
WEAK CONVERGENCE OF
STOCHASTIC PROCESSES

WITH SEVERAL PARAMETERS
MIRON L. STRAF

UNIVERSITY OF CALIFORNIA, BERKELEY

1. Stochastic processes, random functions, and weak convergence

Looking at a stochastic process as a function plucked at random may be
interesting in its own right, but there is a statistical reason for doing so: a large
class of limit theorems for functions of partial sums of a sequence of random
variables or for statistics which are functions of empirical processes may be
derived.
To achieve such practicality, we are led to ask a number of requirements of

a theory of probability measures on a function space. We enumerate a few.
(i) To begin with, our function space S must contain the realizations of pro-

cesses of interest to us and should contain those which are defined in their
simplest forms with empirical observations.

(ii) The a-field aJ of subsets of S over which our probability measures are de-
fined must contain events whose probability we wish to know. Some of these
events may be defined by topological or analytical qualifications; for example,
the classes of continuous functions in S or integer valued functions in S.

(iii) Processes under investigation must be measurable functions from the
underlying probability space over which they are defined; that is, they must
induce probability measures on -. Moreover, we should have convenient rules
in order to determine whether a process is measurable.

(iv) Each real valued and measurable function h on S transforms a stochastic
process or random function X into a statistic or random variable h(X). Statistics
of interest to us should be so induced by measurable functions of stochastic
processes. In addition, we must have criteria, preferably easy to apply, to verify
the measurability of real functions h on S and to determine if h(X) is a random
variable.

(v) For a sequence of stochastic processes {X,,} a mode of convergence should
be defined so that we may infer, for a large class of functions {h}, that the
statistic h(X5) converges weakly to h(Xo); that is, the distribution function of
h(X") converges to that of h(Xo) at each continuity point of the latter. In addition,
we need facile standards to determine for a function h when such convergence
holds.
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(vi) Finally, and most important, the analytical nature of our function space
should lead to adaptable criteria which specify whether or not a sequence of
stochastic processes has a limit with respect to our mode of convergence.

Having investigated many formulations of convergence of probability
measures on a function space, Prohorov concluded that in the more interesting
cases the function spaces were separable and complete metric spaces, each
provided with the Borel a-field generated by the topology of their metric. The
treatment of stochastic processes as random elements of such spaces satisfies,
by and large, our six requirements. Prohorov [22] formulated and further de-
veloped this theory in its now classical setting. It is called weak convergence of
probability measures on a separable and complete metric space. A consummate
exposition of this theory is presented in the treatise of Billingsley [3]. Briefly,
we describe what weak convergence means, and how the theory may be used.

Let S be a metric space, and -4 be the collection of its Borel sets (the v-field
generated by the open sets). Let C(S) be the class ofthose real valued, continuous,
and bounded functions on S. For probability measures P, n = 0, 1, *. , on
-, the weak convergence of P,, to PO, written P. => PO, is defined by the require-
ment that limn Is f dP, = |s f dPo hold for each f in C(S).
From this definition, it is clear that if h is a real and continuous function on

S, then the induced measures P 1h- on the real line converge weakly to the
induced limit measure Poh' . What is more general: we may allow h to have
discontinuities as long as it is measurable and its set of discontinuities has prob-
ability zero under PO. In practice, we establish weak convergence in order to
prove weak convergence ofrandom variables induced by various real functions h.
When does a sequence of probability measures on (S, X) converge weakly to

a limit? Concepts useful for the answer to this question are relative compactness
and tightness. A family rI of probability measures on (S, -) is relatively compact
(relatively, sequentially, weakly compact would be precise but verbose) if every
sequence of probability measures in HI contains a weakly convergent sub-
sequence; that is, a subsequence which converges weakly to some probability
measure not necessarily in Hl. The family Hl is tight (the term is due to Le Cam
[16]) if, for each s > 0, there is a compact set K for which the relation P(K) >
1 - c is satisfied at once for all probability measures P in H.
The Prohorov theorem states that for a metric space S, if H is tight, then it

is also relatively compact. In separable and complete metric spaces (for which
Prohorov [22] proved this theorem), tightness is necessary and sufficient for
relative weak compactness.

Thus, if our function space is a separable and complete metric space, the prob-
lem of characterizing relative compactness of a family of probability measures
on the space becomes one of characterizing tightness of the family, which, in
tum, reduces to the problem of characterizing compactness in our function
space.

Stochastic processes with jump discontinuities-empirical distribution func-
tions, for example-may be handled by treating them as random elements of
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the space D[O, 1] of all functions on the unit interval with discontinuities of at
most the first kind. (For the convenience of discriminating between functions,
we require that they be right continuous.) The required measurability of impor-
tant empirical processes with respect to the Borel sets of D[O, 1], however, pre-
cludes the use of uniform distance as a metric on this space. For example, the
elementary transformation which assigns to each point p on the unit interval
the indicator function of [p, 1] is not a measurable transformation from the
Borel sets of the unit interval to the Borel sets of D[O, 1] with the uniform norm.
Thus, empirical distribution functions may not be random elements ofthis space.
An ingenious topology invented by Skorohod [27] satisfies our measurability

requirements and makes D[O, 1] a separable and topologically complete metric
space with the result that Prohorov's theorem may be applied.

Ironically, it was not Skorohod's intention to apply the Prohorov theory to
D[O, 1]; his strategy was to establish criteria by which a sequence of stochastic
processes {Xj} might be replaced by an almost surely convergent sequence {X.}
each of whose elements has the same finite dimensional distributions as the
corresponding element of {X"}.

It was Kolmogorov [14] who exhibited a metric for Skorohod's topology
and proved that the metric space was homeomorphic to some complete one.
The question which he raised, whether one might exhibit a complete metric, was
answered by Prohorov [22]. To the Hausdorff metric between the closure of
the graphs of functions in D[O, 1], Prohorov appended the Levy distance for
monotone functions on the real line between those obtained when each function's
modulus, which serves to characterize elements of D[O, 1], is considered as a
monotone function of its real argument exploded by an exponential transform-
ation. This eclectic metric is equivalent to Skorohod's topology and makes
D[O, 1] a separable and complete metric space.
A relatively simple formulation of an equivalent metric which preserves the

intuitiveness of Skorohod's convergence is presented by Billingsley [3]. Let A
be the class of all strictly increasing and continuous maps of the closed unit
interval onto itself. Billingsley's metric d (-, * ) is defined, for x and y in D[0, 1],
to be the infimum of those positive s such that there is a A in A for which
suptlI(t)-t < s and supt, x (t) -y (it) _ E. Although d (*, *) is not a complete
metric, it is topologically complete. By imposing a constraint on A stronger than

suptJA(t) - _ s, we may construct a complete metric which is equivalent to
d(-, *) on D[0, 1]. (We shall investigate this question in general.)
The Skorohod topology is strong enough so that convergence to a continuous

function agrees with uniform convergence to that function. Thus, if we have a
sequence of probability measures Pn converging weakly to a probability measure
P concentrated on the subspace C[O, 1] of continuous functions, as is the case
for the probability measure of Brownian motion, then each measurable function
h continuous with respect to the supremum metric is continuous almost every-
where P on D[0, 1] with the result that the random variables induced by h are
weakly convergent.
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2. Stochastic processes with several parameters

Prior to the work of Levy, the study of random functions of several variables
had been undertaken by divers scholars with an empirical point of view. Levy
([18] and [19]) filled the lacuna between theory and practice with his study of
Brownian motion with several parameters.
The weak convergence, however, of stochastic processes with several para-

meters treated as random elements of spaces that are concrete generalizations
of C[0, 1] and D[O, 1] has only recently been studied. Dudley [7] introduced a
space of possibly discontinuous functions of several variables provided with a
a-field generated by the spheres of the uniform metric and developed a separate,
but parallel, theory of weak convergence for probability measures on nonsepar-
able metric spaces in the application to random functions of his space. His work
has been complemented by that of Wichura [33]. Their conditions for weak
convergence, however, apply only to processes converging to an essentially con-
tinuous limit. Such problems as those which they considered have also been
explored by Le Cam [17], who investigated an omnibus central limit theorem
for random elements of nonseparable linear spaces.

It is our purpose to place the analysis of convergence of stochastic processes
with several parameters in our bailiwick of the classical theory of weak con-
vergence of probability measures on a separable and complete metric space.
Our method is to define a metric on Dudley's function space which generalizes
Skorohod's for D[0, 1].
To achieve this purpose, we study in general a space D(T) of functions with

possible jumps on an arbitrary space T, and, taking our cue from Skorohod,
present an associated collection of metrics for D(T). Exploring these metrics, we
determine which ones make the function space separable and complete, and
characterize the relative compactness of sequences of probability measures on
the Borel sets ofD (T). When T = [0, 1], our work reduces to results known for
D[O, 1]; when T c Rk, this study provides our method for the analysis of sto-
chastic processes with several parameters.

3. A general Skorohod space

We begin with an arbitrary space T over which our functions are defined and
some group A of one to one functions from T onto itself. Generic elements of A
are denoted by i, u, and y; and the identity transformation, by e. On A we define a
norm with respect to group composition, that is, some real valued function 11-11
on A for which (i) I|AI| is nonnegative and RI.| = 0 if and only if A = e, (ii)
,2.o jull _ IJA + 11,ull, and (iii) ||iA|| = 1121AI
LEMMA 3.1. The norm ll*linduces a right invariant metric dA(-, *) on A defined

bydA(,/,) = I20M11-.
PROOF. The norm assumes only nonnegative real values; thus, so must

dA(*, *). If dA(2, j) is zero, then A -y 1 is the identity, implying A = ju. Symmetry
follows from 1I120- l1 = lliy-A`||, while the triangle inequality follows from
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||I o -lIl = |AoVu ojo y'- l |,o -1ll + liMo v-1y . Finally, the metric is
right invariant since dA(AoY,/°Y) = IkoorYo-1K-l ='lIIoV'l = dA(A,I)
Q.E.D.

It is not necessary for our analysis that A with the metric dA(*, *) be a topo-
logical group. But there is so much structure here that one can show that the
metric space {A, dA(*, -)} is a topological group if and only if inversion is a
continuous operation and if and only if composition on the left is continuous
at the identity.

It is worthwhile to know that, whether or not {A, dA(, )} is a topological
group, the norm is continuous: IJAI| is the distance from e to A and the distance
from a set in a metric space is a Lipschitz continuous function.

Let us look at some examples. Suppose that {T, p( , *)} is a compact metric
space. Let A be some group of homeomorphisms from T onto itself. We define
on A a supremum norm 1 by

(3.1) AILII = sup p(Ap, p).
peT

It is easy to show that 1 is indeed a norm on A.
In this same context, we introduce a slope norm 11 1l on A defined by

(3.2) llAllt = sup log P )q)
{p,qeT:p$q) p(p, q)

Here, however, we restrict our attention to a subgroup A, of A consisting of
those homeomorphisms in A with finite slope norm:

(3.3) A, = { E- A: IIilI, < °°}.

At first glance, lit appears to be a norm on A,. Indeed, it assumes non-
negative real values and

p971'p, A-1q) p(p, q)
(3.4) iI)~'i- = sup log =sup log

p#q p(p, q) p+q p(Ap, 2q)

= sup|log P=aP, )q)| =
p -qI p(p, q)

In addition, the triangle inequality holds:

(3.5) iIAOPllt = sup|log p(A(8P' ) q) P(P,)q|

=< ILIhI + llgll.
What may prevent 11- li from being a norm is that, from 1i|ll, = 0, we may

only conclude that A is an isometry. If the group of homeomorphisms A were
judiciously chosen to have no isometries other than the identity, then 11, would
be a norm on A,. Such a choice for A, other than the trivial one A = {e}, may
easily be made when T is the unit interval with the usual metric: merely require
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that each homeomorphism have zero as a fixed point. In the general case, we
may circumvent the problem of choosing such a A by introducing a modified
slope norm 11 IIm defined for each A in A, by

(3.6) |il||m. = lIllsI + lIIAII
When T is the compact unit interval with the usual metric and A is some group

of homeomorphisms of T onto itself which have zero as a fixed point, we define
a diffeomorphism norm on A by

(37) J{sup log i'(t) if the derivative, A'(t), exists
IIiIl+c otherwise

and a corresponding subgroup Ad by

(3.8) Ad = {AA A: I'AIId < °°}

LEMMA 3.2. With A some group ofhomeomorphisms of the compact unit inter-
val onto itself which have zero as a fixed point and with Ad defined by (3.8), the
diffeomorphism norm is a norm on Ad.

PROOF. For each A in Ad, l|AIld is finite and nonnegative, and lIAld = 0 if and
only if A'(t) = 1, which means that A = e. It follows from the chain rule that

(3.9) AI ° YI11d = SUP|1Og0 '(9,t). (t)I
_ sup log A'(Pt) I + supI log P'(t)
= I|ld + li'Ild;

and from the inverse function theorem, that

(3.10) IRJ|id = sup|log i7 (t)l = sup|log i1A(it)l
= supI -log A'(t)| = IlAud-

Q.E.D.
Each A in Ad is a diffeomorphism, that is, a differentiable homeomorphism.

To be precise, a diffeomorphism is required to have an inverse which is differenti-
able as well, but in our case this condition is guaranteed by the inverse function
theorem.
An interesting property ofthe diffeomorphism norm is given by the following.
LEMMA 3.3. For diffeomorphisms A and it of the compact unit interval,

(3.11) IlAoClld = supIlog A'(t) - log '(t)|-

In particular, convergence of the diffeomorphisms A. to A with respect to the metric
induced by the diffeomorphism norm is equivalent to the uniform convergence of
their derivatives A' to A'.
PROOF. It follows from the chain rule and the inverse function theorem that

(3.12) IiA,rY1IId = SUp|log k'(f1_1t)Y"1 (t)I
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= supIlogi t suplog A'(u) - log p'(u)I.

Suppose lime ||IIo2 1lid = 0. Since sup,, supt log A'(t)| < oo and the ex-
ponential function is uniformly continuous on bounded intervals, (3.11) implies
that A' converges uniformly to i'. Conversely, suppose supt IA'(t) - A'(t)| = 0.
Since supt log A)'(t)I < oo, i'(t) is bounded away from zero and infinity; so then
must be A"(t) for all sufficiently large n. Since the logarithm function is uni-
formly continuous on bounded intervals that are bounded away from zero,

(3.13) lim II2flon ||1Id = lim sup log A"(t) - log i'(t)| = 0.
n ,t t

Q.E.D.
Returning to our general setting, let 9 be a collection of finite partitions of T,

directed by refinement (A1 _ A2 means that A1 is finer than A2) and invariant
under A; that is, A E A and A = {A,} E 9 imply A(A) = {A(A,)} E 9. The class
of all functions assuming a constant real value on each cell A, of some partition
A = {A,,} in 9 is denoted by Ig and called the class of simple functions. In addi-
tion, we denote byB (T) the class of all real valued bounded functions on T.
With our general group A and its associated norm 11 11, we define a Skorohod

distance d(-, *) between two elements x and y of B(T) by

(3.14) d(x, y) = inf {e > 0; there is a A e A with |il|| < e

for which sup |x(t) - y(At)l < e}.

Note that this distance does not exceed supt x(t) - y (t) 1, the uniform distance
between x and y and, when A = {e}, they are the same.

Finally, we define our function space D(T) to be the class of those bounded
functions on T which lie at distance zero from our class of simple functions I,
in terms of the Skorohod distance:

(3.15) D(T) = {x E B(T): d(x, I9) = 0}.

Even ifwe allowed B (T) to contain unbounded functions or extended real valued
functions, D(T) would be unchanged: d(x, Ig) = 0 implies that x is bounded.
LEMMA 3.4. The space D(T) with the Skorohod distance is a (pseudo) metric

space.
PROOF. Since d(x, y) < supp Ix(p)I + supp Iy(p)I, d(x, y) is finite; clearly,

it is also nonnegative. Symmetry of d(*, *) follows from

(3.16) sup Ix(p) - y(Ap)l = sup IY(P) - x((A21P) 11211 = 112 l
p p

Finally, the triangle inequality follows from I12oMll < 11211 + |II,u and

(3.17) sup lx(p) - z( opp)I _ sup Ix(p) - y(gp)l + sUp Iy(p) - z(2p)I
p pQ.

Q.E.D.
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We adopt the convention of not distinguishing between two functions x and
y for which d(x, y) = 0 and thus work with the resulting metric space of
equivalence classes. In our applications of this theory, we shall have, in fact,
x = y whenever d(x, y) = 0.
The definition (3.15) of D(T) shows us that Ig is dense in D(T). What is more,

since 9 is invariant under A, each x in D(T) may be uniformly approximated by
a sequence of simple functions in Ig.
For each x in B(T) and A = {Aj} in 9, let

(3.18) coX(A) = max sup {Ix(s) - x(t)|: s, t E A,}.
V

With x in B(T), we associate a modulus fx('i, A) defined for each 'i > 0 and A
in 9 by

(3.19) f A('1A) = inf {co.'(A): A E A, 11A11 <
It is not difficult to see that, for each x in B(T), limA fX(I, A) = 0 for all tj > 0
ifand only if lim,Ac. (A) = 0, with limits taken along the direction of refinement.
In particular, if fM('i, A) converges to zero for some particular tq > 0, then it
does so for all ?I > 0.
Our modulus characterizes elements of D(T) in the following sense.
THEOREM 3.5. For each x in B(T), x E D(T) if and only if limAf,X(q, A) = 0

for all il > 0.
PROOF. Let s > 0 and x E D(T) be given. Choose from I., a y such that

d(x, y) < E/4. Then there is a A in A with 1IAI < e/2 for which

(3.20) sUp lx(p) - y(Ap)I < E/2.

Since y is constant on each cell Av of some partition A = {A,} in 9, y o- is con-
stant on the cells 1- 1(Av). So for each v, the fluctuation ofx over the cell A- 1(Av)
is less than E, that is, a4()71A) < E. Therefore, A' E and A' _ A-1 imply
CaX(A') < £; so co.(A) converges to zero and thus limAfX(7, A) = 0 for all , > 0.

Conversely, if limA f,(?I, A) = 0 for all tq > 0, then by our previous remarks,
lim 'X(A) = 0. So for each E > 0, there is a partition A = {Av} E 9 for which
cw)(A) < E. Choose a pointpv in each cell A,D and let y be the function in Ig, which
assumes the constant value x(p,,) on the cell A,. Then, Ix(p) - y(p)| < s for
all p E Av and for all v, so supp |x(p) - y(p)| < E, implying d(x, y) < s. Since
E > 0 was arbitrary, d(x, I.9) = 0, which means that x E D(T). Q.E.D.
The proof of this theorem shows that a bounded function x belongs to D(T)

if and only if it is the uniform limit of a sequence of simple functions in Ig.
This fact also follows from our definition of D(T) and from the fact that x E Ig
and A E A imply x EA Iq.
We now prove a lemma describing a relation between our modulus and the

Skorohod metric which will have an application later in determining the measur-
ability of sets defined in terms of our modulus and in proving the characterization
of compactness for our function space.



WEAK CONVERGENCE 195

LEMMA 3.6. With respect to the Skorohod metric on D(T), for a fixed I > 0
and A E 9, the modulus f,(ti, A) is an upper semicontinuous function of x.

PROOF. Let s > 0 be given. We will show there is a ,B > 0 such that
d(x, y) < P implies f,(tl, A) fx(?I, A) + s. To this end, first choose a A in A
with 1J1I1 < , for which co(A) < f.(, A) + s/2. Next, choose /3 > 0 such that
A + ,B < i1 and /3 < s/4. Then d(x, y) < P implies there is a j in A with
lt| < for which

(3.21) sup Ix(p) - Yo-'(p)I < 8.
p 4

Therefore, supp Ix0A(p) - yo/uo)A(p)I < s/4, and thus,

(3.22) co;(poAA) _ CO(AA) + <-f (ii, A) + e

Moreover, 11°i .A 11II + 114A /3 + 11A11 < 11 so f (nl,) . co;(moAA) <

fx('i, A) + s. Q.E.D.
Completeness of our general Skorohod space is assured by the following

condition.
THEOREM 3.7. If {A, dA(*, -} is complete, then so is {D(T), d(*, .)}.
PROOF. We show each Cauchy sequence in D(T) contains a convergent sub-

sequence. Let {x"j be a Cauchy sequence in {D(T), d(-, .)}. Without loss of
generality, we may assume that En d(x, x,, +1) < 00 . So for each n there is a jiu
in A with In || yn || < 00 and

(3.23) E sup Ix.(p) - X"+1(YIP)I < °.
n p

Let Yn,m = Yn+m0m - o/n - Since dA(Ynm+1, Yn,m) = II/in+m+1II, for each n the
sequence {'Yn,m} is Cauchy in {A, dA(-, -)} and so must converge to a An in A.
By continuity of the norm,

(3.24) Ik|nll = lim IIYn,mil < E llmIl;
m m2n

thus, IIAnII converges to zero. Since A,n = An +1 °I in,X
(3.25) sup xn,oA,l(p) _ x,+ioA,4li(p)I = sup|xnojg1(p) -

p p
= sup Xn(p) - Xn+1°9n(A;

p

therefore, {xn o An 1 } is a Cauchy sequence with respect to the metric of uniform
convergence and so must converge uniformly to a limit x. Consequently, x E

D(T) and d(x, Xn) converges to zero. Q.E.D.
The converse to this theorem does not hold, as a suitable example with g

consisting of the space T alone illustrates. An example in which we may apply
this theorem is the following.
THEOREM 3.8. With respect to the modified slope norm, the induced metric

space {A,, d .(-, )} of those homeomorphisms A of a compact metric space onto
itself for which IlAil m < °° is complete.
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PROOF. We show that every Cauchy sequence contains a convergent sub-
sequence. We suppose then that {in} is a Cauchy sequence with respect to |1
and without loss of generality, we may presume that

(3.26) M = (dA.(2,2n+1) = ZH2n°iln < °°
n n

Thus, {2,n} is Cauchy with respect to the uniform norm and, therefore, converges
uniformly to a limit function A. We shall show that A is a homeomorphism and
that A E A,t

First, A is continuous, since the Ai are each continuous and converge uniformly
to A.

Next, we show that kI|At is finite. Now,

(3.27) lln2ll = I2n-'I| AllI + E IlAkoAk+lilt _ lliAilI + M-
k<n

So for all distinct p and q in T,

(3.28) log P(A.P' nq) <_lAInlt <. M + IA11ll,.
p(p, q)

Letting n approach infinity, we obtain

(3.29) log p (2p, q) < M + Ii2III,
p(p, q)=

for all distinct p and q in T. Thus, liI| _ M + AuIlII, < oo.
Now we show that A is one to one. Otherwise, there are points p and q in T

with p(p, q) > 0 for which Ap = Aq. This, however, would imply that|All, = oo
which contradicts the conclusion of the previous paragraph.

Next, we show that A is onto. Otherwise, there exists a point p in T which
does not belong to A(T). Since A is continuous, A(T) is compact; so p is neither
in nor on the boundary of A(T). Thus, for some s > 0, p(p, A(T)) _ 8. Choosing
an n such that iIA-ll < s/2, we have p(AoA-`p,p) < s/2, but A(A,-'p) E A(T)
contradicts p(p, A(T)) > s.

Finally, continuity of the inverse will necessarily follow, since every one to
one continuous map of a compact space onto a Hausdorff space is a homeo-
morphism. That 1I1211 is finite then implies that A E A,.

It remains to show that dA',(An, A) converges to zero. We already know that
limn ln oi-2115 = 0. Fork > n,

(3.30) IlAkAnA||t = nI=ko4k<kAk-1° °.o +o)| _ E I+1l|t;

so, for distinct p and q in T,

(3.31) lo P(2kOf plP inl) | < E I|Aj+1oA |-'I
p(p, q) the nsu < lk

Letting k approach infinity, taking the supremum over all distinct p and q in T,
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and finally letting n become large, we obtain

(3.32) lim I|InAI ||t = lim llA-A4'il| = 0.
n n

Therefore, limn llAn °i-A = 0, which implies that limn dX,(An, A) = 0. Q.E.D.
Thus, we see that by imposing convergence of the slope norm as well as that of

the supremum norm, we assure that our limit function A is a homeomorphism.
An analogous condition is used by Paul [21] in application to problems of
differential geometry.
We discuss now the diffeomorphism norm on Ad of Lemma 3.2, where

T = [0, 1]. Recall that Ai|d = sup,Ilog A'(t)|.
THEOREM 3.9. With respect to the diffeomorphism norm, the space {Ad,

dAd(-, -)} of those diffeomorphisms A of the unit interval onto itself for which
A(0) = 0 and I"Al1d < oo is complete.

PROOF. Suppose {Ain is a Cauchy sequence; that is, limn,m llAnoA,'lId = 0.
By Lemma 3.3, {log A"(t)} is a Cauchy sequence with respect to the uniform
(supremum) norm and thus converges uniformly to a limit g(t), say. Since

(3.33) sup |g(t)|I sup supIlogA'(t)| < °°
t n t

and since the exponential function is uniformly continuous on bounded intervals,
we must have A"(t) converging uniformly to exp {g(t)} on [0, 1]. Thus, {iAn} iS
a sequence of differentiable functions on [0, 1] for which An (0) = 0 and A' con-
verges uniformly on [0, 1]. We may then conclude (see [24], p. 140) that An
converges uniformly to a differentiable function A and that A'(t) = limn Ai(t) =
exp {g(t)}. Thus,

(3.34) IIIlld = sup|log A'(t)l = sup |g(t)| < oo.
t t

This implies that the derivative of A is bounded away from zero, so A must be
strictly increasing on [0, 1] and thus one to one. Moreover, A(1) = limn An(') =
1, so A is onto. All this implies that A is a differentiable homeomorphism of [0, 1]
onto itself with finite diffeomorphism norm and therefore belongs to Ad. As we
have seen, log A"(t) converges uniformly to g(t) = log A'(t). By Lemma 3.3, this
implies limn IlAnlO-'lld = 0. Q.E.D.

Another example with T = [0, 1] is provided by the slope norm ||1ll defined
by (3.2) in which the metricis p(s, t) = Is- t|.
THEOREM 3.10. When At is the group of those homeomorphisms A of the com-

pact unit interval onto itselffor which A(0) = 0 and IIAll, < °O, then the induced
metric space {At, dA,(-, -)} is complete.

PROOF. For t E [0, 1], log (At/t) . IJAI|| implies At - t . exp {IlIIt}-1.
Since log (tiAt) = -log (Atlt), we similarly conclude that t - At _ exp {|All}-
1; therefore,

(3.35) IJAIIs _ exp {lAIlt} - 1.
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Thus, convergence with respect to the slope norm implies convergence with
respect to the supremum norm. If {i,,} is Cauchy with respect to || II,, then (3.35)
implies that the sequence is Cauchy with respect to | and so it is Cauchy with
respect to the modified slope norm |rn = | + || ie. By Theorem 3.8, there is
a A E A, for which

(3.36) lim |II2n il|t - lim O.1n°2 l = 0.
n, n

Thus, {A,, dA,(-, *)} is complete. Q.E.D.
Once completeness of D (T) is established, compactness may be characterized

in terms of our modulus by a theorem that smacks of the Arzela-Ascoli charac-
terization in the space of continuous functions.
THEOREM 3.11. When {D(T), d(-, -)} is complete, a set A c D(T) has com-

pact closure if and only if

(3-37) suAp sup I|x(t)|I < Co

and
(3.38) lim sup f((q, A) = 0 for all ? > 0.

A xeA

PROOF. We first show the sufficiency of (3.37) and (3.38). Since {D(T),
d(*, -)} is complete, it suffices to show that A is totally bounded. Let e > 0 be
given. By (3.38) with q = s, there is a A = {A,} such that

(3.39) sup inf {co(AA): jI||I < 8} < e.
xeA

Let B = SUpXrA SUppeT lx(p)I and let H be an E net in [-B, B]. LetE consist of
those functions x in D(T) which assume on each cell of A a constant value from
H. Clearly E is finite. We show that every element of A is within a distance 3e,
in terms of the Skorohod metric, from E.

If x E A, then there is a A E A with IIAll < E for which cox(AA) < 2e. Now

(3.40) sup 1x02(p) - xoA(q)l = sup lx(p) -

p,qeA. P,qcA(A,,)

implies co.(AA) = co>,I(A), so that w(A) < 2e. Choosing y in E such that
Iy(p) - xo A(p)I 3£ for all p E A, and for all v, we have

(3.41) sup Iy(p) - xo A(p) < 3e,
p

which, in addition to 11|1| < e, implies d(y, x) < 3s. So E is a 3e net for A, and
thus A is totally bounded.
Now for the necessity of the conditions. If A, the closure of A. is compact,

then A is bounded, so

(3.42) sup sup |x(t) = sup d(x, 0) < oo,
xeA t xeA

where 0 is the function identically zero. Theorem 3.5 shows that, for each x E A,
limAfx(ij, A) = 0 for all ?I > 0; moreover the net fx(?I, A) for each x in A and
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tj > 0 converges monotonely to zero. This is all we need, since the upper semi-
continuity of our modulus (Lemma 3.6) implies, by Dini's theorem, that the
convergence is uniform on compacta. Q.E.D.

Separability of our function space is equivalent to the existence of a countable
collection of partitions linearly ordered under refinement, along which we may
take the limit in determining all the elements of D(T) with our modulus.
THEOREM 3.12. The space {D(T), d(-, )} is separable ifand only if there exists

in 9 a countable subcollection {Ak} such that for all boundedfunctions x, x E D(T)
if and only if limkfX(q, Ak) = Ofor all n > 0.

PROOF. It is not difficult to see that without loss of generality, the sub-
collection {Ak} may be required to be linearly ordered under the direction of
refinement (Ak+l >_ Ak)-
Assume then that there exists such a countable collection satisfying the hypo-

thesis of our theorem and linearly ordered under refinement. Let K be the set of
those x E D(T) which assume a constant rational value on the cells of some
partition Ak. Clearly, K is countable. For x E D(T) and E > 0, choose k such
that f (e, Ak) _ E. Then there exists a A with 11jAl < e such that CO.(AAk) < 2E.
Thus CO'xoA(Ak) = (cO(AAk) < 2e; so there exists an xe in K such that

(3.43) sup Ixo).(t) - x£(t)I < 2e,

which implies d(x, XE) _ 2s. Thus, K is dense.
Conversely, let D(T) be separable with a countable dense subset {x"j. Choose

A1 such thatfx(1, A1) < 1, and at each stage k choose Ak finer than Ak.l and
such that f n(I/k, Ak) < l/k for all n = 1, * , k. Then, for each n and t1 > 0,
liMkfxfL(t, Ak) = 0, since for a given e > 0, we need only choose k > max
{n, 1/, 1I/q} to assure

(3.44) fnt Ak)_k <( <)Ek
We now show that limkfX(tl, Ak) = 0 for all x in D(T). Let x E D(T), t1 > 0, and
e > 0 be given. Since {xn} is dense, we may choose an xn for which d(xn, x) <
min {e, n}. Thus, there is a y in A with |lyll < I such that

(3.45) sup lx(t) - xno 7(t)I < E.

This implies that

(3.46) fx('i Ak) - inf co.,'A) + 2e,
{A 1A 11 < 2n)

for if there is a A with |I|I < , for which a4(/Ak) < C then u = v o 1 satisfies

iltll < Ilyl + IlAii < 2ti and
(3.47) sup lXnoJ,(t) - xo- (t)I = sup Ixnov(t) - x(t)l < C,

C C

implying coa('IAk) < c + 2s. So, by choosing k such that fx (2t1, Ak) < E, we
have fx(, Ak) _ 3C. This shows, since f A('i,Ak) is monotonely nonincreasing as



200 SIXTH BERKELEY SYMPOSIUM: STRAF

k increases, that limk f(tI, Ak) = 0. To make the proof of the characterization
in our theorem complete, we need only note that if limk f (', Ak) = 0, then
limA fX(t1, A) = 0 which implies that x E D(T). Q.E.D.
We shall refer to the linearly ordered collection {Ak} of this theorem as a

countable determining collection.

4. Weak convergence of probability measures on D(T)

Just as one may translate the Arzeli-Ascoli characterization of compactness
for the space C[0, 1] into a characterization of tightness for a family of prob-
ability measures on the Borel sets of that space, so we may do likewise with
Theorem 3.11 for the space D (T). Every probability measure on the Borel sets of
a separable and complete metric space is tight (sup {P(K): compact K} = 1).
The hypothesis of completeness cannot be suppressed, as an example of Le Cam
in [3] illustrates. A discussion ofthe problem ofwhether one may suppress separ-
ability, and other problems related to it, may be found in Appendix III of [3].
Under the sole assumption of completeness, we require that each probability
measure in a sequence be tight in order to characterize the tightness of the
sequence.
THEOREM 4.1. Let {D(T), d(-, -)} be a complete metric space and let {P,,} be

a sequence of tight probability measures on the Borel sets a4 ofD (T). The sequence
{Pn} is tight if and only if

(i) for each b > 0, there exists an a such that Pn{x: supt Ix(t)I > a} _ b for
all but a finite number of n and

(ii) for each b > 0, t > 0, and £ > 0, there exists a A E9 such that
Pn{x: fx(q A) _ £} . b for all but a finite number of n.

PROOF. Since sup, Ix(t)I = d(x, 0), the set {x: supt Ix(t)I > a} is open, and
therefore in X. Moreover, for a fixed q > 0 and A in -9, f,('i, A) is an upper semi-
continuous function of x (Lemma 3.6); thus, {x: f.(?I, A) _ e} is closed and
therefore in -.

Suppose that {P,,} is tight. Given b > 0, r > 0, and s > 0, choose a compact
setK such that Pn (K) > 1 -b for all n. Then, K c {x: supt X (t)I _ a} for some
a and K c {x:f.(n, A) < e} for some A in 9.

Conversely, suppose {P,j satisfies (i) and (ii). Given b > 0, choose a such that
B = {x: supt Ix(t)I _ a} implies P (B) > 1 - (b/2) for all but a finite number
of n. For each integer k, choose a Ak e 9 such that Bk = {x: fx(1/k, Ak) < l/k}
implies Pfl(Bk) 1 - (b/2k+l) for all but a finite number of n. Since each indi-
vidual Pn is tight, the previous paragraph shows that we may choose a and Ak
so that both Pn(B) > 1 - (b/2) and Pn(Bk) > 1 - (b/2k+l) hold for all n. Let
K = B r (nk Bk). We show that K has compact closure. Since K c B,
SUpxK SUp |Ix(t)|I a. Now, let q. > 0 and £ > 0 be given and choose k >
max {1/q, 1/s}. Since K c Bk, there is a Ak such that

(4.1) fX(?,Ak) f(x Ak) <k <
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for all x E K. Thus,

(4.2) lim sup fX(' A) = 0
A xeK

for all 'i > 0. This implies by Theorem 3.5, that K is compact. Since P.(K) _
P.(K) > 1 - b for all n, the sequence {P,} is tight. Q.E.D.
When D(T) is separable and complete, tightness is equivalent to the relative

weak compactness of {P,}. Moreover, the criteria for compactness of a set of
functions and tightness of a sequence of probability measures are somewhat
simplified in that the limits involved may be taken along a sequence rather than
along a net. Such a modification of Theorem 3.11 yields the following form of
Theorem 4.1.
THEOREM 4.2. Let {D(T), d(-, )} be a separable and complete metric space

with a countable determining collection ofpartitions {Ak} (see Theorem 3.12). Let
{Pn} be a sequence of probability measures on the Borel sets X4 of D(T). The
sequence {Pn} is tight if and only if

(4.3) lim lim sup P,{x: sup |x(t)I > a} = 0
a- oo n t

and

(4.4) lim lim sup P,{x fxf(q, Ak) _ £} = 0
k n

for all tj > Oand s > 0.

5. Weak convergence of stochastic processes with multidimensional parameter

We now apply the results of the previous two sections to an investigation of
stochastic processes with several parameters. These processes are envisioned as
random functions of a parameter lying in some subset of Euclidean space.
Once we extricate a problem from its dependencies on many characteristics

of the real line, generalizations to higher dimensions become transparent. For
this reason, we investigate the case in which our parameter lies in a subset of
two dimensional Euclidean space R2. For brevity, many proofs and details are
omitted. Particulars may be found in [29]. Once the function space and its
metric are developed, the formulations for problems of measurability and of
weak convergence follow from the classical theory and from the theory for a
single dimension without much difficulty. To illustrate this relation we try to
follow the manner of Billingsley [3] in our presentation.
For our underlying space T, we take the unit square, without the north and

east boundaries,

(5.1) T = [0, 1)2 = {t = (t1, t2): 0 _ ti < 1, i = 1, 2},

equipped with the relativized topology of Euclidean space, generated by the
norm lit|lE = maxi {tj}. The compact unit square T is denoted by [0, 1]2. We
define four partial orders for points in R2 by
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(a) s -<NE t ifs1 _ t1 and 82 _ t2, read t is northeast of s;
(b) s -<SE t ifs1 _ t1 and 82 > t2, read t is southeast of s;
(c) s _sw t ifs1 > t, and 82 > t2, read t is southwest of s; and
(d) s <-NW t if s1 > t1 and 82 _ t2, read t is northwest of s.

Working in the plane has the advantage of employing the language of geo-
graphical orientation for our partial orders, but this has a drawback: t is north-
east of s does not imply s is southwest of t as the case t = s illustrates. In n
dimensions, we work with the analogous 2" partial orders.
For a subset E c R 2, a monotone path approaching a point t in E is a sequence

of points {t,,} in E converging monotonely to t with respect to one of the four
partial orders (a), (b), (c), (d). A real valued function x on E has limits along
monotone paths (lamp) in E, if, for each point t in E, lim. X(tn) exists along each
monotone path {t,j in E approaching t. We call such an x a lamp function on E.
A function x is continuous from above if, for each t and monotone path {tn}
approaching t from the northeast (t <NE tn+1 <NE tn), limn x(tn) = x(t). For
example, a distribution function of a bivariate random vector is, under usual
conventions, a continuous from above lamp function on R2. One property of a
continuous from above lamp function is that, for each point t, the limit of x(s)
exists as s approaches t while contained in one of the quadrants Qi = {s: t < i s},
i = NE, SE, SW, NW.

Let A, be the class of those homeomorphisms of the compact unit interval
onto itself which have zero as a fixed point. Let A, be the class of those homeo-
morphisms in As which have a finite slope norm

(5.2) A, = {iAe A,: I|AII, < o};

and let Ad be the class of those homeomorphisms in As which have finite diffeo-
morphism norm

(5.3) Ad = {JA , As IHd < x}

It follows from the mean value theorem and the definition of the derivative
that, for A E Ad,

(5.4) I'Illd = sup log A'(t)I = sup log t - I2t

(Since A is a homeomorphism for which A(0) = 0, its derivative and difference
quotient are positive.) We then have Ad C A, A.

Define groups Af of homeomorphisms of [0, 1]2 by A4 = Ai x Ai, i = s, t, d,
where the image of a point t = (tl, t2) in [0, 1]2 under a homeomorphism A =
(A1, A2) e A3 is the point At = (A1tl, A2t2). For each integer k. let Ak be the
partition of T having cells {A j,(k)} for i, j = 1, * , 2k, defined by

(5.5) Ai,j(k) = t 2k < t < 2k 2k t2 <
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We then define our class of partitions 9 to be all images of partitions Ak by
homeomorphisms in As
(5.6) 9 = {AAk: A AS2, k = 0, 1,* .

In this manner, 9 is invariant under A3 with i = s, t, d.
Each finite collection of points 0 = po < P1 < ... < Pa = 1, 0 = qo < q1 <

... < qb = 1 gives rise to a partition A (po, - ,Pa; qo, * * *. qb) of T having cells

(5.7) Ai,j(po, , Pa; qo, qb) = {t: Pi- I _ t1 < pi, qj- 1 < t2 < qj}
i = l, ---a;j= l, ---b.

We call the partition A(p0, * * ,Pa; q0, *** qb) a 3 grid ifpi - Pi > 3 and
qj-q j > 3for all i = 1, * * *, a, j = 1, * , b. By choosing an integer k >
log2 (max {a, b}), we may find homeomorphisms Al and 22 of [0, 1] for which
A2(pi) = i/2k, i = O,1, * *, a- 1, and A2(qj) = j/2k, j = 0, 1, * b -1. In
this manner, A = (2A, 22) is in A 2 and takes A(po, ,Pa; qo qb) onto a
coarsening of Ak: Ak >_ AA(po, .* * , Pa; qo qb)- Since A-1(Ak) E 9, we have
shown that 9 is a cofinal subset of the family of all 3 grids.
The class of simple functions Ig,, recall, consists of those functions assuming

a constant value on each cell of some partition in 9. Our function space D (T) =
D [0, 1)2 consists of uniform limits of sequences of simple functions. What is
more, the following can be shown.
THEOREM 5.1. The space D(T) consists of all continuous from above lamp

functions on [0, 1]2 restricted to T.
In addition. each x in D(T) is continuous except on at most countably many

lines (hyperplanes in higher dimensions) {t: ti = constant}, i = 1, 2, since simple
functions have this property. In particular, the set of continuity points of x is
dense in T.
We have defined three groups of homeomorphisms on [0, 1], A, At, and

Ad, associated with three norms, the supremum norm || II, the slope norm
11- lit' and the diffeomorphism norm 1| lid. To extend the definition of these
norms to the three groups of homeomorphisms of the compact unit square, we
define

(5.8) 1211j = mnax {11Ai21 j} for A E AM, j = s, t, d.

By Lemma 3.1, the three groups with their associated norms induce, respec-
tively, three metric spaces {A3, dA i}, i = s, t, d. These, by (3.14), induce,
respectively, three Skorohod metrics on D(T): d2(*, *), d1(*, *), and do(*, *). The
convention we adopted, not to distinguish between two functions x and y in
D(T) with d2(x, y) = 0, is redundant here: d2(x, y) = 0 implies x(t) = y(t) at
all continuity points t of x which, in turn, implies x = y. The same conclusion
holds for d,(*, *) and do0(-, *)

Associated with each of these metrics on D(T) is a modulus f(i) (,1, A), i =
2, 1, 0, defined by (3.19) with the appropriate group of homeomorphisms and
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its associated norm. Each of the moduli serve to characterize functions in D(T)
in the sense of Theorem 3.5.
Theorems 3.10 and 3.9 imply that {A,2, dA t} and {A 2, dA,d} are complete. So,

byTheorem 3.7, {D(T), d1(*, *)} and {D(T), do(-, -)} are complete metric spaces.
The space {D(T), d2(-, )}, however, is not complete: the sequence xn =
I{[0, I/n)2} is Cauchy with respect to d2 (*, *) but not convergent. Completeness,
recall, is the hypothesis of Theorem 3.11 which characterizes compactness in
D (T).

In order to show that these three metrics on D(T) are equivalent, we isolate
a useful technical lemma, the proof of which may be left to one's imagination.
LEMMA 5.2. Let 0 < il < 1 be given and let k be an integer. Each (1/k) grid

can be brought onto a coarsening of a Ak partition by a A in A 2 with 1I1A1d < ?

provided k > 2n/q. We may require, moreover, that |il||s < 1/2' < i.
THEOREM 5.3. The metrics di(-, *), i = 2, 1, 0, are equivalent on D(T).
PROOF. From (5.4), it follows that ||Il| = II|ld for A E A2. Thus do conver-

gence implies d1 convergence.
If limn IlAnll = 0 for Awn E A,2, then (3.35) implies limn IlInls, = 0. Thus, di con-

vergence implies d2 convergence.
Our final task is to prove that d2 convergence implies do convergence. For

this purpose, let e > 0 and q > 0 be given. Iflimn d2(xn, y) = 0, then a sequence
An e A2 with limn IlIAnIIs = 0 may be found for which

(5.9) lim sup Ixno-n(t) - y(t)| = 0.
n t

Now y e D(T) implies there is a A -9 for which w);(A) < s/2; therefore,
0)..(AnA) = co._nl(A) < e for all sufficiently large n. Since limn I[AnIIs = 0, there
is an integer k > 27r/q for which ilnA is a (I/k) grid for all n. ( Since A is, for some
6 > 0, a 6 grid, we may choose no so large that n _ nO implies A2nA is a (6/2) grid.
Then choose k > max {2Xr/7, 2/6} and so large that AnA is a (I/k) grid for
= 1, * * *, no.) Lemma 5.2 implies that, for each n, a Pn cE A 2 may be found with

IIPnIId < i1 for which Ak >_ A,n° A. We then have P- Ak > 2nA which implies
co.(pn .k)< CO(,,A(nA) < e for all n. Thus, since IIPn D = IIP,,Dd < 1,
(5.10) sup fP) (?I, Ak) < .

Clearly, supn,sup,, Ixn(t)I < oo. Since {D(T), do(-, -)} is complete, Theorem 3.11
implies that the sequence is do precompact. Thus, every subsequence of {x,}
has a further subsequence which do converges to some element of D(T). What-
ever be the do convergent subsequence, its limit must be y, since do convergence
implies d2 convergence. It follows that the entire sequence {x"} do converges to
y. Q.E.D.
We refer to the common topology of the metrics di(-, -) as the Skorohod

topology. When discussing a topological concept, we may, without ambiguity,
suppress the subscript and use d(-, -) to represent a metric of the Skorohod
topology. An interesting property one may show of Skorohod convergence is
the following.
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LEMMA 5.4. If lim. d(x", y) = 0, then lime x"(t) = y(t) at all continuity points
t of y. Moreover, if y is uniformly continuous on T, then xn converges uniformly
to y.

Moreover, the sequence of partitions {Ak} each having cells defined by (5.5)
is a countable determining collection; so, by Theorem 3.12, the space
{D(T), d(-, *)} is separable.
For points t1, - * *, tk in T, let nt ... tk be the projection from D(T) onto k

dimensional Euclidean space

(5.11) 7rtl, '-tk(X) = [X(tJ, ..

I*,X(tk)].
These evaluation maps are not necessarily continuous: x. = I{[1/2 + 1/n, 1)2}
converges to x = I{[1/2, 1)2} but x (I/2, 1/2) does not converge to x(l/2, 1/2).
In general, however, ;t is continuous at x ifand only if t is a continuity point ofx.
Let (Rk, gk) be a k dimensional Euclidean space with its Borel a-field. The

projection maps (5.11) are measurable maps from (D(T), AR) into (Rk, 0k). For
a subset To c T, we define a field .fT0 of sets of D(T) by

(5.12) 1T0 = {;h...,tk(B): ti E To, i = 1, ,k; B E _,k =

We call .FT the field offinite dimensional sets or cylinder sets of D(T). Since the
projection maps are measurable, TO c' , for each subset To of T. What is
more, the field of cylinder sets corresponding to a dense subset ofT will generate
the Borel a-field Xd of the Skorohod topology.

If P is a probability measure on -, the collection

(5.13) {P7r-1..t.,tk:ti E To, i = 1,* , k; k = 1,**

is called the collection of finite dimensional distributions of P for points in To.
When To is dense, FTO generates 9, and, in that case, P is uniquely determined
by its finite dimensional distributions for points in To in the sense that it is the
only probability measure on -4 giving rise to (5.13).
By a stochastic process or random element in D(T), we mean a measurable

map from some probability space into (D(T), A). Measurability of such a map
is characterized by the fact that evaluating the process at each point in T induces
a random variable. As is common in discussing random variables, we shall
typically suppress the dependency of the random element X on the element of
the probability space and write X and X (t) for the process and its evaluation at t.
We call u E T a stochastic continuity point of the process X in D(T), if the

probability measure P corresponding to X assigns measure one to the set in aJ
defined by

(5.14) {x E D(T): x is continuous at u}.

We denote by Sx or Sp the set of stochastic continuity points of X in T. Since
it, is continuous at x in D(T) if and only ifx is continuous at u, the set Sx con-
sists of those points u at which it is continuous almost everywhere P. Moreover,
Sx contains 0 = (0, 0) and its complement lies on at most countably many lines
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(hyperplanes in higher dimensions) {t: ti = constant}. In particular, Sx is dense
in T.
For a random element X with corresponding probability measure P, we use

X to implicitly define some events and use the symbol 9 to mean the prob-
ability or P measure of the event so defined. For example, with A E Ed we may
write Y{X eA} to mean P(A) and write Y'{fx(ii, A) _ s} to mean P{x e
D (T): f.,(t, A) _ e}.
Many of our theorems stated for probability measures may be reformulated

in terms of random elements and vice versa. To apply the theorems of weak
convergence, we need not have all our random elements defined on a common
probability space. But even if they were, there would be no loss in generality in
discussing the weak convergence of a sequence of random elements {X,,} to a
random element X:. it is a theorem of Varadarajan [31] that, if {P.} is a sequence
of probability measures defined on the Borel sets of a complete and separable
metric space each of which is induced by a measurable map on a common prob-
ability space and if P. converges weakly to a probability measure P, then the
limiting measure P may be induced by some measurable map defined on the
same probability space.

Proving weak convergence of a sequence of probability measures {P}, n =
0, 1, - - *, on the Borel sets of a complete and separable metric space typically
involves two steps. First, we prove that our sequence is tight, thus assuring that
every subsequence of it has a limit point in the (metrizable) topology of weak
convergence. Second, we identify the limit by showing that every weakly con-
vergent subsequence must converge to PO. Then we may conclude that the entire
sequence {P,j converges weakly to PO. This second step-identifying the limiting
probability measure - is handled in C[0, 1], for example, by proving that the
finite dimensional distributions of P. converge weakly to those of PO. In the
space D (T), this technique must be modified: the evaluation maps (5.11) may
not be continuous; and so it may be possible, for some t E T, that P,, = Po, but
P2T- ' does not converge weakly to Poni1. Nevertheless, if the sequence {Pn}
is tight and if the finite dimensional distributions of PO for points in Spo, its set
of stochastic continuity points, are the weak limits of those of the P,, then
Pn= Po.

Reformulating Theorem 4.2 in terms of random elements yields the following
criteria for weak convergence.
THEOREM 5.5. A sequence {X"} of stochastiCproce.ses in D(T) is weakly con-

vergent if and only if (i) the finite dimensional distributions of X"for points in some
dense subset of T are weakly convergent-that is, there exists a dense To for
which [X,(tl), *- , Xfl(tk)] converges weakly to a random vector, say (Xt1, ... , Xtk)
whenever t tk} is a finite subset ofTo and (ii)for all t > 0 and e > 0.

(5.15) lim lim sup 9{fX, (10, Ak) - e} = 0.
k ni

Necessarily, X. converges weakly to that stochastic process X for which the
finite dimensional distribution of [X(sl), * * *, X(sk)],for sl, * - *, Sk in T is that of
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the weak limit (which perforce exists) of the sequence (Xt,m,_ * X, m defined
by some arbitrary monotone paths {ti,m1, m = 1, *, approaching si from the
northeast with ti,m sw Si and ti,mE Tofor all m with i = 1, * * *, k.
That condition (4.3) of Theorem 4.2 is satisfied in the present context is a

consequence of (i) and (ii), and the fact that if Ak is a partition with cells {A,}
and {tQ} are points in To with t,, E A, then

(5.16) {sup Ix(t)I > a} c {max Ix(tv)I _ a - max (2s, 1)}Iu {fxO)( 1, Ak) _ E}-

The formulation of this theorem makes it unnecessary to specify the limiting
distribution or even any of its stochastic continuity points. Note that if X, X,
X"(t) is not necessarily weakly convergent, and even if it were so its weak limit
need not be X(t); hence the use of the notation Xt for its hypothesized weak
limit and the need to approach X (s) by the Xt with s southwest oft. The idea that
a putative limiting measure may be determined by iterative weak limits of finite
dimensional distributions for points in an arbitrary dense subset of the unit
interval (from which weak convergence to that measure is a consequence of
tightness) is an observation of Tops,e [30] for processes in D[0, 1].
When the limiting process belongs, with probability one, to the closed sub-

space C. (T) of those uniformly continuous functions on T, we need not measure
the fluctuations of the random elements in terms off 0) (71, A), but rather we may
use the stronger modulus of uniformly continuous functions defined for 6 > 0
and x e D(T) by

(5.17) co.(b) = sup {lx(s) - x(t)j: s, t E T, lis - tilE . 6}.

THEOREM 5.6. A sequence {X,,} of stochastic processes is weakly convergent
to a process which belongs, with probability one, to C"(T) if and only if (i) the finite
dimensional distributions of X,, for points in some dense subset of T are weakly
convergent and (ii) for all E > 0,

(5.18) lim lim sup {COX._(6) - El = 0.

Necessarily X, converges weakly to that stochastic process X whose finite di-
mensional distributions for points in T are the weak limits of those of the X,.
The function space D(T) = D [0, 1)2 is, with minor changes, the one used by

Dudley [7] and Wichura [33]. The differences are the deletion of the north and
east boundaries of the unit square and a choice of the convention of continuity
from the northeast. Following Dudley's style, Wichura christens the functions
in D[0, 1]2 continuous from above with limits from below. Both of these
authors endow the function space with the supremum metric p(-, *), with the
result that it is not separable. They then define a mode of weak convergence of
probability measures on the a-field qf generated by the open balls of p (*, ) to a
probability measure concentrated on a separable subspace or, what is the same,
to a tight probability measure. This mode of convergence is the weak* con-
vergence of the probability measures as elements of the dual to the Banach space,
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with the uniform norm, of those real, continuous, and bounded functions which
are V measurable on {D[O, 1]2, p(, )} (see Dudley [8]). Our mode of con-
vergence-the classical one for probability measures on a separable and complete
metric space-is equivalent to the weak* topology on the dual to the Banach
space, with the uniform norm, of all real, continuous, and bounded functions
on {D [0, 1)2, do(, *)}. The Borel a-field of our space is the same as V relativized
to D [0, 1)2, since both are generated by the field of finite dimensional sets.
When our theory is applied to stochastic processes of a single parameter by

letting T = [0, 1), some differences to the theory for processes in D [0, 1] arise.
A function x in D[O, 1) may be extended to a function x in D[0, 1] by merely
prescribing some arbitrary real value for x(1). It is easy to see that a sequence of
functions {x"}, in D[0, 1] converges to x0 if and only if the corresponding
sequence of restrictions in D[0, 1), {x"}, converges to xo with respect to one of
the Skorohod metrics of D[0, 1) and x"(I) converges to xo(l). Nevertheless, a
sequence of stochastic processes {X,,} in D[0, 1] need not converge weakly to X0
even though the sequence of restricted processes {X"} converges weakly to X0
in D[O, 1) and the random variables X"(l) converge weakly to X0o(). The X",
while not necessarily convergent to XO, are however relatively compact. Thus,
the fC,, converge weakly to X0 in D[0, 1] if and only if the restricted processes
X,, converge to XO in D[O, 1) and the finite dimensional distributions of 1k, for
points in some dense subset of [0, 1] which contains the point 1 converge weakly
to those of X0.
A modulus proposed by Billingsley ([3], p. 110) serves to characterize

functions, compactness, and tightness in D [O, 1]. For 6 > 0, let

(5.19) cOx(6) = infcok(A),
(A)

where the infimum extends over all 6 grids that are partitions of T = [0, 1).
Billingsley's necessary and sufficient conditions for tightness of a sequence {X"}
of random elements of D [0, 1] are

lim lim sup 9'{ sup IX,,t1 > a} = 0
a- so n te[0 I]

(5.20) 2im liM sup Y {co'._(6) . s} = 0 for all )> 0.
a-to n

Statements (5.19) and (5.20) have interpretations in D [0, 1)2 if t in [0, 1] is
replaced by t in [0, 1)2. It is clear from the definitions of our metrics and from
Billingsley's development in D[O, 1] that (5.20) offers another characterization
of tightness for random elements of D [0, 1)2. Indeed, that these are sufficient
conditions for tightness follows from Theorem 4.2 and the fact that Lemma 5.2
impliesf() (q, Ak) - &o(I/k) for each x in D[0, 1)2 whenever 1/k < q/2n. While
the modulus (5.19) is useful for this purpose, it is peculiar to functions on
Euclidean spaces.
The essential trick in D[0, 1)2 is just to perturb each point in the unit square

one coordinate at a time and parallel to an axis. Concurrent with this research
and independent of it, Neuhaus [20] applied this idea to the multidimensional
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version of Billingsley's metric, which is our d1(, ). The minor novelty of the
group of diffeomorphisms and its associated norm makes it easier to prove that
our do(-, *) is a metric-that fact becomes a consequence of the chain rule and
the inverse function theorem. Moreover, completeness follows from the classical
relation of uniform convergence to differentiability. An analogue of Lemma
5.2 would be easier to prove if the graph of the homeomorphism were allowed
to have lines meeting at angles; but it is intuitive that we can smoothen the
corners to construct a diffeomorphism which does the job as well. Just as
intuitive, and what can be shown with the same chicanery, is that there is no
difference at all between do(-, ) and d1(, ); not only are they topologically
equivalent, they are equal.

6. Some examples

The practicality of the theory of weak convergence of probability measures on
a function space is reflected in its application to the asymptotic analysis of non-
parametric tests. Reciprocally, the relevance to the Kolmogorov-Smirnov sta-
tistic was an important stimulus for the development of the theory. We describe
briefly a few examples of nonparametric tests which may be envisioned as
functionals of stochastic processes with several parameters.
The statistic that first comes to mind is the multivariate Kolmogorov-

Smirnov one. Let F,, be the empirical distribution function of a random sample
{X1, * * *, X"} taken from a population with a continuous bivariate distribution
function F concentrated on T = [0, 1)2. The function

(6.1) Xn(t) = V;[Fn(t) - F(t)]

is a random element of D(T). If f is a measurable function on [0, 1]2 whose
square is integrable with respect to F, then the central limit theorem implies that

(6.2) f2 f(t) dXn(t) = v{! Ef(Xi) - E[(Xi)]]

converges weakly to a normal random variable having mean zero and variance
Var [f(X1)]. Since indicator functions are square integrable, and so are linear
combinations of them, it follows from a theorem of Varadarajan [32] and also
from the Cramer-Wold device (see [3], p. 49) that the finite dimensional distri-
butions of X. converge weakly to those of multivariate normal random vectors
with the origin as mean vector. If we write, for points s = (Si, 82) and t =
(t1, t2) in T, s A t = (min {sl, t,}, min {S2, t2}), then the covariances of the
limiting random vector are given by Cov [X(s), X(t)] = F(s A t) - F(s)F(t).

Dudley ([6] and [7]) has shown that there is a stochastic process X in D(T)
which has the finite dimensional distributions of our limiting random vector
and is uniformly continuous with probability one. For each functional h which
is continuous with respect to the supremum norm on D (T), the random variables
h(X,,) converge weakly to h(X). Although Dudley has employed a different mode
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of weak convergence for the X., this conclusion is equivalent to their weak con-
vergence to X as random elements of our Skorohod space. Using other methods,
Bickel and Wichura ([1], [2], and [33]) and Neuhaus [20] have also proved the
weak convergence of the X,.

It follows from this weak convergence, that the bivariate Kolmogorov-
Smirnov statistic suptIX"(t) converges weakly to suptlX(t)I. As a consequence,
F, converges uniformly to F in probability. This fact in turn implies that the
bivariate Cramer-von Mises statistic IX"(t) 12 dE"(t) converges weakly to

fIX(t)J2 dF(t).
The asymptotic distribution ofthe multivariate Kolmogorov-Smirnov statistic

was first investigated by Kiefer and Wolfowitz [13]. They found a uniform bound
for the tails of the distributions of the statistics supt IX.(t)l. Moreover, they
showed that the asymptotic distribution exists and that it can be approximated
by taking the maximum of the k random variables formed by evaluating X. at
k points on a lattice and then letting n and k become large, respectively. Later,
Kiefer [12] improved their bound for the tails of the distribution of supt IX,(t) I.
As for the multivariate Cramer-von Mises statistic, a limit theorem for a variant
of it was considered by Rosenblatt [23]; and Dugue [9] investigated the limiting
characteristic function of such a statistic.
The bivariate Kolmogorov-Smirnov statistic is unfortunately not distribution

free (see Simpson [25]). Bickel [1], however, has proposed a two sample multi-
variate Smirnov test which is distribution free. For simplicity, we describe this
test when samples of sizes m and n are drawn, respectively, from populations
with continuous distribution functions F and G concentrated on the unit square.
From the m + n points in the pooled sample, there are (mmn) ways to select
m points and form an empirical distribution function Fm with them and an
empirical distribution function G0 with the remaining n points. We construct
a random function Xm,n which assumes each of the possible (mm+") functions
(mn/(m + n))12 [Fm - G] with equal probability. Bickel's test rejects the hypo-
thesis that the two samples we have drawn come from the same population if the
value of supt Xm, (t) obtained when Fm and G0 are the empirical distribution
functions of our first and second samples, respectively, is significantly high when
ranked among the possible (mm") values of supt IXm, (t)I. Using Dudley's
terminology, Bickel shows, moreover, that if m and n become large in such a
manner that m/(m + n) converges to a number a in [0, 1], then the stochastic
process Xm ,n converges weakly to a Gaussian process X. If H = aF + (1 -a)G,
then the finite dimensional distributions ofX are multivariate normal ones with
the origin as a mean vector and with covariances given by Cov [X(s), X(t)] =
H(s A t) - H(s)H(t).

Another application may be made to tests of independence. Let F,, n and F2,n
be the marginals of the empirical distribution function F,, of a random sample
from a population with a continuous distribution function F which is concen-
trated on the unit square and is the product of its marginals: F(t1, t2) =
F1 (t1)F2 (t2). Blum, Kiefer, and Rosenblatt [4] have studied two statistics which,
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for a bivariate population, are functionals of the process

(6.3) Z.(t) = n/ [F.(t) -Fl,.(t,)F2,.(t2)].
Taking their cue from Kolmogorov and Smirnov, the authors look at
SUpt Zn (t) and, in the spirit of Cramer and von Mises, they investigate f Z2 dF,
which they show to be equivalent to a test proposed by Hoeffding [11].
The weak convergence of the Zn is a consequence of that of the X". Consider

for the moment the empirical distribution functions F1, and F2, oOf independent
random samples of sizes m and n taken from populations with continuous distri-
bution functions F1 and F2 concentrated on the unit interval. Ifm and n become
large in such a manner that m/(m + n) converges to an a in [0,1], then the
process

(6.4) Hm.n(t) = (mn/(m + n)) 12[Fi,m(ti)F2,n(t2) - FI(t1)F2(t2)]
is weakly convergent. This fact is a consequence of the weak convergence of the
univariate analogue of Xn and the fact that, with p = m/(m + n) = 1-q,
(6.5) Hm n(t) = ./;[qF1,m(ti) + pF1(t1)] fl[F2,n(t2) -F2(t2)]

+ 4/q[PF2,n(t2) + qF2(t2)] M[F1,m(ti) -F(tj)].
The weak convergence of Zn is a consequence of the relation Zn(t) = X"(t) -

2Hn, (t), the weak convergence of its finite dimensional distributions, and the
following lemma.
LEMMA 6.1. If, of weakly convergent sequences of stochastic processes {Xn}

and {Y,,} in D[O, 1)2, the first converges weakly to a process that is uniformly con-
tinuous with probability one, then the sequence {Zn} defined by Z (t) = Xn(t) +
Y.(t) is relatively compact.
PROOF. Tightness of the sequence {Zn} is a consequence of the relation

(6.6) 1{sup I Zn(t)I > a} _ Y{suP Xn(t) >2 + Y{suP |Yn(t) >

and the fact that, for each 6 > 1/2k-2, q > 0, and e > 0,

(6.7) {nfz0 (', Ak)
-} {fPn (i1 Ak) 2}{n 2}

provided ?1' E (0, ?) is chosen so that 1I||Id < tq' implies 1II2II < 6/4. Such a choice
is assured to be possible by (3.35) and (5.4). Q.E.D.
The process Hm n (t) is of some interest in itself. For example, the normalized

Mann-Whitney form of the Wilcoxon statistic is the integral of the indicator
function of the triangle {t: 0 < t2 < tl < 1} with respect to Hm,n(t).
Weak convergence criteria useful for processes constructed from multivariate

empirical distribution functions have been investigated by Bickel and Wichura
[2]. They have developed multivariate analogues of fluctuation inequalities pro-
posed by Billingsley in [3].
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Many problems ofthis theory remain, not the least ofwhich is the computation
of distribution functions for functionals of a Gaussian process of several para-
meters. Nevertheless, the theory of weak convergence promises to be an advan-
tageous factotum for the asymptotic analysis of nonparametric tests.
Our second example which illustrates the flexibility of the modulus fX('i A)

is. an application to the weak convergence of stochastic point processes-a
theory which we shall explore in detail elsewhere. For the moment however, we
show that in the case of many special limiting point processes, weak convergence
of the finite dimensional distributions is equivalent to weak convergence of the
stochastic point process. Consider Xn (t) defined by a stochastic point process to
be the number of points in the closed rectangle with the origin as a southwest
and t as a northeast corner. Let Ak be the event that a point process has no points
occurring within a distance of I/k from the boundary of the unit square and
that when the square is partitioned by vertical and horizontal strips of width
I/k, no two points occur within a common strip or in adjacent strips. If X. E Ak,
then one may form a 1/(k + 1) grid A with the south and west boundaries of
T = [0, 1)2 and those vertical and horizontal lines in T which contain a point
of the realization of the process defining X,,. Each point of the process will lie
on the southwest corner of some cell of the resulting partition A; therefore,
a)co(A) = 0 whenever X, E Ak. Lemma 5.2 then implies for a given 0 < q < 1
that

(6.8) {X eAk} C {fAn (11, Ak+l) = 0}

for all sufficiently large k. Thus, condition (5.15) ofTheorem 5.5 will be satisfied
if

(6.9) lim lim sup {X A2k} = 1.
k n

Now Y {X. E A 2k} is determined by finite dimensional distributions of X,, for
points in the closed unit square and ifthese converge weakly to those ofa process
X0 defined by a stochastic point process, the condition for weak convergence
reduces to limk b9 {X0 E A 2k} = 1. Since A 2k C A 2k + 1, this last requirement may
be written as Y{X0 E UkA2k} = 1, which means that, with probability one,
realizations of the limiting stochastic point process have neither multiplicities
nor points on the boundary of the unit square. For example, the Poisson process
satisfies this requiremept. Essentially, this argument means that, relativized to a
suitable subspace in which these processes lie, Skorohod convergence to a func-
tion in UkA2k follows from pointwise convergence at continuity points of the
limiting function.
As our final example, we develop an anlogue to stochastic processes with

stationary and independent increments and prove a theorem emulating the one of
Donsker for the weak convergence of partial sum processes. Let {Xi j(n)} be a
triangular array of random variables, the nth row of which is composed of n2
independent random variables Xij(n), i, j = 1, * *, n, with a common distri-
bution that may vary from row to row. Denote the row sums by Sn = li, j Xi, j(n)
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For a random variable X, write its characteristic function as Xx(u), and set
X"(u) = x,, j(.)(u) so that Os.(u) = ,2(u). For the greatest integer less than or

equal to a real number t, write [t]; and for a vector t = (t1, t2), interpret [t] as
([t], [t2]). Corresponding to each triangular array {Xi,j(n)} is the sequence of
partial sum processes Y. in D[O, 1)2 defined by

[ntlJ [nt2]
(6.10) Yn(t) = Y {Xi,j(n): (i,j) < NE [nt]} = Y Xi j(n).

i,j i=1 j=1

Let T = [0, 1)2, let u() be Lebesgue measure on -, the Borel sets of T, and
let a? be the class of finite unions of disjoint rectangles in T which have sides
parallel to the axes and have boundaries on the north and east but are open to
the south and west. For points s _NE t in T, we define R (s, t) to be that rectangle
in d which has s and t as southwest and northeast corners, respectively. Ifs and
t are collinear, R(s, t) is the empty set. For x E D(T), let H.(R(s, t)) be the second
difference of x about the rectangle R(s, t)

(6.11) H.(R(s, t)) = x(t1, t2) - x(t1, 82) - x(s1, t2) + x(s1, 82).

We extend the domain of the function H. to .sl by requiring that, for disjoint
rectangles R(si, ti), si _ NE ti, n= 1, , n.

n \ n
(6.12) H (U R(si, ti)) = H.(R(si, ti)).

i=l i=l

For p E R2 and A E 5A, we define A + p, the translation ofA by p within T, by

(6.13) A + {={t + p: tE A} if this set is contained in T
otherwise.

We shall say a stochastic process X in D(T) has stationary increments if, for
each A E .', the random variables {Hx(A + p)}, p E R2, have a common distri-
bution. A process with independent increments is a random element X for which,
with {Ai} a finite number of disjoint sets in da, the random variables {Hx(Ai)}
are independent. The partial sum processes corresponding to a triangular array
of random variables are stochastic processes in D(T) with independent
increments.
THEOREM 6.2. If the row sums of our triangular array of random variables

{Xi j(n)} have a limiting distribution with characteristic function f(u), then the
corresponding partial sum processes Y. converge weakly to a stochastic process Y
in D(T) with stationary and independent increments and with

(6.14) OHy(A)(U) = [f(u)]P(A)
for each A E .4sa.

Our proofofthis theorem employs a common technique used in limit theorems
for sums of random variables without moments: we truncate the Xij(n). Our
starting point is the assumption of the analogue of Donsker's theorem which
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states that Theorem 6.2 is true when the Xi,j(n) satisfy Lindeberg's condition
for the convergence of their row sums to a normal law and where the limiting
process has Wiener measure; that is, W is the stochastic process in D[0, 1)2 with
stationary and independent increments, which is uniformly continuous with
probability one, and for which W(t1, t2) is a normal random variable with mean
zero and variance t1t2 (see the works of Kuelbs [15], Wichura ([33] and [34]),
and Bickel and Wichura [2]).
The basic idea of our method, which has its roots in the work of Levy, was

used by Skorohod [26], who presented a rationale for the weak convergence of
partial sum processes in D[0, 1]. (Later, and by other methods, Skorohod proved
this result as a theorem dealing with the weak convergence of somewhat more
general processes [28].) We split each partial sum process into a sum of two
parts: a process formed with the truncated variables and another formed with
their remainders. The first process differs little from one which, by the analogue
of Donsker's theorem, converges to a Gaussian process. The second converges
to a compound Poisson process. By employing a weak compactness lemma of
Feller, we obviate the need to assume a priori the existence of our limit process
in D(T).
For s > 0, define a selection function P., by

(6.15) (t) {t if Itl _ s
1 otherwise

and a remainder function ps by p5(t) = t - P,3(t). Let

P,n = 9{fX1,1(n)j > s} = 9A{p5(X1,1(n)) 7 0},

(6.16) a2(s) = Var [Z f,,(X, j(n))] = n2 Var [f,l(X1 l(n))],
i,J

c2(s) = n2 ))]2,

Ys,n= E[f3,(XI, (n))].

The following lemma is, with minor changes, that of Feller ([10], pp. 299-300).
LEMMA 6.3. Suppose that X1 1(n) converges in probability to zero. In order

that there exist constants a, such that {Sn- an} be tight, it is necessary and suffi-
cient that, to each E > 0, there is a b and a real valued function M for which

(6.17) n2Pb, n < E, for all n,

(6.18) sup C2(s) < M(s).
Necessarily, {Sn-n2y,,n} is tight for each s > 0.

Unfortunately, Feller's proof of the sufficiency of (6.17) and (6.18) is incorrect.
Nevertheless, the theorem is true, as we now shall verify. Our notation differs
from Feller's; in particular, our row sums Sn are composed of n2 summands.
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PROOF. Only the sufficiency remains to be established. Choose an s > 0
and let V,, = li,j[f,,(Xi,j(n)) - ys,n] and Z,, = li, j p,(Xi, j(n)), with the result
that S, -n2y",n = V, + Zn. It suffices to show that both {V"} and {Zn} are tight.

That {V"} is tight follows from Chebyshev's inequality and (6.18). To verify
that {Zn} is tight, let e > 0 be specified and choose b to satisfy (6.17). By our
hypothesis and the dominated convergence theorem, Yb, n must converge to zero;
so, we may as well assume that IYb,nI < s/2. In addition to (6.17), we show that

n2p,,,nremains uniformly bounded for each s and, in particular for our choice
of s. Only when s is less than b is there a problem and, in this case,

(6.19) {jX1, j(n)j > S} a {lfb(X1 l(n)) - Yb,nl > 2 U { Xi, l(n)l > b}.

Thus,

(6.20) n2Ps,n _ n2Y{fb(Xl, l(n)) -Yb,nI > 2+

<
4

2(b) + E _ () M(b) + s.

If Nn, s is the number of Xi,j(n), i, j = 1, * , n, which exceed s in absolute
value, then Nn,s has a binomial distribution with a uniformly bounded expect-
ation. We may then choose an integer m for which 3Y {Nn, > m} < £/2 for all
sufficiently large n. For that m, we have

(6.21) }{lZnl > {4. Y {anxlXi,j(n)l > - + Y{Nn,s > m}

since, if there are at most m random variables among the Xi,j(n) which exceed
s in absolute value, but all of the lXi,j(n)l are less than a/m,

(6.22) lZ.l E | pS(Xi, j(n))l _ m max IXi, j(n) < a.

Now, 2

(6.23) 9{max IX,jj(n)l > = I [1 -b jX1, 1(n)l >

= 1 (1 P/r, n)n2,

and this term by (6.17) may be made uniformly small for a sufficiently large
choice of a. If a is chosen to assure Y{maxi,j lXi,j(n)l > a/m} . E/2 for all n,
then (6.21) implies Y{lZn1 > cx} _ E. That is, {Zn} is tight. Q.E.D.
PROOF OF THEOREM 6.2. If the sequence of row sums {Sn} is weakly con-

vergent, then X1 1(n) - 0 (see [10], p. 300), and Lemma 6.3 implies that, for

each s > 0, SUpn n2ys, n < 00. Since the dominated convergence theorem implies
limn Ys,n = 0,

(6.24) lim [2(8) -no (8)] = lim n2Ys, n = 0.
n n
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Now, {cx} is a sequence of nondecreasing functions which, by (6.18), are uni-
formly bounded on (0,1). It follows by Helley's theorem that there is a sub-
sequence {n'} c {n} along which a" (s) converges for each s E (0, 1) to a bounded
nondecreasing function a'(s). Necessarily, limn of(s) = 2(s). In proving
relative compactness, we may begin this analysis with an arbitrary subsequence
and refer to a further subsequence if necessary, so we may as well assume that
n' = n.

Suppose, first, that lim5_0o2(s) = 0. With e > 0 specified, choose s > 0 for
which oa2(s) < e3/44 for all sufficiently large n and set

Vn(t) = E {[f35(Xi,j(n)) - Y,n]: (i,j) -NE [nt]},
i,j

(6.25) X"(t) = . {p8(Xi,j(n)): (i, j)-NE [nt]},
i,j

and Gn(t) = [nt1] [nt2] Y,,,, with the result that Yn(t) = V"(t) + Xn(t) + GO(t).
Since supn n2Ybn < oo, we may always refer to a subsequence along which Gn
converges to a uniformly continuous function. As in the proof of Lemma 6.1,
it suffices to show that Vn + Xn satisfies (5.15) for all il > 0.
By an inequality of Wichura [34] for multidimensional partial sum processes,

analogous to one of Doob ([5], p. 317) for the submartingales, we have

( E ~~~~4E[SUp Vn()
(6.26) ./4SUp IVn(t)I -E2}I-(tI2

_ 43a2(s)
= 2

By our choice of s, this last term is less than e/2 for all sufficiently large n.
Thus, the Vn process is, with large probability, uniformly small.
The behavior of the Xn process is a different matter. A sample path of this

process may change its value only at points t = (i/n, j/n) and does so at such a
t when and only when p5(Xi,j(n)) + 0. For a rectangle R(s, t) E s having co-

ordinates s <NE t for its southwest and northeast corners, let Nn(R(s, t)) be the
number of jumps of the Xn process in R(s, t); Nn(R(s, t)) is the number of non-
zero members among the {p5(Xi,j(n))} with (i,j) < sw [ns] and (i,j) <-NE [nt].
Thus, Nn(R(s, t)) has a binomial distribution with sample size parameter

(6.27) ([nt,] - [nsl])([nt2] - [n82]) = n2!L(R(s, t)) + o(n2)
and probability of success parameter ps, n .
Our proof of Lemma 6.3 shows that n2p. n is uniformly bounded for each s

and, in particular, for our choice of s. Since we may refer to a subsequence if
necessary, we assume that n2ps,n converges to some number A > 0. If A > 0,
then Nn(R(s, t)) has, in the limit, a Poisson distribution with mean )I.(R(s, t)).
Disjoint rectanglesR (si, ti) give rise to independent random variables Nn(R (si, ti));
thus, by our remarks on stochastic point processes, Nn(R (0, *)) converges
weakly to a Poisson process. Moreover, in our remarks we have shown to each
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t1 > 0 there is a k for which

(6.28) lrm sup {IfNA(R(O,))(, Ak) = 0} = 1.
n

Therefore, with that same k,

(6.29) lim sup Y {f n (11, Ak) = °} = 1.
n

If A = 0, then the Xn process is uniformly small with large probability. Indeed,
the probability that it is identically zero is (1 -_pP,n)n2 which converges to one.
In this case, (6.29) holds as well.

Condition (5.15) of Theorem 5.5 now follows from the relation

(6.30) {sup IVn(t)I < 2 fln (q, Ak) = 0} c {fIS2n+x('i Ak) <

which implies

(6.31) 9 {fv+xx(q, Ak) _ 84 _ {SUp Vn(t)I - 2 + gA{fx5 (t, Ak) > 0}-

Of these last two terms, the first is less than s/2 for all sufficiently large n by our
choice of s, and (6.29) implies that so is the second.
Now we consider the case when lim5 0 a2(s) = U2 > 0, which corresponds

to the limit distribution having a normal component. Choose a sequence {8n}
of points in (0, 1) converging to zero from above and along which limn a"(s") =
g2. Necessarily, limn a(s,) =n 2, since an(sn) _ c4(s8) and, for each s > 0,

(6.32) lim sup OaC2) _ lim a2(S) = U2(S).
n n

Let

(6.33) Wn(t) = E {[f1sn(XiJ(n)) - yn,,,n]: (i,j) -NE [nt]}
i,j

and

(6.34) Un(t) = E {P5n(Xi,J(n)) + Ysn,n (i,j) _NE [nt]}
i,j

with the result that Yn(t) = W (t) + Un(t).
The random variables fl,5(X,jj(n)) - Yn,n satisfy Lindeberg's condition for

convergence of their row sums to a normal law: for each 5 > 0,

(6.35) 2 | I{Y/3sn( ii(n)) - vsn,nl > 6an(8n)} [f5n(Xll,(n)) - Yn,]2 dg?,
tends to zero, since a. (se) converges to a > 0 and both Sn and ,Yn, n converge to
zero. The analogue of Donsker's theorem implies that [1/a(s8)]Wn converges
weakly to Wiener measure. In particular, Wn converges weakly to a process that
is uniformly continuous with probability one.
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Since Sn = Y (1, 1) and W (l, 1) are both weakly convergent, {p",[Xi j(n)] +
s is a triangular array with row sums U"(1, 1) which are tight. Moreover, for

each s > 0 and all sufficiently large n,

(6.36) n2E{f#3[psn(X1, 1 (n)) + Ysn,J]}2
. n2E{f32j[pAn(X1, I(n))] + Ysnn}
= n2E{fi25(Xi, 1(n)) - [I#In(X1, (n)) - J 2

n(2s) + n(sn) - 2 (sn) + 2n Y2s,ynsn,n
Taking limits first as n becomes large and then as s converges to zero, we see that
this triangular array satisfies the case we have handled previously. Therefore,
Un satisfies (5.15) for each tj > 0 and E > 0. It follows, as in Lemma 6.1, that so
does Yn.

It remains to show that Y,, has weakly convergent finite dimensional distri-
butions in order to apply Theorem 5.5. This is a consequence of the weak con-
vergence of Sn, the fact that Yn has independent increments, and the fact that,
if R(s, t) is a rectangle in sl, then

(6.37) lim OHy (R(.,t))(u) = lim (On(U))n2M(R(st))+o(n2) = (f(U))P(R(s.t))

To determine the finite dimensional distributions of the limiting process Y,
let s - NE t be points in T and choose rectangles R (Sk, tk) whose corners approach
those of R(s, t) from the northeast strictly, in the sense that each corner of
R(s, t) lies southwest of the respective corner of R(Sk, tk). Then,

(6.38) kHy(R(s,t))(U) = lim lim OH, (R(sk,tk))(U) = (f(u))"(R(s)k n

Thus, since each Yn has independent increments, so must Y. It follows, that Y
has stationary increments as well.
To complete the proof of this theorem, we note that, for A a union of disjoint

rectangles R(si, ti) in sl, i = 1, * k,
k

(6.39) 4Hy(A)(U) = Hl kHY(R(si,t1))(U) = (f(u))F(R(Sinti)) = (f(u))u(A).
i= 1

QE.D.
A process Y in D(T) is continuous in probability if each point in T is a sto-

chastic continuity point of Y; that is, Sy = T. The limit process of Theorem
6.2 enjoys this property. It suffices to show, since Y is with probability one a
continuous from above lamp function, that, whenever {tk} is a monotone path
approaching a point t E T with respect to one of the four partial orders (a), (b),
(c), (d) then Y(tk) converges in probability to Y(t). We handle the case when
{tk} = {(t1(k), t2(k))} is a monotone path approaching t from the southeast.
Let R1(k) = R((O, t2(k)), t) and R2(k) = R((tI, 0), tk), so that limk i(Ri(k)) = 0,
i = 1, 2. Then

(6.40) 0Y(t)-y(tk) (U) = OHy(R,(k))(U)( Hy(R2(k)) ( U)
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which, by (6.14), converges to one and implies Y(t) - Y(tk) converges in prob-
ability to zero.

Since each infinitely divisible random variable is the weak limit of the row
sums of a triangular array properly defined, Theorem 6.2 implies the existence
of a stochastic process Y in D(T) continuous in probability and with stationary
and independent increments for which (6.14) holds for each A E X, when f(u)
is the characteristic function of the infinitely divisible law.
The purpose off(u) is to identify the limit. In D[0, 1], there is a natural way

to identify the limiting process: we specify that it vanishes at zero and that its
value at one is a random variable whose distribution is the limiting law of the
row sums of a triangular array. Theorem 6.2 with n random variables in each
row ofthe triangular array carries over to D [0, 1] by our previous remarks on the
relation of D[O, 1) and D[0, 1]: the sequence of partial sum processes Y,(t) =

I = I Xi(n) in D[0, 1] is relatively compact and the weak convergence of their
finite dimensional distributions for points in [0, 1] determines their limit.
Since the value at one of a stochastic process in D[0, 1] with stationary and
independent increments is evidently an infinitely divisible law, we have as a
corollary the Khintchine theorem: if the row sums of a triangular array of
random variables have a limiting distribution, then it is infinitely divisible.

0 0 0 0 0
This work was initiated as a thesis presented to the Department of Statistics

at the University of Chicago. The author is grateful for the counsel of
Mr. Patrick Billingsley, his advisor, and Mr. Michael Wichura and for the
financial assistance provided by the Warner-Lambert Research Institute and
the Shell Companies Foundation.
Added in proof. While this manuscript was in press, the author became aware

of an article by N. N. Chentsov: "Limit theorems for some classes of random
functions," Vsesoiiuznoe soveschaine po teorii vero-atnostel i matematicheskof
statistike (Proc. All-Union Conf. Theory Prob. Math. Stat.) Erevan, 19-25
September 1958, Izdat. Akad. Nauk Armianskoi, SSR, Erevan, 1960, pp. 280-
285. An English translation appears in Selected Translations in Mathematical
Statistics and Probability, Vol. 9 (1971), pp. 37-42, in which Chentsov has
extended his fluctuation inequalities to processes of several variables. Although
the function space and the mode of convergence he briefly outlines differs from
ours, his hypothesis, similar to one developed by Bickel and Wichura [2], offers
sufficient conditions for tightness of a sequence of random elements ofour space.
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