bn = b(n) for all n > 1, so

X b xn
(5.14) 1 + E _ = I + Fb(X)

n1=1 n!
= 1 + FP1,(x) = 1 + F (F1(x))

exp {ax + a2x +

For (5.13) let q = r* , and the proof follows as for (5.12).
We now work out various examples using the above results.
EXAMPLE 5.6 (Waring's formula). Let D and R be finite sets, and label the

elements of R by different letters of the alphabet: x, y, * , z. To every function
f: D -+ R, we associate a monomial y(f) = xi yi ... zk, where i is the number of
elements of D mapped to the element of R labelled x, and so forth; and to every
set E of functions from D to R, we associate a polynomial y(E), the sum of y(f)
for f ranging over E; y(E) is called the generating function of the set E.
For every partition 7r of the set D, let A (Xt) be the generating function of the

set of all functions f: D -+ R whose kernel (that is, the partition of D whose
blocks are the inverse images of elements of R) is it. Let S(it) be the generating
function of the set of functions whose kernel is some partition a > it. Clearly,
we have S(it) = e A (a), from which, by M6bius inversion, we have A (i) =
e S(n)L(i, a); and setting t = 0, we have

(5.15) A(0) = E S(a)hu(0, a).
aen(D)

Now assume that D has n elements and that R is larger than D. The poly-
nomial A (0) is the generating function of the set of all one to one functions;
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and hence, every term ofA (0) is a product of n distinct variables taken among
x, y, * * *, z. Furthermore, every product ofn distinct variables among x, y, * * *, z
appears n! times as a term in A (0). Thus, A (0) is simply n! * a", where an is the
elementary symmetric function of degree n in the variables x, y, * * *, z.

Next, if the partition ar has class (kl, k2, - * *, k.), we claim that

(5.16) S(a) = (x + y + . +z)k(x2 + y2 + .+z2)k2
... (xn + yn + ... + zn)kn,

that is, using the standard notation 8k = Xk + yk + ... + zk,
(5.17) S(a) = 8k' 8k2 ...*kn
To see this, let S(a) be the set of all functions with kernel i > a, and let
B1, * - *, Bk be the blocks of the partition a. Then S(a) is the product
U1 x ... x Uk of the sets Ui, where Ui is the set of all functions from Bi to R
taking only one value. It follows that S(a) = y(g(a)) = y(U1)y(U2) ... y(Uk).
The generating function y(Ui) is simply xk + yk + * + zk ifBi has k elements,
and this completes the verification.
We thus see that (5.15) reduces to the classical formula of Waring, expressing

the elementary symmetric functions in terms of sums of powers.
EXAMPLE 5.7. Let V be a finite set of n elements ("vertices"). We count the

number Cn of connected graphs whose vertex set is V. To every graph G, we
can associate a partition 7r(G) of the set V, the blocks of i(G) being connected
components of G. A graph is connected if and only if 7t(G) = 1, the partition
with only one block. For every partition Xtof V, let C(7r) be the number ofgraphs
G with 7r(G) = i, and let D(7z) be the number of graphs G with 7r(G) < i. Let
a. be the total number ofgraphs whose vertex set is V; a simple enumeration gives

(n)
(5.18) an = 2(2.

If B1, B2, * , Bk are the blocks of Xt and D(Bi) is the total number of graphs
on the block Bi, then clearly D(7t) = D(B1)D(B2) . . . D(Bn). Hence, if the class
of the partition Xt is (kl, k2, *-* , kn), we have

(5.19) D(7c) = akl ak2 .. an = t(k,Q) + k2() + k3(2 + + kn

where t(x) = 2x and (2) = 0 by convention. Furthermore, D(7r) = X6S C(a)
as follows immediately from the definitions. By the M6bius inversion followed
by setting Xt = 1, we obtain the identity

(5.20) Cn= 1)1= E D(a),q(a, 1)

kl+2k2+ +nkn=n (2) 2(2) nk(2))
( l)kl+k2+..+kn-l (k, + k2 + * * + kn - 1)!
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which is an explicit expression for the number of connected graphs. Further,
applying (5.13) to (5.20), we get

(5.21) E ! X" = log(+Iax +a2l 2 + a3 +*

From this, one can find the values of various probabilistic quantities related to
connected graphs, such as the expected number of connected components,
expected size of the largest component, asymptotic results, and so forth.
EXAMPLE 5.8. We now determine the number a(n, k) of solutions of the

equation pk = I, where p is an element of the group G,, of all permutations of a
set S,, of n elements, and I is the identity element of G.. To every p ECG,, we
can associate the partition 7r of S,, whose blocks are the transitivity classes
relative to the subgroup generated byp. Let F(7r) be the number of permutations
p whose associated partition is Xr and such that pk = I. Clearly, the function F
is multiplicative, and so the function G, defined by G(a) = fl(i), is also
multiplicative. Further,

(5.22) G(a) = a(1, k)kl a(2, k)k2 ...

if (kl, k2, * is the class of a. Thus, if (b1, b2, * is the sequence which deter-
mines F, then by (5.12), we obtain

(5.23) 1 + y (n'!) xn = exp {E !xn}.

Now, it is easily seen that b,, = (n - 1)! if n divides k, and bn = 0 otherwise, so
we obtain the formula (due to Chowla, Herstein, and Scott [10])

(5.24) E (n'!) x =exp (-),

where we take a(0, k) = 1.
EXAMPLE 5.9 (The number of partitions of a set). The numberBn ofpartitions

of a set of n elements is given by Bn = 1nenn 4 (7r). Hence, from Corollary (5.12),
we get

(5.25) E ! xn = exp {eX- 1} - 1,

which is the classical generating function for Bn.
EXAMPLE 5.10. A set S of n elements splits at time t, into a partition Xt with

blocks B1, B2, * - - . At a later time t2 > t1 each block Bi splits into a partition
ti with blocks Bi 1, Bi, 2, - , and so on for N steps. Letting E(x) = ex - 1, an
argument much like that of the preceding example shows that the exponential
generating function for the number of distinct "splittings" isE[E(... E(x) ...

where the iteration is repeated N + 1 times.
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5.3. Dowling lattices. Let F be the field of q elements (q will remain fixed
throughout this subsection), and let V be a vector space over F of dimension n,
with basis b1, , bn. The Dowling lattice Q( V) is the lattice of subspaces W of
V such that W has a basis whose elements are of the form bi or abi + a'bk. where
a, a' E F. Since the lattice Q( V) depends up to isomorphism on the dimension
of V, it will generally be denoted by Q,.

Before attempting to study the combinatorial properties of Q, we will
define a new lattice Dn, which is isomorphic to Q,n in which various counting
arguments become simpler. First we will state a number of definitions. The
concept of directed graph is assumed (see Liu [38]), and we will allow loops
and multiple edges between vertices. If S is any set, an S labelled directed graph
is a directed graph G = (V, E) together with a mapping from E to S in which
no two edges from v to v' have the same image, for any v, v' E V. The image of
an edge e is called its label, and v -4 v' denotes the fact that there is an edge
labelled a from v to v'. If G and G' are S labelled graphs. G is a subgraph of G',
if both graphs have the same vertex set and if v 4 v' in G implies v 2+ v' in G'.
A totally complete S labelled directed graph G is one in which v -4 v' for any
pair of vertices v and v' and any a e S. If S consists of the nonzero ele-
ments of a field. then an S labelled directed graph G is inverse symmetric if
v 4 v' implies v' -a - v, and is antitransitive if v -4 v' and v' -+ v" implies
v --::b v". Finally, a D graph is an S labelled directed graph G, where S is the
set ofnonzero elements of a field in which there is at most one distinguished com-
ponent which is totally complete, and every other component is simple (that is,
at most one edge in each direction between two vertices), inverse symmetric, and
antitransitive.
Now, let S = F* (the nonzero elements of F), and let B be a set of n elements

("vertices"). The lattice D(B), or Dn, is the lattice of D graphs with vertex set
B (and label set S), with G . G' if and only if G is a subgraph of G' and the
distinguished component of G is contained in that of G'. The correspondence
with the Dowling lattice Q, is as follows. Given a Dowling lattice Q(V) and a
basis B = {b, , bn}. to each subspace W of V in Q( V) associate the graph
whose vertex set is B and in which bi 4 bi if and only if bi + abi is in W, and in
which the distinguished component is the one whose vertices are those bi which
are in W. The connected components are easily seen to be inverse symmetric and
antitransitive, the distinguished component is clearly totally complete, and all
other components are simple (for if bi 4 bj and bi 9 bj with a# a', then
bi + abje W. bi + a'bje V: hence (a -a')bjeW- and so bjeW and bi W,
and thus bi and bj are in the distinguished component). This correspondence is
easily seen to be a lattice isomorphism. and so D,, and Q, are isomorphic.
EXAMPLE 5.11. It follows easily from what we have done that Qn, F,n .+1

if q = 2. The following correspondence gives an isomorphism from D, to n, + 1
Let the vertex set for Dn be {1, 2, *, n}. To each element G of Dn, we associate
the partition of {1, 2, . , n, n + 1} whose blocks are the nondistinguished
components of G as well as the distinguished component with n + 1 added.
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Now, let G E D". Then [0, G] is isomorphic to the product of the lattices
of subgraphs of the components of G (where 0 is the trivial graph with no edges
and no distinguished component), and the lattice of subgraphs of a nondistin-
guished (and hence simple) component of G with k vertices is trivially isomorphic
to rIk. Hence, [0, G] is isomorphic to Dr x III, x ... x n7I", where r is the
size of the distinguished component of G (possibly 0) and ki is the number of
undistinguished components of G of size i. (Note that r + liki = n and Zki
equals the number of undistinguished blocks in G.) Let G' be above G in D.,
and let C0 and C2 be distinct undistinguished components of G which are in the
same undistinguished component of G'. Then all edges between vertices of CQ
and vertices of C2 can be determined from any one such edge, using the properties
of inverse symmetry and antitransitivity. Intuitively, the undistinguished com-
ponents of G "act like points" in [G, 1], while the distinguished component of
G simply "joins with these points as they become distinguished." Using these
ideas, it is not difficult to see (or to prove) that [G, 1] is isomorphic to Qm, where
m is the number of undistinguished components of G, that is, to Dk+ ...+kI (the
ki are introduced earlier in this paragraph).
We are thus led to the following definition corresponding to that in the

previous subsection. The class of a segment [G, G'] of D. is the sequence
(r; k1, k2, * - *), where r is the number ofundistinguished components of G which
are contained in the distinguished component of G', and ki is the number of
undistinguished components of G' which contain exactly i components of G.
(Note that r + liki equals the number of undistinguished components of G.)
It follows from the previous paragraph that [G, G'] is isomorphic to
Drx nk xX -2 . The class of an element G E D. is defined to be the
class of [0, G].

Before going any further, we will put everything preceding in the context of
a large incidence algebra in which two segments are of the same type if and only
if they have the same class. Let D be the category whose objects are the lattices
D(B) for all finite sets B, with two segments being equivalent if they are iso-
morphic and their top elements have the same number of undistinguished com-
ponents (although one top element may have a distinguished component and
the other not). The morphisms of D are all isomorphisms into in which the top
element of the segment has the same number of undistinguished components as
does the top element of the image segment. It is easy to see that D satisfies the
required conditions, and also that two segments are equivalent if and only if
they are of the same class.
Now, a segment [G, G'] in some D. is of type (r; 0, O, if and only if

G' = 1 and G has r undistinguished components. We denote by [r;k1 k2,...] the
number of elements G' in a segment [G, 1] of type (n; 0, 0, * * ) such that
[G, G'] has type (r; k1, k2, .. .) (and hence, [G', 1] has type [k1 + k2 + * ;
0, 0, * * *]). Then

(5.26) [r n n n rq-k(2)(n-r ) (q- 2k3+3k4+
r;kl, k2, r 1, k2,
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where (k',k¶2,...) is defined as in the previous subsection, as the following counting
argument shows. We may assume that [G, 1] is contained in D. and that 0 = 0,
that is, that [G, 1] is D.. First, choose r vertices and join edges between all pairs
with all labels and distinguish the resulting component. This can be done in (Ir)
ways. Then choose k1 vertices as the undistinguished one point components.
This can be done in (n-r) ways. Proceeding in this way, choose kj distinct j sets
of vertices. This can be done in

(5.27) 1 - r - k1 - 2k2 - - (j-1)kj_1)

kj!j!kj( *(n- r - k - 2k2 - U-(j- ki_1) ..

(n -r - k1 - 2k2 -** jkj + 1)

ways, and each j set can be made into a labelled, simple, inverse symmetric,
antitransitive component in (q - 1)j-1 ways, since the labelling is completely
determined by the labels on a spanning tree, which hasj - 1 edges (see Liu [38],
pp. 185-186). This establishes (5.26).
As for lattices of partitions, the concept ofmultiplicative function is important.

A functionfE I(D) is multiplicative, if there is a pair of sequences (a1, a2, a3,**),
(bo,b1, b2, )such that

(5.28) f(G, G') = b,*ak ak2 . . .

when [G, G'] is of type (r; k1, k2, *), and f is said to be determined by the
pair of sequences. A similar definition holds for multiplicative functions of one
variable. The subset M (D) of I(D) of all multiplicative functions is closed under
convolution (the proof is the same as for M(H)), and hence, M (D) is a semi-
group. Also, iff E M(D) and F is a multiplicative function of one variable, then
K and L are also multiplicative, where

(5.29) K(G) = E F(G')f(G', G)
G'<G

and

(5.30) L(G) = E f(0, G')F(G').
G'2G

THEOREM 5.2. The semigroup M(C) is isomorphic to the set of all pairs
(F(x), G(x)) of formal exponential power series in which F(x) has zero constant
term, with multiplication given by

(5.31) (F(x), 0(x)) (F'(x), 0'(x)) = (P'(F(x)), G(x) G'( ((q 1))))

The isomorphism is given by f -+ (Fr) (x), F2) (x)), where

f f)(E x
(5.32-) Ff()(x) = n

i=1 n
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(5.33) FfP(x) = !"

and where f(Hn) denotes the value off on a segment of type r = 0, k1 = =
kn -I= 0, kn = 1, and f(Dn) denotes the value of f on a segment of type
(n;0,0,* ).
PROOF. Clearly, the map defined is a bijection, so we need only check that

multiplication is preserved. Let f, g e M(D). It follows from Theorem 5.1 that
FfP)(x) = F(1)(FfP)(x)). Now, from (5.26) and denoting by 1* a summation
taken over the set {r + k, + 2k2 + * + nkn = n} and by 1** a summation
taken over the set {k1 + 2k2 + * + nkn = n -r}, we get

(5.34) (f*g) (Dn)

=[ ~~n f(D,)f(rI, )k' ... f(I"n)k.g(Dkl + ...+kj)r-; k1, k2**, kn

(n) (k n -r I)(q l)k2+2k3+ +(nfl)kf(Dr)f(f I )k

... f(fln )kng(Dk)+---+k)

' (f(Dr) (r** (k1, k2. r )f(l)k(f(r2)(q - 1))k2
... (f(ln.)(q - 1)n )kng(Dkl+..+kn))

Now, f(D,) is the coefficient of xrlr! in Ff.2) (x), and

(5.35) (kY n r

kf)f(n )k (f(2)(q- )k2
... (f(rn)(q - I)n) n(Dkl+-+kn)

is the coefficient of xn-r/(n - r)! inF(2)(Ff1)((q - I)x)/(q - 1)), and hence the
theorem follows.
COROLLARY 5.3. The Mobius function in Dn is given by

n-i
(5.36) It(0, 1) = (-) H [1 + (q - l)i].

i=O

PROOF. We have F"')(x) = ex - 1,FP(x) = ex, P()(x) = x, and F(2)(x) = 1.
Now, F(P)(x) = In-l (i(nH,)/n!)xn = log (1 + x) from the previous sub-

section. Thus,

(5.37) 1 = P(2)(x) =PX (x) =F22X(x)F2X F(2) &(1)x))

=PF(2)(X) {log(1 + (q- )x)}

= F(2)(X). (1 + (q -1)X)11(q-1)
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Hence,

(5.38) F(2(x) = (1 + (q - 1)x)-1/(q- 1),
from which the result follows.
COROLLARY 5.4. Let f be a multiplicative function of one variable. For every

nonnegative integer n, let bn = XGeDnf(G) and qn = XGeD f(G)MY(G, 1). Then

(5.39) n xn = Ff2)(x).exp f

qn V2) )Xq-11q-1
(5.40) n! Xn f (x) [1 + Ff5)((q -

PROOF. The proof follows from Theorem 5.2 and Corollary 5.3 in the
same way as Corollary 5.2 is proved.

Let us now return to the lattice Q, to get an idea of what the class of a segment
means in terms of the corresponding segment of vector spaces. Let W E Q( V),
that is, W is a subspace of V which has a basis whose elements are of the form
bi or abj + a'bk (where a. a' E F*). Then it is not difficult to see that W has a
basis of the form

(5.41) {bi., bi, bi,, bj. + albj,, bj2 + a2bi3, * bj, + a.bj.+1, bkI + a,bk
bk2 + a'bk3, bkt + atbk +, * *, be, + abe2, * *., be. + a"be.+I}'

where the ai are nonzero and no bi appears twice. Such a basis can be obtained
by taking any basis and noting that if abi + a'bj and abi + a-'bj both appear
(and hence a/a' ai/a'), then bi and bj are in W and can replace abi + a'bj and
abi + a'b. in the basis. The collection {bj1 + a,b.2, b.2 + a2bj ..... biS +
a,bj,+ 1 in the above basis is called an (s + 1) cycle of the basis. Let kI equal
the number of basis elements {b1, b2, . , b } which do not appear in the above
basis (that is, are not among {bi,, bi2, *, bi,, bj, *, bi+l ,be,, * ,

be +,}), and for i > 1, let ki be the number of i cycles in the basis. Then
(r; k1, k2, . k,.) is the class of the segment [0, G] in D. (where G is the
graph corresponding to W), and [G, 1] has class [k1 + k2 +± + kn; 0, 0,
* ]. Note that it follows from this that r and k,, . .. k,, do not depend on
the basis (of the proper type) chosen for W. The class of a general segment
[W, W'] could also be determined from bases of the proper form chosen for
W and W'. Thus, the class of a segment of Q, could have been defined without
resorting to the lattice D., but it then becomes necessary to prove that the class
does not depend on the bases chosen.

5.4. Abelian groups. Let C(p) be the category whose objects are lattices of
subgroups of finite abelian p groups (where p is a prime, fixed throughout) and
all segments thereof, with the equivalence relation in each object being given by
[A, B] [G, H] if and only if B/A 1HIG. Morphisms in C(p) are all iso-
morphisms into such that if [A, B] is the domain and [G, H] the image of the
isomorphism, then B/A - H/G.
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A partition of an integer n is a sequence A = (Al, A2,*) of nonnegative
integers arranged in decreasing order, whose sum is n. The types in the category
C(p) above are in one to one correspondence with partitions, the type of a
segment [A,B] being A = (A1, A2, ), where B/A Z(pAl) @ Z(pA2) @.--*
The type of a group G is defined to be the type of [O, G]. The incidence coefficient
(,A,) is equal to the number of members G E [A, B] (where [A, B] is of type A)
such that [A, G] has type a and [G, B] has type ,B, or equivalently the number
of subgroups G of a group H (where H is of type A) such that G has type a and
H/G has type ,B. This is precisely the "Hall polynomial" gA,{(p) defined in Hall
[31], p. 156, and further studied by Green [27] and Klein [37]. (The Hall
polynomials (P) are simply the coefficients in the expression (f*g* *h)
(p) = XgP... (p)f(A) h(v).) Hall's algebra A(p) is isomorphic to the sub-
algebra of I(C(p)) consisting of functions which are nonzero on only finitely
many types, the isomorphism being given by linearly extending the map

- GAQ(p), where 6A is the indicator function of the type A in I(C(p)) and where
GA(p) is as in Hall's paper. The incidence coefficients gA (p) satisfy gA p(p) =
gA,(p), which follows from the well-known fact that the lattice of subgroups of
a finite abelian group is self dual. and hence by Corollary 4.1, I(C(p)) is com-
mutative. Various properties of the incidence coefficients g',,(p) are worked
out by Hall and extended by Klein and Green, the most basic being that g' p(p)
is a polynomial in p with integer coefficients. A condition for this polynomial to
be identically zero, that is, for g' p(p) to equal zero for all p, is given by Hall in
terms of multiplication of Schur functions (see [31]. p. 157).

EXAMPLE 5.12. Let (r1., r2, r,) be an ordered partition of n. Then it
follows from the commutativity of I(C(p)) that given any partition A of' n. the
number of towers 1 < H1 . H2 . ... < H_ = G (where G has type A) in
which Hi/Hi - 1 has order pri is independent of the arrangement of (r1, r2. ,

rm). This is because the number of such chains is given by (hr, 2h2*... * hrm) (A),
where hr is the function which takes the value 1 on segments [A, B] in which
B/A has order pr, and is zero elsewhere (h, is clearly constant on each type).

6. Residual isomorphism

In this section we are mainly concerned with the problem of determining
when two segments are equivalent in the maximally reduced incidence algebra
R(P). As has been seen in Section 4, the two segments need not be isomorphic,
that is, the standard reduced incidence algebra need not equal the maximally
reduced incidence algebra. Until further notice, we will assume the ground field
K has characteristic 0.

First, we give a criterion when two segments of P are equivalent in R(P). Let
P = [0, 1] and P' = [0', 1'] be two finite ordered sets with unique minimal
elements 6 tnd 0', and unique maximal elements 1 and 1'. respectively. We say
that P and P' are 1-equivalent, without imposing any other conditions on them.
Define inductively P and P' to be (n + 1)-equivalent (written P nt'+P) if there
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exists a bijection x -+ x' between P and P' such that [0, x] -n [0', XI] and
[x, 1] -n [x', 1']. Note that P n P' implies P -m P' for 1 _ m _ n. Note also
that p 2 P' if and only if P and P' have the same number of elements.

PROPOSITION 6.1. Two segments [x, y] and [u, v] of a locally finite ordered
set P are equivalent in R (P) if and only if they are n equivalent for all positive
integers n.

Before proving Proposition 6. 1, we show that the apparently infinite sequence
of conditions that must be satisfied in order that P 4 P' for every positive integer
n reduces to a finite number of conditions for any given choice of P, P'.
PROPOSITION 6.2. Let t' be the length of the longest chain of the two finite

ordered sets P = [0, 1] and P' = [O', 1']. Then P 4 P' for every n > 1 if and
only if P £ P'.

PROOF. The proof is by induction on '. The conclusion clearly holds when
e = 1 and e = 2, since then P and P' are isomorphic. Now assume that the
conclusion holds for e _ 2 and that the longest chain of P and P' has length
t + 1 and that P t+ P'. Assume that P 4 P' for some n _ e + 1. We will be
done if we show P n+l p. Since P 4 P', there exists a bijection x *-* x' with
[0, X] n-, [0', XI] and [x, 1] n'l [x', 1']. Clearly, 0 0-+ 0' and 1 4-* 1', since
n > 3. Ifx $ 0, 1, then [0, x] and [0', x'] have no chain of length _ ' + 1, so
by the induction hypothesis [0, x] & [0', xI]. Similarly, [x, 1] 4 [x', 1'].
Hence, the bijection x *-* x' defines an n + 1 equivalence between P and P',
and the proof is complete.
We conjecture that the following converse to Proposition 6.2 holds: for every

' > 1, there exist finite ordered sets P = [0, 1] and P' = [0', 1'] with longest
chain of length e such that Pc-' P' but not P £ P'. Figure 1 illustrates the
validity of this conjecture for e = 4.

FIGURE 1
Ordered sets of length 4 which are 3-equivalent, but not 4-equivalent.

PROOF OF PROPOSITION 6.1. Define [x, y] [x, y'] in P if and only if
[x, y] 4 [x', y'] for all positive integers n. To prove the "if" part, we need to
show that the equivalence relation - is order compatible. It suffices to show
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that the coefficient [ ¶,] is well defined for any equivalence classes (types) a, fi, y.
Let [x, y] and [x', y'] be two segments ofP of type a. Define r(x, y, n) to be the
number of points z E [x, y] such that [x, z] is n equivalent to a segment of type ,B
and [z, y] is n equivalent to a segment of type y. The number r(x, y, n) is
independent of the particular choice of segments of type f, and y, since all such
segments are n equivalent. Since [x, y] nL" [x', y'], we have r(x, y, n) =
r(x', y', n). But then

(6.1) [ 1 = lim f (x, y, n) = lim r(x', y', n),

so [ja] is well defined.
Conversely, suppose [x, y] - [x', y'] in R(P). We prove by induction on n

that [x, y] & [x', y'] for all n. Trivially [x, y] At [x', y'] for all [x, y] - [x', y']
(indeed, for any pair [x, y], [x', y']). Assume [x, y] & [x', y'] for all [x, y]
[x', y']. Given any segment [u, v] of P, define f". e 1I(P) by

(6.2) fu, V, "(X' Y) = °
if [x, Y] 4 [u, v],

(6.2)~ ~ ?J~~ = }~ otherwise.

By the induction hypothesis f.u E R(P). Hence, f.,v n*fu e
n c R(P). But

fu, *fu v n (x, y) is just the number of elements z E [x, y] such that [x, z] 4
[u, v] and [z, y] & [u', v']. (This is where the assumption that K has charac-
teristic 0 is needed.) Since fu, v n f,, R(P),

(6.3) fuv,n*fU v ,n(X, y) = fu,v,n*fu'v',n(X y').
Hence, [x, y] n+ [x', y'], and the proof is complete.
The proof of Proposition 6.1 allows us to characterize the form of functions

in R(P), at least when the characteristic of the ground field K is 0. Iff E I(P),
define Xf E I(P) by

(6.4) X (x, Y) = {O if f(x,y) = 1,
(6.4) Xf(X,Y) = j0 otherwise.

COROLLARY 6.1. The algebra R?(P) consists of those functions which can be
obtained from C by a sequence of operations of the following three types:

(i) linear combination (possible infinite),
(ii) convolution,

(iii) the operation f - Xf .

PROOF. Clearly, all functions of the type described are in R(P). The proof
of Proposition 6.1 shows that for any segment [u, v] of P, the function

nE R(P). Proposition 6.2 shows that the sequence fu, 1, fu ,2 . * * iS
eventually constant, and that its limit (namely, fu ,,,, where n is the greater of
2 and the number of elements in [u, v], as is easily verified) is the characteristic
function for the type of [u, v] in R (P). All functions in R (P) are linear combina-
tions (infinite if R(P) has infinitely many types) of such characteristic functions.
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Finally, it is not difficult to show (by induction on n) that n is in the class of
functions described for every segment [u. v] and every n. so the proof is complete.

Define two locally finite ordered sets P and Q to be residually isomorphic
(r isomorphic for short) if there is a bijection between the types of P relative
to R(P) and the types of Q relative to R(Q) (over the same ground field K,
which we still assume to have characteristic 0) inducing an isomorphism of R(P)
and R(Q).

NOTE. It is possible for R(P) and R(Q) to be isomorphic as K algebras, and
yet P and Q are not r isomorphic.

PROPOSITION 6.3. Two finite ordered sets P and P', each with 0 and 1, are r
isomorphic if and only if P n P' for all n > 1. Equivalently, two segments of a
locally finite ordered set P are equivalent in R (P) if and only if those segments are
r isomorphic. Furthermore, a and a' are corresponding types in the isomorphism
R(P) _ R(P') if and only if the segments in P of type a are r isomorphic to the
segments in P' of type a'.

PROOF. Assume P and P' are r isomorphic, and that a type a relative to
R(P) corresponds to a type a' relative to R(P'). Let Q be the disjoint union
(direct sum) P + P'. Define an equivalence relation on segments of Q by
[x, y] - [x', y'] if either (1) [x, y] - [x', y'] in R(P), (2) [x, y] [x', y'] in
R(P'), (3) [x. y] is of type a in P and [x', y'] of type a' in P', or (4) [x, y] is of
type a' in P' and [x'" y'] of type a in P. Clearly, this equivalence relation is order
compatible. Hence, by Proposition 6.1 segments of type a are n equivalent to
segments of type a' for all n _ 1, and in particular P -' P'.

Conversely, if P n P' for all n > 1, define a bijection oa a' between types a
relative to R(P) and types a' relative to R(P') by requiring that segments of type
a be n equivalent to segments of type a' for all n _ 1. It follows easily from
Proposition 6.1 that this bijection induces an isomorphism between R(P) and
R(P'), and the proof is complete.
COROLLARY 6.2. Two finite r isomorphic ordered sets P = [0, 1] and P' =

[0', 1'] have the following properties in common:
(i) number of maximal chains of a given length,

(ii) number of elements a given minimum length from the bottom (or top);
consequently, total number of elements, number of atoms, and number of dual
atoms.
PROOF. It follows from Corollary 6.1 that the function q = X i2iS in R (P)

and R(P'). Note that
(6l5 if y covers x,

(6.5) t7(X, Y) = J.o0 otherwise.
so that qT(x, y) is the number of maximal chains of [x, y] of length r. By
Proposition 6.3, qr(0, 1) = IV(()f1'), since P and P' are r isomorphic. This
proves (i).

Similarly one can find functions in R(P) and R(P'), explicitly expressed in
the form given by Corollary 6.1, which enumerate the quantities in (ii). The
details we omit.
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PROPOSITION 6.4. Let P be an ordered set with 0 and 1 with < 7 elements, and
let Q be any finite ordered set with 0 and 1. Then P and Q are r isomorphic if and
only if they are isomorphic.
The proof is essentially by inspection of all possibilities, and will be omitted.

Figure 2 shows two r isomorphic nonisomorphic ordered sets with eight
elements. Another example of r isomorphic nonisomorphic ordered sets is the
lattice of subspaces of two nonisomorphic finite projective planes of the same
order.

FIGURE 2
Residually isomorphic nonisomorphic ordered sets.

We say that a finite ordered set P with 0 and 1 is residually self dual (r self dual
for short) if it is r isomorphic to its dual. The next proposition uses this concept
to characterize those P for which R(P) is commutative.

PROPOSITION 6.5. Let P be a locallyfinite ordered set. Then R(P) is commuta-
tive if and only if every segment of P is r self dual.

PROOF. Suppose R(P) is commutative. This means that [pay] = [.#] for all
types a, ,B, y. If 6 is the type of a segment, let 6* be the type of its dual. If [x, y]
is a segment of type a, consider the bijection 6 6* between types of segments
in [x, y] and types in the dual [x, y]*. Then

(6.6) [ ]] [ ] =

so the bijection 6 *-+ 3* induces an isomorphism between R([x, y]) and
R([x, y]*), that is, [x, y] is r self dual.

Conversely, suppose every segment [x, y] of P is r self dual. Since [x, y] is
r self dual, the number of elements z E [x, y] such that [x, z] is of type ,B and
[z, y] of type y is equal to the number of elements z' E [x, y] such that [x, z']
is of type y* and [z', y] of type ,B*. But ,B = /3* and y = y*, since every segment
of these types is r self dual. Hence, if [x, y] is of type a, then [p] = [y] and
R(P) is commutative. This completes the proof.

Figure 3 illustrates an r self dual ordered set P which is not self dual. For this
ordered set, R(P) is equal to the standard reduced incidence algebra. This
answers a question of Smith ([55], p. 632) on the existence of such ordered sets.
REMARKS. On characteristic p. Proposition 6.1 and its consequences are

false if the characteristic of the ground field is not 0. For example, whenever the
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FIGURE 3
A residually self dual ordered set which is not self dual.

FIGURE 4
Equivalent segments in characteristic 2 which are not residually isomorphic.

two ordered sets of Figure 4 occur as segments of a locally finite ordered set P,
then they are equivalent in R(P) over a ground field of characteristic 2. It is not
difficult, however, to modify the results of this section to get corresponding
results for characteristic p, basically by replacing all concepts by the corres-
ponding concepts modulo p. We will not go into the details here.

7. Algebras of Dirichlet type

7.1. Definitions. Let P be a locally finite ordered set, having a unique
minimal element 0. Let R(P, -.) be a reduced incidence algebra whose types
are in one to one correspondence with a subset of the positive integers, the type
of a segment [x, y] being denoted by 0 (x, y). Suppose the function 0 satisfies
the following property: if x < y < z in P, then 0(x, z) = 0(x, y)O(y, z).
We then call R(P, - ) an algebra of Dirichlet type. The bracket [k>] stands

for the number of points y in a segment [x, z] of type n such that 0 (x, y) = k
and O(y, z) = e. Clearly, [k't] = 0 unless n = k{. Hence, it makes sense to
define the brace {k} =[k,n/k]. The reduced incidence algebra R(P, -) is
isomorphic to the algebra of all sequences a", n = 1, 2, * * *, where a. # 0 only
if there is a segment of type n in P. The convolution of two such sequences is

(7.1) C kn {;}ak}b.1k
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EXAMPLE 7.1. Let P be the set of all positive integers, ordered by divisibility.
Set O(k, n) = n/k, for k, n E P. This gives the reduced incidence algebra
mentioned at the beginning of Example 4.8. The braces are identically equal to
one, the convolution is commutative, and it reduces to the classical Dirichlet
convolution

(7.2) cn = Eakbnlk
kin

The reduced incidence algebra R (P, ~-) is isomorphic to the algebra of formal
Dirichlet series. The zeta function is mapped into the Riemann zeta function

(7.3) 4(s)= E -s
=1 ns

and the M6bius function goes into the function

(7.4) Y-~)n= I n
n1 ns

where M(n) is the classical M6bius function, as has already been sketched in
Foundations I.

Algebras of Dirichlet type satisfy the following fundamental recursion:

(7.5) {n} {k} = {n} { n/k}.

This is obtained by counting in two ways the number of subsegments [x1, Yi]
of a segment [x, y] of type n such that O(x, x1) = k, O(x, y ) = m. There are
{""} ways of choosing Yl, and for each such choice there are {'} ways of choosing
x1 below it. On the other hand, there are {k} ways of choosing x1, and for each
such choice there are {n1k } ways of choosing Yi above it. This establishes (7.5).
There are three kinds of algebras R(P, -) of Dirichlet type of special

importance.
(A) The algebra R(P, '-) is commutative if and only if {k} = {n/k} for all

types n and all kIn.
(B) The algebra R(P, '-) is said to be full, if whenever n is a type and kin, then

In #f 0.
(C) The algebra R(P, ~-) is said to be of binomial type, if there is a prime p

such that all tvyes are powers of p. We then write

(7.6) {Pa} [a]

The recursion (7.5) becomes

{778 r l r 1 = rb crc
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An algebra of binomial type is simply the additive analogue of an algebra of
Dirichlet type. We shall always speak of algebras of binomial type in an
additive sense, so a segment of type n in an algebra R(P, .-) of binomial type
is of type p" when R (P, - ) is regarded as an algebra of Dirichlet type.
There are, a priori, eight kinds of algebras of Dirichlet type obtained by

specifying which of (A), (B), (C) hold or do not hold. It is easy to construct
examples of seven of these kinds; in the next section, we shall see that every
algebra of full binomial type is commutative.

7.2. Full commutative algebras of Dirichlet type. In this section, we show
that if R(P, p-) is a full commutative algebra of Dirichlet type, then there is an
isomorphism of R(P, - ) into formal Dirichlet series.
LEMMA 7.1. Let R(P, -) be a full commutative algebra of Dirichlet type.

Then the segments of P of type 1 are precisely the one point segments, and a
segment has a prime type ifand only if it is a two point segment. Further, P satisfies
the Jordan-Dedekind chain condition, that is, in all segments of P, all maximal
chains have the same length.

PROOF. If [x, x] has type k, then k2 = k, so k = 1. Conversely, if [x, y]
has type 1, it follows from Lemma 4.1 that x = y.

If [x, y] has prime type p, then x #& y (by the above), and if [x, y] contained
a third point z, then p = O(x, z) *O(z, y), which is impossible. Conversely, if
[x, y] is a two point segment and has type n, then n must be prime, for if it had
a nontrivial factor k, then since R (P, -) is full there would be an element
z E [x, y] such that [x, z] would have type k. Finally, it follows from this that
for any segment [x, y], the length of any maximal chain is the number of primes
in the prime decomposition of O(x, y). This completes the proof.

Let [x, y] be a segment ofP of type n, and let C be a maximal chain of [x, y],
say x = xo < xl < x2 < ... < x. = y. Ifpi is the type of [xi .1, xi, then
n = P1P2 ... pPm is an ordered factorization of n into primes; we call it the
factorization of n induced by C, or more briefly, the factorization of C.
LEMMA 7.2. Let R(P, -.) be a full commutative algebra of Dirichlet type and

[x, y] a segment of type n. Let n = P1P2 ... Pm be any ordered factorization of n

into primes. The number of maximal chains of [x, y] withfactorizationplp2 * Pm
is given by

(7.8) B(n) = n }jn/p1}){fnpip)> ....n/p* Pm-l}
PJtP2 i.P3 1 1 PM i

and this number depends only on n, not on the factorization chosen.
Hence, if n = q"'q 2 ... q"r is the canonical factorization of n, then

(a, + a2 + *- + a,)!'
where M(n) is the number of maximal chains in [x, y].

PROOF. The number of maximal chains with factorization P1P2 ... Pm is
obviously the expression on the right side of (7.8). By the commutativity relation
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{r} = {s,} and the recursion (7.5),

(7.10)~ ~ fn/P1P2..Pk-l fn/P1P2 ... Pk~(7-10){}{}
Pk Pk+ I

fln/p1P2 * Pk-1 n/PP2 ..Pk'P
fl/PxP2 ... Pk ) Pk+1 3

{n/PlP2 Pk-1 ln/P1P2 ... Pk-lPk+l,l
Pk+1 t n/P1P2 PkPk +1 I

|n/PIP2 ..Pk-1I n/P1P2 ..Pk-lPk+l
{ Pk+1 t Pk J

Hence, B(n) is not changed when Pk and Pk+I are interchanged. Since all
permutations ofp1, * * Pm are generated by such interchanges, the proof follows.

PROPOSITION 7.1. Let R (P, - ) be a full algebra of Dirichlet type with types
nl = 1, n2, .IffE R(P, ~-), then the map

(7.11) f E f(nk)
k B(nk)nk

of R(P, -) into formal Dirichlet series is an isomorphism, if when we multiply
Dirichlet series we ignore all fi-' terms when f is not some nk.

PROOF. Let [x, y] be of type n. For any type eln, let n = p*... pm be any
factorization with PIP2 ... Pk = e. Exactly B(e) maximal chains with the
factorization P1P2 ... Pk connect x with a fixed point z such that [x, z] is of
type e. Exactly B(n/t) maximal chains with the factorization Pk + 1 ... Pm connect
z with y. Thus, the number of such z is

(7.12) { = B (n)

and the isomorphism follows.
REMARK. As we will see in the next section, when R(P, -) is of full

binomial type we know that we can write B(n) = A(1)A(2) ... A(n), where
A (n) = { 1 } is the number of points covered by y in an interval [x, y] of length n.
The analogy for full commutative algebras of Dirichlet type is formula (7.8).
Here
(7.13) A(k) = n/PlP2 Pm-k

Pm-k + 1

depends on the particular ordered factorization of n into the primes chosen. A
canonical choice ofA (k) can be specified by the requirementp1 _ P2 <_ * * _ Pm .

In certain cases it is possible to know considerably more about the structure
ofP and R(P, - ).

PROPOSITIoN 7.2. Let R(P, ~-) be a full commutative algebra of Dirichlet
type. Suppose the function B is "multiplicative if defined," that is, if (m, n) = 1
and if mn is a type, then B(mn) = B(m)B(n). Let [x, y] be a segment of type
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p= lp.2 pm and let [x, xI], * * [x, Xm] be segments of [x, y] of types
p1",. pam' respectively. Then [x, y] is the product, [x, y] = [x, xi] x
[x, x2] x * x [x, xm], and R(P, ~-) restricted to [x, y] is given by the tensor
product (over K), R([x, y], - ) = R([x, xl], '-) (® ... ®( R([x, xm], - ). Each
of the algebras R([x, xi], '-) is of full binomial type.

PROOF. If 1 _ i . m, we have

(7.14) nl = B(n) ) B(n)1_B(p~i)B(n/p~i) -B(n) -1

Thus, the segments [x, xi] are unique. If z e [x, y] and [x, z] is of type e =
b1 b2* . . -pbm hnas= zles az

Pi p2 m then as above {6 j} = 1, and z lies above a unique point Zi E [x, xi]
with [x, zi] oftypep~i. Hence, we have a mapping z -+ (z1, I* zm). Now, the
number of z e [x, y] such that [x, z] is of type pb, * pbm equals

(P71~~\ .. PMn B(pa, pam)
(7.15) IP lPmm= (a ...........p)

Ipll. .. pb- B(Pblt ... b-)(alb a-PM B B aa bl..ap---

B (pai) . . B(pam-)
B(pb1) ... B(pb-)B(paI1 b,) ... B(pa-m-bm)

(Pajl (Pa2'l (pm|P1V1 P2~I Pml
which is the number of m-tuples (z1, I, Zm) with [x, zi] of type p~i. Further,
the mapping is injective, as the following argument shows. Suppose z and z are
distinct elements of [x, y] with [x, z] and [x, z] of type pb1 . . . pb-, and suppose
both z and z lie over z1, * *, Zm, where O(x, zi) = pr'. Take w1 e [z, y] with
O(z, w1) = ptI, w2 e [wI, y] with O(W1, W2) =2 W2,, W [W.-1 Y]
with Q(w_1, w.) = p Imbm, and similarly take elements w, * *, Wm above z.
Note that w. = i- = y, since

(7.16) O(x, w.) = O(x, z)O(z, WI)O(W, W2) . (Wn-1, Wn)
al . .. pa-Pi PM

However, we show by induction that wj 7iW-j for 1 < j _ m, which gives the
desired contradiction.
Forj = 1, if w1 = i1, then

(b,-al b2 b3 . bm
(7.17) Pi P2 P3 Pm >1

b2 b3 ..
mp

(. P2 P3 PM

(since z, z e [z1, w1]), which is not the case as B is multiplicative. Assume
wj-_ * wj- forj _ m. If wj = ;j, then

( b. pbj1b++ bm pal-bi . a..pj-bj-_j paj-bj(7.P8i pp m PI **pP >1
(7.18) p̂bj . . . p b+, . . pbm pal-bj . a..pj l-bj- J

(icPi
..

2i P W+1 Pinot pc
(since wj- 1, ill- I e- [zj, wj]) which is not the case, as B is multiplicative.
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Thus the mapping z -* (z1, *-,Zm) is the desired isomorphism [x, y] -

[x, xl] x ... x [x, xm], and the rest of the proof follows easily.
As a converse to the above proposition, suppose R(P1), R(P2), * are full

algebras of binomial type. Let PI, P2, * * * be distinct primes, and let [x, y] =

[(xI, x2,**), (YI, Y2, )] be a segment of P1 x P2 x *, where [xi, yi] is
of type ai in R(Pi). Then defining 0 (x, y) = p'lpa2 ... gives a full commutative
algebra of Dirichlet type such that B is multiplicative if defined.
REMARK. The condition that B is "multiplicative if defined" is equivalent

to saying that the Dirichlet series corresponding to the zeta function 4 E R (P, -.)
has an Euler product in the sense that the Dirichlet series

(7.19) E_B Hl '(a)pas
k B(nk)n' p a B(P)

for some nk = pa vanishes at all terms m-s whenever m is a type.
All the usual number theoretic functions such as the Euler totient function /,

the number of divisors d, the sum of the divisors a, and so forth, have analogues
in full commutative algebras of Dirichlet type (even in any algebra of Dirichlet
type, although some of their properties do not carry over). For instance, if
0(x, y) = n, we define

+(n) = i1 * 0 (n) = E / (X, z) 0 (z, y),
ze[x, yJ

(7.20) d(n) = 42(n) = E 1,
ze[x, yl

a(n) = 0*4(n) = 0(x, z),
ze[x, yl

and so on.

These functions, along with it, will be "multiplicative if defined" if and only if
B is also.

PROBLEM. It is easy to construct examples of infinite noncommutative
Dirichlet algebras. For instance, let P be the lattice of positive integers under <
(a discrete chain). Ifm < n, define

I

2n-m if 1< m,
(7.21) 0(m,n) =<3 -2'-'-1 if I m < n,

{ I1 if m = n = 1.

The corresponding Dirichlet algebra R(P,-) is infinite, that is, there are
infinitely many values of 0 (m, n), and noncommutative.

Suppose, however, we require R(P, - ) to have the following properties:
(a) R(P, -) is a full algebra of Dirichlet type, and
(b) any two elements ofP have an upper bound. We know of no infinite non-

commutative algebras R(P, '-) satisfying (a) and (b).
7.3. Abelian groups. Suppose 0 is an abelian group whose lattice P of sub-

groups gives a Dirichlet algebra R (P, - ) ifwe take 0 (x, y) to be the order of the
quotient group y/x. Then G is finite (since P must be locally finite and every
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infinite group has infinitely many subgroups), and every Sylow subgroup of G
is either cyclic or elementary abelian. Conversely, any such G gives rise to such
a Dirichlet algebra, which in fact is of full Dirichlet type whose zeta function
has an Euler product.

PROOF. Suppose a Sylow p subgroup of G is not cyclic or elementary abelian.
Then it contains a subgroup isomorphic to Z(p) e Z(p2), where Z(n) denotes
the cyclic group of order n. The segments [0, Z(p2)] and [0, Z(p) ® Z(p)]
both have type p2 but are not residually isomorphic, so R(P, ' ) cannot be of
Dirichlet type.
That the converse is true is a straightforward verification.

8. Algebras of full binomial type

8.1. Structure. Recall from the previous section that R(P, ' ) is an algebra
of full binomial type if the types are in one to one correspondence with a subset of
the nonnegative integers, the type of a segment [x, y] being denoted 0 (x, y),
satisfying:

(A) ifx _ z < y, then O(x, y) = O(x, z) + O(z, y);
(B) if n is a type and if k . n, then [k] ¢ 0, where [k] is the number of

elements z in a segment [x, y] of type n for which O(x, z) = k (and hence,
O(z, y) = n - k). We then had the following relation

(8.1) [m][k][k1[ -k
PROPOSITION 8.1. Every algebra of full binomial type is commutative.
PROOF. Suppose R(P, -~) is a full algebra of binomial type. We prove by

induction on n that [m] = [,n-m] when 0 < m < n. Since [n] = [n] = 1, it
will follow that R(P, -) is commutative.
The statement is clear for n = 0, 1, 2. Assume it is true for all nO < n.

Suppose 0 < m < n . 2m. From the relation (8.1), we have

(8.2) [n] [n ~ml = [n:n m[2m 4(8.2
-m -m 2m-n

Since 0 < m < n _ 2m and R(P, -) is full, we have ["mm] ¢ 0, [2mm-n] ¢ 0-
Byinduction[VmM] = [2mm ]. Hence, [,] = [nm]. If0 < m < nbut2m < n,
then 0 < n - m < n and n _ 2(n - m), so again [n]nm]= [,] and the proof
is complete.
LEMMA 8.1. Let R(P, ~-) be an algebra of binomial type. Then the segments

of type 0 are precisely the points of P. Moreover, if R(P, ~-) is of full binomial
type, then the segments of type 1 are those segments of P which contain exactly
two points.
PROOF. If [x, x] is of type n, then n + n = n, so n = 0. Conversely, if

[x, y] is of type 0, it follows from Lemma 4.1 that x = y.
If R(P, .-) is full and [x, y] is a two point segment of type n > 0, then since

[7n] ¢ 0, we must have n = 1. Conversely, by Lemma 4.1 any segment of type 1
contains exactly two points. This completes the proof.
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We assume for the rest of this subsection that R(P, -.) is a full algebra of
binomial type. Let N be the largest type of any segment of P (or N = oo if
there is no largest type). Since R(P, ~-) is full, we have

(8.3) [ A=A(O) = °[= A(n) O, 1 < n _ N (except n =oo).

Define B(n) = A (1)A (2) ... A (n), with B(O) = 1.
Setting k = 1 in (8.1) and iterating, we find

(8.4) [n]A(n)A(n-1) A(nm + 1)
Lm A(m)A(m-1) ... A(1)

B(n)B(m)B(n-m)' ° _ m < n _ N (except n= oo),B(m)B(n -m) - _

where we have used the obvious fact that

(8.5) = 0 < n _ N, n oo.

We have therefore shown that a full algebra of binomial type is isomorphic
to an algebra of formal power series, taken modulo ZN+ 1, the isomorphism being
given by

(8.6) f n (Bn) zn (mod zN+ 1),

where f(n) denotes the value f E R(P, - ) takes at any segment of type n. The
converse to this statement, and a characterization of full algebras of binomial
type, is provided by the next theorem.
THEOREM 8.1. Suppose P is a locally;finite ordered set and R(P, - ) a reduced

incidence algebra of P with types labelled 0, 1, 2, *. *, N, 1 < N < oo, such that
(8.6) is an isomorphism of R(P, -') ontoformalpower series modulo zN+ .The iso-
morphism (8.6) can be "normalized" by setting z' = (l/B(1))z, so we can assume
B(1) = 1. Then R(P, - ) is a full algebra of binomial type and the following hold:

(i) P satisfies the Jordan-Dedekind chain condition;
(ii) all segments of P of length n have the same number of maximal chains;

(iii) a segment of length n is of type n;
(iv) in the isomorphism (8.6) (normalized to B(1) = 1), B(n) is the number of

maximal chains in a segment of length n and N is the length of P;
(v) R(P, - ) = R(P).
Conversely, if P is a locally finite ordered set satisfying (i) and (ii), then R(P)

is a full algebra of binomial type given by (iii) and (iv).
PROOF. Suppose R(P, -.) satisfies the hypothesis of the theorem. Then (A)

follows from the isomorphism (8.6) using the law of exponents zm+n = Z,Zn.
Hence, R(P, -.) is of binomial type. By the hypothesis that the isomorphism
(8.6) is onto, it follows that R(P, ' ) is a full algebra of binomial type.

Defineg eR(P, -)by
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(8.7) g(x, y) =
1 if [x, y] is of type 1,
0 otherwise.

Using Lemma 8.1, we see g'(x, y) is the number of maximal chains of [x, y]
of length n. By (8.6), g'(x, y) #6 0 if and only if [x, y] is of type n. Hence, every
maximal chain of [x, y] has length n. Since

(8.8) (__z)n B(n) Zn

then by (8.6), B(n) is the number of maximal chains in an interval of type n
when we take B(1) = 1. Clearly, N is the length of P. By Lemma 4.1 (ii),
R(P, -.) = R(P). This proves (i), (ii), (iii), (iv), (v) of the theorem.

Conversely, suppose P satisfies (i) and (ii). (Actually, (i) and (ii) follow easily
from the slightly weaker condition that all segments ofP of the same minimum
length contain the same number of maximal chains.) Let B(n) be the number of
maximal chains in a segment of length n. Then each segment [x, y] of length n
contains B(n)/B(k)B(n - k) points of height k, since B(k)B(n - k) maximal
chains in [x, y] pass through a point of height k. Thus, if f, g E I(P) depend
only on the length n of any segment [x, y], we have

n B(n)
(8.9) (f*g)(n) = (f*g)(x,y) = EoB(k)B(n- (k)g(n -

which is a function of n only. Thus, specifying all segments of the same length
to be of the same type gives a reduced incidence algebra R(P, -'), which by
Lemma 4.1 (ii) must be AR(P). The isomorphism (8.6) now follows immediately
from (8.9). We have proved that if (8.6) holds, then R(P, -.) is of full binomial
type, so the proof is complete.
COROLLARY 8.1. If P is a locally finite ordered set and if every segment of P

of the same minimum length is of the same type in R (P), then R (P) is a full algebra
of binomial type.

PROOF. By Lemma 4.1, all segments of P of the same minimum length
contain the same number of maximal chains, since they are of the same type.
We have already remarked that it is easy to prove from this that P satisfies the
Jordan-Dedekind chain condition. The proof now follows from Theorem 8.1.
REMARK. Suppose R(P, - ) is of full binomial type. By the previous theorem

any two segments of P of the same length are r isomorphic. Moreover, any
segment ofP is "r self dual", that is, is r isomorphic to its dual, since R (P, . )~
R(P*, -), when P is of full binomial type and P* is the dual of P.
A further characterization of full algebras R(P, - ) of binomial type, at least

when P does not have arbitrarily large chains, is given by the next proposition.
PROPOSITION 8.2. Suppose R(P, - ) is a reduced incidence algebra of a locally

finite ordered set P with 0 which when considered as an algebra with identity over
the ground field (which we have been assuming has characteristic 0) is generated
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by a single function f. Then R(P, - ) is a full algebra of binomial type, and there
is an integer N such that the longest chain in P has length N.

Conversely, if R(P, -.) is a full algebra of binomial type and if the longest chain
in P has finite length N, then R(P, - ) is generated by anyfunction fE R(P, ' )
not vanishing on segments of length 1 (for example, f = C).

PROOF. Suppose f generates R(P, -). We first show that all points of P
belong to the same equivalence class relative to -. Otherwise, since P has a 0,
there is a two point segment [x, y] of P such that [x, x] and [y, y] are not
equivalent. Hence R(P, -), when restricted to [x, y], has dimension three as a
vector space. But iff (x, x) = a and f (y, y) = b, then (f - a)(f - b) vanishes
on all three subsegments of [x, y] and hence f generates, together with the
identity, a vector space of dimension < two when restricted to [x, y]. This
contradiction shows [x, x] - [y, y] and hence all points ofP are equivalent.

IfP contains arbitrarily long chains, then R (P, ) has uncountable dimension
as a vector space, while f generates a vector space of countable dimension.
Hence, there is an integer N such that the longest chain in P has length N. The
preceding paragraph shows that f is constant on points, say f(x, x) = a. Then
(f - a)N+1 = 0. Hence, f, together with the identity, generates a vector space
of dimension . N + 1. Since two segments of different maximum lengths must
be of different types, it follows that any two segments of the same maximum
length are of the same type (because the dimension of R(P, -) is equal to the
number of types). It then follows from Corollary 8.1 that R(P, -') is a full
algebra of binomial type.
The converse is a trivial consequence of the isomorphism (8.6), and the

proof is complete.
8.2. Lattices of full binomial type. An ordered set P is said to be of full

binomial type if it satisfies (i) and (ii) of Theorem 8.1.
Examples of ordered sets P of full binomial type are discrete chains with 0,

lattices of finite subsets of a set, and lattices of finite subspaces of a projective
space. Various other examples are given in Figure 5.

(A) (B) (C)

FIGURE 5
Ordered sets of full binomial type.
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The ordered sets (A) and (B) have isomorphic reduced incidence algebras of
full binomial type, although they are not isomorphic as ordered sets. In fact,
(A) is a lattice and (B) is not. The ordered set (C) has two interesting properties:
not all its segments of the same length are isomorphic (it has 3 segments iso-
morphic to (A) and (B)), and its M6bius function (see Foundations I) does not
alternate in sign.
We now prove some results relating the structure of P to the numbers B(1),

B(2), *- - -.

PROPOSITION 8.3. Let P be offull binomial type. An n segment ofP is a chain
if and only if B(n) = 1.
The proof is obvious.
PROPOSITION 8.4. Let L be a lattice offull binomial type. Every element of L

is the join of atoms (that is, L is atomic) if and only ifA (2) > 1.
PROOF. If A (2) = 1, then a 2 segment is a chain; hence any element of L of

height 2 is not the join of atoms.
Conversely, suppose L is not atomic and let y be an element of L of minimum

height n > 1 which is not the join of atoms. Let x be an element of height
n - 2 lying below y. Then [x, y] is a chain of length 2, so A(2) = 1.
PROPOSITION 8.5. Let L be a lattice offull binomial type and [x, y] an n seg-

ment of L. The join of any two distinct atoms of [xI y] is of height 2 if and only if

(8.10) A(k) = 1 + (A(2) - 1) + (A(2) - 1)2 + *-- + (A(2) - l)k-
when 1 < k < n.

PROOF. Suppose the join of any two distinct atoms of [x, y] has height 2.
Then the same is true for [x, y'], where y' is any point of [x, y] of height k _ n.
Now any element of [x, y'] of height 2 lies above A (2) atoms and (A(2)) pairs
of atoms. But [x, y'] contains [2] elements of height 2 and (A(k)) pairs of atoms.
Hence,

(8.11 ) (A (k)) [k] (A(2))

which implies A(k) = A(k -1)(A(2) - 1) + 1. By induction

(8.12) A(k) = 1 + (A(2)-1) + (A(2)- 1)2 +* + (A(2)- 1)k-1,
1 < k . n.

Conversely, if two atoms of [x, y'] have join of height > 2, then the above
argument yields

(8.13) (12k) [> ] (A2))
Consequently,

(8.14) A(k) > 1 + (A(2) - 1) + *-- + (A(2) -)k-1,
and the proof is complete.
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LEMMA 8.2. Let L be a lattice of full binomial type such that the join of any
two distinct atoms of L has height 2. Then L is modular.
PROOF. Let x, y be two elements of L such that x and y cover x A y. (If no

such x, y exist, then L is a chain and hence modular.) Let n be the length of
[x A y, x v y] = L'. Then L' is a lattice of full binomial type whose invariants
B(1), B(2), *.. B(n) are the same as those for L. Hence, by Proposition 8.5, the
join of any two distinct atoms of L' has height 2; in particular, x v y has height
2 and thus covers x and y. This means L is upper semimodular. Dually, ifx and y
are covered by x v y, then the same argument applied to the dual of [x A y,
x v y] shows that L is lower semimodular. Hence, L is modular and the proof
is complete.

Finally, we come to the main theorem of this subsection.
THEOREM 8.2. Let L be a lattice offull binomial type, such that the join ofany

two atoms of L has height 2. Then L is isomorphic to either:
(i) a chain;
(ii) the lattice of finite subsets of a set; or to

(iii) the lattice offinite subspaces of a projective space.
PROOF. Suppose L is not a chain. Then L, being of binomial type, has two

distinct atoms whose join has height 2; hence, A (2) > 1. By Proposition 8.4, L is
atomic. By Lemma 8.2, L is modular. Thus, every segment [x, y] of L is a
modular geometric lattice. By Birkhoff (Theorem IV-10), [x, y] is the product
of a Boolean algebra with projective geometries. The only such products which
are of full binomial type are the single factor ones, that is, [x, y] is of the type (ii)
or (iii). Since every segment [0, x] of L is of the type (ii) or (iii), so is L, and the
proof is complete.

9. Algebras of triangular type

In this section, we investigate locally finite ordered sets P with 0 which have
a reduced incidence algebra R(P, -.) which is isomorphic, in a natural way, to
the algebra of all upper triangular N x N matrices (possibly N = oo) over the
ground field of R(P, "-). First we describe a class of such P. Let P be a locally
finite ordered set with 0 satisfying the Jordan-Dedekind chain condition. If
[x, y] is a segment of P with x of height m and y of height n, we call [x, y] an
(m, n) segment. Suppose that for all m, n any two (m, n) segments contain the
same number B(m, n) of maximal chains. (By convention B(n, n) = 1 if P
contains an element of height n.) We then call P an ordered set of triangular
type. Geometric lattices of triangular type are considered by Edmonds, Murty,
and Young [20] under a different name.

PROPOSITION 9.1. The equivalence relation on the segments ofan ordered set P
of triangular type defined by [x, y] - [x', y'], if and only if[x, y] and [x', y'] are
both (m, n) segments for some m, n, gives a reduced incidence algebra R(P, - ).
Iff(m, n) denotes the value that fE R(P, - ) takes on an (m, n) segment, then the



312 SIXTH BERKELEY SYMPOSIUM: DOUBILET, ROTA AND STANLEY

mapping

f(O, 0) f(0, 1) f(0, 2)
B(0, 0) B(0, 1) B(0, 2)

f(1, 1) f(1, 2)

(9.1) f B(1, 1) B(1, 2)
O O f(2,2)
O O B(2, 2)

is an isomorphism of R(P, %) onto the algebra of all upper triangular N x N
matrices, where N is the height of P (possibly oo).

PROOF. Let [x, y] be an (m, n) segment. The number ofpoints z E [x, y] such
that [x, z] is an (m, m') segment and [z, y] is an (m', n) segment is given by
B(m, n)/B(m, m')B(m', n). Thus, if f, g are constant on equivalence classes
relative to -, we have

(9.2) (f*g)(x, Y) = E B( (m m')g(m', n),

which is a function of m, n only. Hence, - gives a reduced incidence algebra,
and (9.2) is the condition for (9.1) to be an isomorphism.
The converse of Proposition 9.1 is provided by the next proposition.
PROPOSITION 9.2. Let P be a locally finite ordered set with 0 and R(P, -) a

reduced incidence algebra whose types can be labeled by ordered pairs (m, n),
0 < m < n, such that whenever (m, n) is a type and O< m' < n' < n, then
(m', n') is a type. Suppose there are numbers B(m, n) for every type (m, n) such
that the mapping (9.1) is an isomorphism of R(P, ' ) onto the algebra of all upper
triangular N x N matrices for some N < oo. Then the following hold:

(i) P satisfies the Jordan-Dedekind chain condition;
(ii) B(n, n) = 1 whenever (n, n) is a type;

(iii) we can take new values of B(m, n) preserving the isomorphism (9.1) such
that B(n, n + 1) = 1 whenever (n, n + 1) is a type;

(iv) every (m, n) segment of P contains the same number of maximal chains,
and when the isomorphism (9.1) is normalized by (iii), then B(m, n) is the number
of maximal chains in an (m, n) segment.

PROOF. Define hm, cE R(P, -.) by

(9.3) hm,n(x, y) =
I if [x, y] is an (m, n) segment,
0 otherwise.

It follows from (9.1) that

(9.4) hm,khk,n = B(m, n) hk, B(m, k)B(k, n) m,n



GENERATING FUNCTION 313

Thus, if [x, y] is an (m, k) segment and [y, z] a (k, n) segment, then [x, z] is an
(m, n) segment. Conversely, if [x, z] is an (m, n) segment and m . k < n, then
there is a point y E [x, z] such that [x, y] is an (m, k) segment and [y, z] a (k, n)
segment. It follows that points are (n, n) segments for some n and that two point
segments are (n, n + 1) segments for some n. Moreover, every maximal chain in
an (m, n) segment has length n -m, which proves (i).

Since the identity of R(P, -) goes into the identity matrix under (9.1), we
have B(n, n) = 1 whenever (n, n) is a type, proving (ii).

If B(m, n) is replaced by

(9.5) B(m, n)

then the isomorphism (9.1) is preserved and B(n, n + 1) is replaced by 1. This
proves (iii).

Hence, suppose each B(n, n + 1) = 1 whenever (n, n + 1) is a type. Let
q E R(P, -.) be the function which is 1 on two point segments and 0 elsewhere,
that is,

(9.6) i (x, y) =
I if [x, y] is an (n, n + 1) segment for some n,
{O otherwise.

If [x, y] is an (m, n) segment, then ,n-m(X, y) is the number of maximal chains
in [x, y], so that this number depends only on m and n. Using (9.1), q-" '(x, y) =
B(m, n), so (iv) is proved.

Propositions 9.1 and 9.2 give a characterization of ordered sets P which have
a reduced incidence algebra isomorphic to the algebra of all upper triangular
N x N matrices, namely P is of triangular type. If we assume P is a lattice, then
some of the structure of P can be inferred from the numbers B(m, n).

PROPOSITION 9.3. Let L be a lattice of triangular type. Set T(n)=
B(n, n + 2) - 1.

(i) If T(n) # 0 for every type (n, n + 2), then L is atomic (that is, every
element of L is the join of atoms); the converse is true if L is semimodular;

(ii) L is upper semimodular if and only iffor all types (m, n),

B(m, n)
(9.7) = 1 + T(m) + T(m)T(m + 1) + T(m)T(m + l)T(m + 2)

+ *-+ T(m)T(m + l) ..T(n -2);

(iii) L is lower semimodular if and only iffor all types (m, n),

B(m, n)2)n-3 +
(9.8) B(m n) = 1 + T(n -2) + T(n - 2) T(n -3) + -** T

B(m, n1) ~~~+ T(n-2)T(n-3) ... T(m)-
PROOF. For (i), suppose L is not atomic, and let y E L be a join irreducible

of L of height n + 2 > 1. If x is any element of height n lying below y, then
[x, y] is a chain, so T(n) = 0. The converse will be proved after (ii) and (iii).
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For (ii), L is upper semimodular if and only if whenever x and y cover x A y,
then x v y covers x and y; that is, if and only if in every (m, n) segment, the
join of any two distinct atoms has height 2. Now an (m, n) segment has B((m, n)/
B(m + 1, n) = A(m, n) atoms and (A(m2 n)) pairs of distinct atoms. Moreover,
each element of height 2 in an (m, n) segment covers B(m, m + 2) atoms, and
hence (B(m .m+ 2)) pairs of distinct atoms. Since an (m, n) segment has B(m, n)/
B(m, m + 2)B(m + 2, n) elements of height 2, we see that L is upper semi-
modular if and only if

((m, n)8 B(m, n) ((m, m + 2)8
\2 J B(m, m + 2)B(im + 2, n) 2

for all types (m, n). Simplifying (9.9) gives

B(mi n) B(m + 1, n)
B(m + 1, n) B(m + 2, n)

=1
(m)(I

T(in 1)B(in + 2, n)

1))B(m + 3, n)

= 1 + T(m) + T(m)T(m + 1) +

+ T(m)T(m + 1) ... T(n -2).
Case (iii) is the dual of (ii).
We now prove the second part of (i); that is, ifL is semimodular and T((m) = 0

for some type (m, m + 2), then L is not atomic. Say L is upper semimodular.
(The dual argument works when L is lower semimodular.) We show that there is
only one element of L of height m + 1. Suppose there are two elements of L
of height m + 1, and let n > m + 1 be the height of their join. We prove by
"descending induction" on k that

(9.11) B(k, n) 1
B(k, in + I)B(mn + 1, n)

when 0 < k . m + 1. The case k = 0 asserts that a (0, n) segment has only one
element of height m + 1, a contradiction.

Clearly, (9.11) holds for k = m + 1. Assume it holds for k + 1 with
0 <k + 1 _m + 1. By (ii),

(9.12) B(k, n)
B(k, m + I)B(m + 1, n)

B(k + 1, n)
B(k + 1, m + 1)B(m + 1, n)

(1 + T1(k) + T(k)T(k + 1) + + T(k) *- *T(n -2))
(1 + T(k) + T(k)T(k + 1) + + T(k) ... T(m- 1))'
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By assumption,
B(k + 1, n) = 1

B(k + 1, m + I)B(m + 1, n)
Since T(m) = 0,

(9.14) 1 + T(k) + *-+ T(k) *-.* T(n -2)
= I + T(k) +*** + T(k) ... T(m-)

Hence, B(k, n)/B(k, m + 1)B(m + 1, n) = 1, and the proof follows.
If L is a, say, upper semimodular lattice of triangular type, then Proposition

9.3 (ii) expresses B(m, n) in terms of B(m + 1, n) and the T(k). By iteration, we
can in fact express B(m, n) in terms of the T(k) only, namely

n-m-2

(9.15) B(m, n) = H [1+ T(m + i) + T(m + i)T(m + i + 1) +
i=Oi=O ~~~+ T(m + i) ... T(n -2)],

n _ m + 2.
A dual formula holds for lower semimodularity.
The proof of the second part of Proposition 9.3(i) reduces the theory of semi-

modular lattices of triangular type to that of atomic semimodular lattices. In
fact, we have the following theorems.
THEOREM 9.1. Let L be an upper semimodular lattice of triangular type. Then

there are geometric lattices (that is, upper semimodular atomic lattices of finite
length) L1, L2, * * *, L, of triangular type and an upper semimodular atomic lattice
Lr+ i of triangular type, such that L is isomorphic to the lattice obtained by identi-
fying the top of Li with the bottom of Li, 1 for 1 < i _ r.
THEOREM 9.2. If L is a modular lattice of triangular type, then the lattices

LI, * * *, L,+I of Theorem 9.1 are eitherBoolean algebras orprojective geometries.
Theorem 9.2 follows from the well-known structure theorem for modular

geometric lattices (Birkhoff, Theorem IV-10). Any such lattice is the product
of a Boolean algebra and projective geometries, and it is easily seen that this is
of triangular type if and only if the product has only one factor.
EXAMPLE 9.1. Chains. Discrete chains with 0 are modular lattices of tri-

angular type. Each lattice Li of Theorem 9.1 consists of two points. Here
B(m, n) = 1 whenever (m, n) is a type, or equivalently T(n) = 0 whenever
(n, n + 2) is a type.
EXAMPLE 9.2. Projective geometries. The lattice of finite subspaces of a

projective geometry with q + 1 points on a line is a modular lattice of triangular
type with T(n) = q whenever (n, n + 2) is a type.
EXAMPLE 9.3. Boolean algebras. These are modular lattices of triangular

type with T(n) = 1 whenever (n, n + 2) is a type.
Examples 9.1, 9.2, and 9.3 all have the property that B(m, n) depends only on

n - m when (m, n) is a type. Such ordered sets are of full binomial type defined
in the previous section. It is proved there that a semimodular lattice of full
binomial type is one of Example 9.1, 9.2, 9.3.
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EXAMPLE 9.4. Affine geometries. The lattice of finite affine subspaces of an
affine space with q points on a line is an upper semimodular (but not modular
unless there is only one line) lattice of triangular type with T(0) = q - 1,
T(n) = q, n > 0, when (n, n + 2) is a type.
EXAMPLE 9.5. Various ways of putting together and taking apart ordered

sets of triangular type give other ordered sets of triangular type. The simplest
examples are (a) segments, (b) identifying all elements above or below a certain
level to a single element (called upper or lower truncation), and (c) identifying
the top of an ordered set of triangular type with 1 with the bottom ofan ordered
set of triangular type. All of these operations except lower truncation preserve
upper semimodularity.
EXAMPLE 9.6. Block designs. Let L be a geometric lattice of triangular type

of height 3. If we regard the atoms of L as objects and the co-atoms as blocks
containing the atoms they cover, then L determines a balanced incomplete
block design with parameters

v = 1 + T(0) + T(0)T(1) = 1 - B(1, 3) + B(0, 2)B(1, 3),
B(1, 3)

(9.16) B(0, 2)
k = B(0, 2),
r = B(1, 3),
i= 1.

Conversely, any balanced incomplete blocks design with A = 1 determines a
geometric lattice of triangular type of height 3. Thus, geometric lattices of
triangular type can be regarded as generalizations of A = 1 block designs.
Proposition 9.3 is then the generalization of the well-known relations bk = vr
and r(k - 1) = v - 1 holding in any block design with A = I (see Hall, [30],
Chapter 10).
EXAMPLE 9.7. Miscellaneous other examples and a method for classifying

them, can be found in the paper of Edmonds, Murty, and Young [20].
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