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1. Definitions and some lemmas

We shall consider a class of infinitely divisible laws, which may be called
Poisson laws, defined on the Borel sets of a locally compact group. This class of
probability measures is arrived at quite naturally by looking at the classical
Poisson laws over the Borel sets 1 of one dimensional Euclidean space R1.
Let a > 0. Then the standard Poisson law with mean a can be written in the form

(1.1*le) P{a(b(1 - ) = ° + k ! (-1 )

where bc5 is the Dirac measure at x E R1. Multiplication of measures means
convolution. Convergence ofthe series means convergence in norm. The measure
a(- 60) obviously satisfies the following conditions. Iff belongs to the set
C(R1) of bounded, continuous functions and fulfills the conditions f _ 0 and
f(O) = 0, then a(1 - 60) (f) _ 0. Moreover, a(b1 - 60) (1) = 0, where 1 de-
notes the function f identically equal to 1. It is well known that more general
probability laws of the Poisson type may be defined along these lines. Let v be
any bounded Radon measure defined over 1 and satisfying the conditions
v(1) = Oand v(f) > Ofor everyf E C(R1) withf _ Oandf(O) = 0. Then eVis a
probability law of Poisson type. Note that 0 is the neutral element of the additive
group of R1, and that the set {0} is a compact subgroup of R1. These consider-
ations lead easily to a generalization of Poisson laws on arbitrary, locally
compact groups. To achieve this, some simple definitions are needed.

DEFINITION 1.1. The set of all bounded Radon measures defined over the
Borel sets i of a locally compact group G is denoted by A(G), or just by At. The
subset of all probability measures is denoted by Z(G), or just by Z. If m is any
measure in t, then S(m) denotes its support.

DEFINITION 1.2. A measure I E Z is said to be infinitely divisible iffor every
natural number n there exists a P1/l e Z which satisfies the equation /A/n = IA. The
measure pLl/ is called an nth root of p.

DEFINITION 1.3. Let H be an arbitrary compact subgroup of G. Then eH de-
notes that probability measure belonging to Z(G) whose restriction to H n n is
the Haar measure; RH denotes the set of all m E 9 which satisfy the equation
eHm = meH = m. The set Z r) RH is denoted by ZH.
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170 SIXTH BERKELEY SYMPOSIUM: SCHMETTERER

For every m E RH, one may define expH m by eH + -k'=1 m"/k!, where the
convergence of this series is understood as convergence in norm. A similar
elementary definition of the logarithm is also available. For every m E RH which
satisfies |rm - eHI! < 1, one may define logH m by -.', 1 (m - eH)k/k.

It is easy to see that both expH m and logH m belong to RH. Some simple
properties for the mappings expH and logH are collected in the following.
LEMMA 1.1. Let pl, p2 E RH andp1p2 = P2P1- Then

(1.2) expH (Pl + P2) = expHp, eXPHP2-
If, in addition,Ipi - eHII < lfor i = 1, 2, and Ipip2 - eHII < 1, thenlogH(Plp2) =
1ogHpP + logHp2. Furthermore, if m E RH, then the condition |rm - eHII < 1
implies expH logHm = m, and the condition l|ml1 < log 2 implies logH expHm = m.

Use is also made of the following.
LEMMA 1.2 (Boge [2]). Let a e ZH and assume that there exists a natural number

e such that Ia' - eHI + 211a -eHII < 1. Then IIai - eHII + 211a - eH|I < 1,
and, moreover, logH a j = j lOgH a for 1 _ j _ 6.

Let us introduce some more definitions.
DEFINITION 1.4. Let YH = {V E PQH: V(1) = 0, v(f) _ 0 for all fE C(G)

satisfying f _ 0 and f(x) = 0for x E H}.
This last condition may also be written in the form f(H) = 0.
DEFINITION 1.5. Let p E (G). If there exists a compact subgroup H of G

and a v E XH such that p = expH v, then u is called a Poisson law.
An immediate consequence of this definition is the following.
LEMMA 1.3. Every Poisson law belongs to ZH.
Let us now formulate the following important, known result.
LEMMA 1.4. (Heyer [5], Pym [8], Wendel [12]). A measure p E Z(G) is an

idempotent ifand only if there exists a compact subgroup H of 0 such that I = eH.
This lemma and Definition 1.5 make it clear that the theory of Poisson laws

and the theory of one parameter, strongly continuous, operator semigroups are
related to each other. But the former theory and some of the methods used here
are of some interest on their own.
We are going to introduce an important concept. Let y E Z(G) and define

H, = {x eG: 5,,u = pAb., = p}. It is easy to see that H, is a closed subgroup of
G. Indeed, H, is a compact subgroup of G, which may be stated as a lemma.
LEMMA 1.5. The group HIU is always a compact subgroup of G.
PROOF. Suppose that HP1 is not compact. It follows that HP r) (G\K) ¢ 0

for every compact subset K of 0. Let KO be a compact set such that

(1.3) p(Ko) > 0.

Choose xl E HA and xn E HIU n (G\U!-2 xiKoKo-) for n _ 2. It is easy to see
that xiKo r) xjKo = 0 for i 7 j and for 1 _ i, j. Obviously, the equation
p(xjK0) = y(KO) holds for i = 1, 2, * . . This together with (1.3) leads to a
contradiction.

DEFINITION 1.6. The compact group H,1 (considered in Lemma 1.5) is called
the invariance group of p.
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Obviously, the following equation holds,

(1.4) eHil = ,ueH = X

LEMMA 1.6. Let a, b fe Z. Assume that there exists a natural number n _ 1
such that a = bn. Then Hb C Ha

PROOF. It follows from (1.4) that eHba = eHbb" = (eHbb)n = a, and similarly
for aeHb.

Another simple but useful result follows.
LEMMA 1.7. Let G be any locally compact group and let H be a compact sub-

group of G. Assume that p E ZH, that v E Z, and that

(1.5) pv = eH-

Then there exists an x E G which belongs to the normalizer ofH such that ,u = eH3X.
If, in addition, v E ZH, then v E bX-, eH.

PR°oo. It is well known that (1.5) implies

(1.6) S(pu)S(v) _ H.

There exists therefore a z1 E S(v) such that S(p)zl c H and S(,u) is compact.
Therefore, equality holds in (1.6) and there exists an x E S((p) such that x -1 E S(v)
and S(i) _ Hx. Using i E ZH, it follows that eH = eH/Ic5X-1 = Pk5 - . Hence,
Hx = S(M). Similarly, one finds S(y) = yH for some y E G. Therefore, there
exists an h E H such that yh = x, and consequently, Hx = xH.
The last remark of Lemma 1.7 is proved in exactly the same manner.
This lemma shows that the solutions of the equation (1.5) which belong to ZH

are all trivial. The equation may have nontrivial solutions which do not belong
to ZH. A very simple example, communicated to me by H. Carnal and W. Hazod,
follows. Let S3 = {e, x1, X2, * * *, X5} be the permutation group of three objects
where e is the neutral element and x1 = (2, 3, 1), X2 = (3, 2,1), X3 = (1, 2),
X4= (2, 3), and x5 = (1, 3).

Consider the measure

(1.7) m =6[(cX, + BX3)-(6X2 + 6X4)].

It is easy to see that m2 = 0 and that ml = (es3 + m) E Z(S3). Moreover, it
follows that ml = es3; but obviously Hm. , S3 and S(ml) # S3. This shows
that the equality in Lemma 1.6 may not hold, and that equation (1.5) may have
nontrivial solutions if the assumptions of Lemma 1.7 are not satisfied. It will
be seen (in Section 3) that the existence of nilpotent measures in the algebra 9
and the question of whether equality holds in Lemma 1.6 are related, even from
a more general point of view.
The following simple result is related to Lemma 1.7.
LEMMA 1.8. Let it E ZH. Suppose there exists a v E St with ,uv = eH. Then

Ho = H.
The above follows from eH,jLv = tv = eHPeH = eH.
Still another important definition is needed.
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DEFINITION 1.7. Let R+ be the additive semigroup of all realpositive numbers.
Let {r1 } be a sequence of elements R+. Suppose that there exists a sequence {ni}
of natural numbers such that ri-1 = niri for i _ 1. Let Ni be the semigroup
generated by ri in R+. Then S = Ui_o Ni is a semigroup, which will be called a
real submonogeneous semigroup; every homomorphic image of such a real semi-
group will be called a submonogeneous semigroup.

This has the following immediate consequence.
LEMMA 1.9 (Hoffman [6]). Let the xi for i _ 0 be elements of a multipli-

catively written semigroup. Suppose there exists a sequence {ni} of natural
numbers such that xi_- = x,i for i _ 1. Then the set {xi}i 0 generates a sub-
monogeneous semigroup.
LEMMA 1.10. Let G be a locally compact group and let b E Z(G). Suppose that

b is infinitely divisible. Assume, furthermore, that there exists an infinite sequence
of roots bum, of b and a compact subgroup H of G such that the following con-
ditions are satisfied:

(i) {mi} is a strictly increasing sequence of natural numbers;
(ii) b lI/. E ZHi for Hi _) H, i = 1, 2, * * *;

(iii) blmi generates a submonogeneous semigroup in Z (according to Lemma
1.9);

(iv) Ibl/m. - eHII - 0 as i -.oo.
Then b is a Poisson law and Hb = H. Moreover, these conditions are also neces-
sary for b to be a Poisson law.
PROOF. To show the necessity of the above conditions is trivial. To show

that the conditions are sufficient, let us make the following obvious remark. If
the sequence {bI/m,} contains only a finite set of different elements, then b = eH.
Therefore, we may assume that {bImlj contains infinitely many different
elements. Let the natural number m(0) be chosen in such a way that Ib1l () -
eHII < 1, and define co = logH bl (0) . It follows immediately that b = expH c,
where v = m(T)vo. We have to show that v E -H. Since b is an element of Z, it
is obvious that v(1) = 0, and it is enough to show that v(f) _ 0 when fE
C(G), f _ 0, and f(H) = 0. Now, for every natural i there exists an ni > 1 such
that blm, = bimi+,. Using (iv), it follows from Lemmas 1.1 and 1.2 that

(1.8) bu/m. = expH {n() .. ni-}
for all sufficiently large mj > m(¶). Furthermore, Mi = ) ... ni -+ *_o as
i - oo. For any f, as described above, we have 0 _ b1lm,(f) = vo(f)lMi +
0(1/Mi). The assumption that vo(f) < 0 (or equivalently, that v(f ) < 0) would
therefore lead to a contradiction.
The fact that Hb = H follows immediately from expH {v} expH {-v} = eH

and from Lemma 1.8.
Condition (iii) of Lemma 1.10 may be replaced by another condition.
LEMMA 1.11. Suppose the conditions of Lemma 1.10 are satisfied, with the

exception of (iii) and (iv). Replace the latter by the condition that
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(1.9) sup miIlbIIm. - eHII < Go

Then b is again a Poisson law of the form b = expH v for v E MH.
PROOF. We may assume (changing the notation when necessary) that

mi(bl/,m - eH) converges vaguely to a measure v E RH, which is nonnegative
when restricted to the Borel sets of G\H. Let K > 0 be a real number such that
millbl/m. - eHII _ K for i > 1. Introducing the notation

OD

(1.10) cmi = E (bl/m - eH)k/k!,

we have,

(1.11) |b - expHmi(blm1 -eH)ll = lb -[eH + (bllmi - eH) + Cm;]mill

-l(k b)klcmlcmik = (1 + llcmill)mi - 1
k=1 \/

It follows from the definition of cm, that

(1.12) llm| Ek!|bllm,-H| -- e Il < < _Kk(1.12 ll~iH ~k=2 k
liii- Hl k=2 k! m~i m~I k=2 k

Equation (1.12) implies that millcm,ll - 0 as mi ° Go, which in turn implies
that (1 + IIcmc|1)mi - 1 - 0 as mi -+ 00. It follows from (1.11) that ib -
expH mi(b,/mi - eH)I- 0, and we can conclude that b = expH v and that
V(1) = 0.

2. Characterization of Poisson laws

First, consider finite groups. We shall show that in this case all infinitely
divisible laws are Poisson laws. Before making this statement more precise note
that the group ring of a finite group G and 9(G) are algebraically isomorphic
(in a very obvious sense). Therefore, whenever desirable, one may identify the
elements of M(G) with the corresponding elements of the group ring.
THEOREM 2.1 (B6ge [1]). Let 0 be any finite group of order n with neutral

element e. Then b E Z is an infinitely divisible law if and only if there exists a sub-
group H of G and a v e -H such that b = expH V.

PROOF. It is obvious that the measure expH v is infinitely divisible for every
subgroup H and every v E fH. Assume, henceforth, that b is infinitely divisible.
We may suppose that n _ 2. Our first aim is to show that there exists a sequence
of roots ci for i > 0 of b such that

b = co,
(2.1) _= C" i < oo.Ci= I , 1.i<o
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Now, Z is compact in the norm topology, so H%0 Zj, where Zj = Z for j _ 0,
is compact with respect to the product topology. Furthermore, there exists a
root b 1nk of b for every k _ 1, such that bi /nk = b. The sets

00

(2.2) U {b't"j}xx {b J} X x {b1lnj} x Hl Zi, k = 1, 2, * * ,
j2k i=j

form a filter base in rIoj< 0 Zj which has an accumulation point (co, cl, )
in the latter set. Conditions (2.1) are obviously satisfied. According to Lemma
1.9 the set {cj} generates a submonogeneous semigroup in Z.

Continuing the argument, there exists a subsequence {di} of {cj} which con-
verges to a limit c E Z. Furthermore, for every nonnegative integer 1' the relation
ce = dk holds for all sufficiently large k, where rk > 2 is appropriately chosen.
Consider, for a fixed t' _ 0 the equation

(2.3) ce = dkdrk = drk-ldk
When k -*oo (consider, if necessary, a subsequence), one obtains from (2.3)
the relation

(2.4) ce = cat = aec,

where ae is a certain element of Z. Note that (2.4) implies

(2.5) ce E cZ n Zc

for every nonnegative integer e, which in turn implies di E cZ n Zc for i > 0,
and d k- IcE cZ n Zc for all k. The compactness of cZ rn Zc therefore entails the
relation aeE cZ n Zc for t _ 0. Considering relation (2.4) for the subsequence
{di} only, one obtains

(2.6) c = ca = ac,

where

(2.7) a E cZ n Zc.

It follows immediately that a is an idempotent. According to Lemma 1.4, there
exists a subgroup H of 0 such that

(2.8) a = eH,

and so c belongs to ZH. Relations (2.6), (2.7), and (2.8) imply

(2.9) ZH = CZ n Zc.
Furthermore, using (2.7) and (2.8), one obtains from Lemma 1.7 that c = 6XeH,
where x belongs to the normalizer of H. Consider the subsequence {cjkj of {Ct}
whose elements satisfy the condition Cjk = dk for every k. Then dk converges to
(3XeH)" = eH, and so IICjk - eHIl -|0. This relation together with (2.1), (2.5),
and (2.9) allows the application of Lemma 1.10. The sufficiency clause of the
theorem is thereby proven.
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It is trivial that there cannot be a similar result for the case of an arbitrary
locally compact group. If 0 is a Lie group, an analogue of the Levy-Khintchine
representation formula has been established [7]. Theorem 2.1 is not an
immediate consequence of this formula. We shall give a simple characterization
of Poisson laws on general, locally compact groups.
THEOREM 2.2 (Hazod and Schmetterer [4]). Let G be a locally compactgroup,

and let b be an infinitely divisible law belonging to Z(G). Then b is a Poisson law if
and only if the following conditions are satisfied. There exists a compact subgroup
H of G, and for every n _ 1 there exists an nth root b In of b with Hbln _ H.
The sequence {bl/} contains a subsequence {bi/m,} which satisfies conditions (i)
and (iii) of Lemma 1.10. There is a sequence {kn} of nonnegative numbers, with
kn < 1 as n > 1, and another nonnegative sequence {wn} such that

(2.10) wnk -°°

(2.11) IIblln - eHII _ 2(1 - kn), n > 1,

and

(2.12) sup wnjjb,1.b61n - eHil < °°
n

(If p E .f, then i denotes, as usual, the measure defined by f ,u(f), where
f(x) = f(x-1) for xEG and fE C(G).)

PROOF. It is trivial to show that these conditions are necessary; to show that
they are also sufficient one has to observe that

(2.13) liv - eHil = 2v(G\H)
and

(2.14) vvi(G\H) _ v(G\H)v(H)

whenever v E ZH. An application of (2.13) and (2.14) yields

(2.15) wn|lblll - eHi _ 2w,b1In(G\H)b11n(H) = wnliblln - eHlIblln(H).
An application of (2.13) and (2.11) implies the inequality

(2.16) blln(H) _ kn-
It follows from (2.15) and (2.16) that

(2.17) wnlb11nbi1n - eHiI >- wnknliblln - eH|.
Relations (2.10),. (2.12), and (2.17) imply l|b1ll - eHi1 - 0 as n - oo. Now, it is
enough to apply Lemma 1.10.
The following result can be proven in a similar manner.
THEOREM 2.3. Assume b belongs to Z(G) and is infinitely divisible. Suppose

there exist a compact subgroup H of G and, for every n _ 1, an nth root bI n of b
with Hbl _ H. Furthermore, suppose there exists a homomorphism q from the
additive semigroup M+ of the positive rational numbers into Z with T (1) = b1 = b
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and cp(l/n) = b11" for n _ 1. Assume, finally, that

(2.18) sup IIbI - eHII < 2,
n

and that there exists a natural number nO such that

(2.19) IIbj1,"bi,&0 - eHII < 1.

Then b is a Poisson law.
These conditions are obviously also necessary.
Let us mention that M+ is a real submonogeneous semigroup and the con-

ditions concerning p can be weakened by considering any other submono-
geneous subsemigroup of Z generated by infinitely many roots b1/n.
Theorems 2.2 and 2.3 cannot be improved in a certain sense. Even for the

case of an abelian compact group it is not possible to weaken condition (2.18)
without violating the statement of Theorem 2.3. (See Example 4.1.)
On the other hand, the existence of submonogeneous semigroups generated

by the roots of an infinitely divisible law can be replaced in the formulation of
Theorem 2.3 by the assumption that G is compact. The following result holds.
THEOREM 2.4 (Carnal [3]). Let G be a compact group. An infinitely divisible

law b, which belongs to Z(G), is a Poisson law if and only if there exist for n > 1
roots b1 , of b (with b1 = b), which satisfy the following properties. There exists
a compact subgroup H of G such that Hb,,n - H for n _ 1. Furthermore,

(2.20) lim inf lbbl/ - eHlI < 2.

There exists a natural number nO such that

(2.21) Ilbl/06b1/no - eHJI < 1.
Before giving a proof, we formulate the following.
DEFINITION 2.1. Let i be a measure from R(G), and let

(2.22) M=(:

mr, I
. . . mr,,,

be a. bounded complex representation of the (compact) group G. Then we write

7 m, 1(g) d/l(g) ...* 'mi,r(g) dyl(g)\
(2.23) M(0t) =

fGImr,,r(g) d/l(g) .. f mr,,,(g) dy (g)

If dy = fdeG with f E L, (G), then we write M(f ) instead of M(y).
Of course, Lp(G) denotes the set of all functions f on G such that If IP is

integrable with respect to the normed Haar measure of G.
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PROOF OF THEOREM 2.4. If ju is an arbitrary, symmetrical measure which
belongs to Z(G) (that is, u = ,u), then there exists a unitary representation M
in every class X of irreducible, bounded representations of G such that M(p)
is a diagonal matrix. There exists also a unitary M E X such that

I 01.. 0

001 1. 0

(2.24) M(eH) o
00 ... 0

0 0 .. 0

The number of elements of M(eH) which are different from 0 will be denoted by
IH -

Our first aim is to show that

(2.25) sup SUP n(l - tr M(bjnb un") < O0
n2 1 MECH eH

where 61H is the set of all irreducible unitary representations of G for which
4H > 0 and where tr M(blingl1n) denotes, of course, the trace of M(bj1nbj1n).
To prove (2.25), let us observe that M(eH) together with M(bllnoblln1) can be

transformed into a diagonal matrix whenever M E O1H. Yet, it may be necessary
to replace M by an equivalent representation. This follows from b1 E.e ZH.
Denote by AM,n,j for 1 < j _ tH, the eigenvalues of M(bl,Ib11n) which are dif-
ferent from 0. Relation (2.2 1) implies the existence of a nonnegative y < 1 which
satisfies the condition 0 _ 1 - AM, no, j Yy < 1. It follows that

(2.26) AM, 1,; > (1 _ y)nO > 0, 1 < i _ H

From (2.26), one obtains

(2.27) (tr M(bl/nbln)J > (jn AM,n j) = i A 1 (1 -)

This in turn yields

(2.28) n[l - tr M(bj1,bj,n)] _ n[ l- (1 -_y)f°/f] -log(I -_ y)no

uniformly for M E 61H. The inequality (2.25) follows. as n -0 0O
Next to be proved is that

(2.29) sup nbj11b11n(G\H) < oo.

Let VV-1 be a neighborhood of the neutral element e of G where V is an open
set. There exist fv E C(G) which satisfy the following conditions:



178 SIXTH BERKELEY SYMPOSIUM: SCHMETTERER

(a) fv _ 0;
(b) fv(G\V) = 0;
(c) fV(g9g2) = fv(g2g), g1, g2 EG ;

(d) fG fvdeG = 1.

Let M be an m dimensional, irreducible representation of G and let Em be the
m dimensional unit matrix. Condition (c) and Schur's lemma imply

(2.30) M(fv) = CMEm,

where CM * 0. For x, z E G, let

(2.31) gv(x) = rGfv(y)fv(yx-1) deG(y),
and

(2.32) hv(z) = jG gV(y z) deH(Y),

It may be seen without difficulty that

(2.33) hv(x) = 0 when xe G\VV-1HVV- = U.

Equations (2.30) and (2.31) imply that M(gv) = ICMI2Em. Taking into account
definition (2.32), one obtains

(2.34) M(hy) = M(eH)IcM12.
One can again assume that M(eH) satisfies equation (2.24). It follows easily

from (2.31) and (2.32) that hv is the convolution of two functions which belong to
L2(G). Therefore, hv can be expanded in a uniformly convergent series with
respect to the elements mi, j of the unitary matrices M = (mi j), 1 _ i, j _ m,
chosen from every class of irreducible representations. Accordingly,

(2.35) hv(x) = YM E mi, j=(x) ' mii,j(y)hv(y) deG(Y), x E G.
m 1<i,jSm S(G

Using (2.34), equation (2.35) leads to

(2.36) hv(x) = Em E ICM12Mimi(X).M i=1
Choosing x = e, one obtains from (2.36)

(2.37) hv(e) = y m,HI CM1 > 0.
M

We deduce from (2.25) the existence of a K > 0 such that

(2.38) n(l _
tr M(b, jnu&n)) < K
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for all n > 1 and all M E /H. Multiplying (2.38) by hv(e) and using (2.37),
(2.36), and (2.33), we get the inequality

(2.39) Khv(e) _ nhv(e)b11/n61n(U).
Inequality (2.39) implies

(2.40) sup nb11nb61n(G\VV-1HVV-1) . K

for every neighborhood V of e, and statement (2.29) follows. Condition (2.20)
together with (2.29) imply the existence of a sequence {ni} of natural numbers
such that

(2.41) sup nillbl/ni - eHII < cx-

By application of Lemma 1.11, the proof is complete.

3. Study of some homomorphisms from M+ into Z

We turn our attention to the remark which was made at the beginning of the
proof of Lemma 1.10. The following problem arises. Let qp be an (algebraic)
homomorphism from M+ into Z. Suppose that there exist at least two different
elements r, s E M+ such that p(r) = cp(s). What can be said about ((l)? This
problem can be generalized somewhat by considering any submonogeneous
semigroup contained in Z instead of the homomorphic image of M + in Z. But
we restrict ourselves to the former, more special problem, and show the following
result.
LEMMA 3.1. Let G be an arbitrary locally compact group and let p be a homo-

morphism from M+ into Z(G). Denote 9p(r) by b, whenever r E M+, and assume
that there exist two different elements r1, r2 E M+ such that b,r = b,2. Then there
exists a compact subgroup H of G and an element x, E 0, which belongs to the
normalizer of H, such that S(b,) c x,H for every r E M,.

PROOF. The assumptions imply that cp(M+) contains a group. (See [6].)
Therefore, according to Lemma 1.4, there exists an ro E M + and a compact sub-
group H of G such that b,o = eH. Writing rO = p/q where p, q are integers, one
obtains
(3.1) bp = bP = eH-

Moreover, the relation

(3.2) eHb, = breH-

holds for every r E M+. Let us introduce the notation b = eHb,. It follows
from (3.2) that {b*}, r E M+ is a semigroup.

Equation (3.1) implies
(3.3) bkp = eH, k
Equation (3.3) together with Lemma 1.6 imply that Hb; C H for every r E M+.
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On the other hand, the relation eHb = b*,eH = b follows from (3.2), and so
Hb* = H for every r E M+. Let r = tls be any element of M+, where s and t are
integers. Then b6SP = btp = eH, and an application of Lemma 1.7 yields
S(b*) = XrH, where x, is some element from a which belongs to the normalizer
of H. The statement of the lemma follows immediately.
THEOREM 3.1 (Schmetterer [11]). Let G be an abelian, locally compact group.

Then the assumptions of Lemma 3.1 imply b, = b6x1eH, where x1 belongs to the
normalizer of H. A similar statement holds for every r E M+.

PROOF. Taking into account equation (3.1), it is enough to show that
Hbl H. If H = {e}, then no proof is needed. If H # {e}, the relation
[(,e- eH)bl]P = 0 follows. The algebra g(G) does not contain nilpotent
elements (see [9]) and so it follows that b1 = eHbl.

This proof cannot be applied to the case of a nonabelian group. Yet, Theorem
3.1 remains true for a very large class of nonabelian groups (as has been shown
very recently by W. Hazod). It is not true for arbitrary nonabelian groups. We
shall treat a special case only.
LEMMA 3.2. Suppose that the assumptions ofLemma 3.1 are satisfied. Further-

more, assume that

(3.4) e E S(b,), r E M+.

Then the conclusion of Theorem 3.1 holds.
PROOF. It is enough to consider the case whereH # {e}. Let A, = (b,e- eH)b,

for r E M+. Equation (3.2) implies that {A),}, r E M+ is a semigroup. Using the
notation introduced in the proof of Lemma 3.1, we get

(3.5) A,r = 0.

It follows from Lemma 3.1 and equation (3.4) that S(b,) c H, and soS(G,) _ H.
Let / be an irreducible bounded representation of H of dimension m. Equation
(3.5) implies A' -In = 0 for every n > 1, and this in turn implies [I (Ar,.n),]n = 0,
where (Ar)H is the restriction of A, to the Borel sets of H. An application of the
Hamilton-Cayley theorem yields [O(AT,fl)H]m = 0, m > 1, for every irreducible
representation zr of dimension m. Taking into account that A,,I, = lrmo/m, one
obtains k (A,oIn)H = 0 for every n _ 1 and every irreducible representation q of
H, and so A,O/n = 0. This implies that Ar = 0 for every r E M+.

Another conclusion may be drawn from Lemma 3.1 and the following may
be shown.
COROLLARY 3.1. Let a be an arbitrary locally compact group and let expH V

with v E SH be an arbitrary Poisson law. Then the mapping r -M* expH {rv} for
r E M+ is either an isomorphism or a (trivial) homomorphism from M+ onto eH.

PROOF. Let p: r -m expH rv be a homomorphism, but not an isomorphism.
Then there exists an rO E M+ with expH rov = eH. Lemma 1.8 implies that
HeXpHrv = H for every r E M+. Therefore, the statement of Theorem 3.1 holds
when b, is replaced by expH rv. Clearly, the inequality IIexpH rv - eHII < 2
holds for every r E M +, and therefore, expH rv = eH for every r E M ,.
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The problems treated here are obviously related to the important question of
whether an infinitely divisible law b can always be imbedded in a homomorphism
p from M+ into Z such that qp(l) = b. This question admits an affirmative
answer if some compactness conditions are satisfied, but in general the answer
is negative.
THEOREM 3.2. Let G be an arbitrary locally compact group, and let b be an

infinitely divisible law which belongs to Z(G). For every n _ 1 let WI n(b) be the set
of all nth roots of b. Suppose that the elements of WI1n(b) are uniformly tight. Then
b can be imbedded in a semigroup of probability measures over M+.

PROOF. Clearly, W/i(b) =6 0 for every n _ 1. But for every integer m > 0
the elements of Wmin(b) = {am: a e Wil,(b)} are uniformly tight and therefore
relatively compact in the weak topology. The convolution is (weakly) continuous
on the closure of Wmin(b), and so Wmin(b) is compact. Let Kn = {m/n!, m =
1, 2, - * - } for n > 1. Obviously, Kn _ Kn+ 1 and U, 1 Ki = M . The Cartesian
product W = I Wm.In (b), where (m/n!) e K_ and n > 1, is compact in the product
topology. There exists for every k _ 1 a b1/k E Z(G) with b'I/k = b. Therefore,
an!,m = bfl!" E Wmln!(b) and

(3.6) anl!,f! = b-
Furthermore,

(3.7) an ,mian!,m2 = an!,ml+m22 n > 1, mI, m2 = 1, 2, **,

Let k be a natural number and let Ak be the set of all those elements
{Cmln!; (m/n!) E Kn, n _ 1} E W which satisfy the condition cml/l = aklm(f+ 1) k
for m _ 1 and 1 _ I . k. Define En = Uk.lAk for n _ 1. The set of all En
defines a filter base in W and has an accumulation point {dmin!} E W such that

dm,/itl = d.252! whenever m1/t4 ! = m2/e2!. Let r be an arbitrary element of M+
and consider the (well-defined) mapping zp given by r -* d,. Taking into account
conditions (3.6) and (3.7), it is easy to see that the mapping r -m d, is a homo-
morphism withqp (1) = b.
The statement of Theorem 3.2 holds in two important special cases: (a) if b

has only finitely many nth roots for every n > 1, and (b) if G is compact. But
the conditions of Theorem 3.2 are also satisfied for a much broader class of
groups. Indeed, the following result holds.
LEMMA 3.3 (Boge [2]). Let G be a locally compact group which is the union

of all its compact and open invariant subgroups N. Suppose that for every N the
factor group GIN contains only finitely many elements of every (finite) order (and
no other elements). Then the assumptions of Theorem 3.2 are atisfied.

PROOF. First we show that, for every n _ 1 and every compact subset C of
0, there exists a compact set Cn C G with the following property. If
xI, * * *, Xn- 1, Xn = e is a sequence of elements satisfying
(3.8) CXiCXk r CXi+k # 0

whenever i + k < n, then this sequence belongs to Cn. Let No be a compact
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and open invariant subgroup (cois) of G, and let C be an arbitrary compact sub-
set of G. There exist finitely many yj E G. say yl, Yr such that C c U': 1 Noyj.
Moreover, for everyj there exists a cois Nj with yj E Nj, and so C _ NoN1 .* Nr.
The set N = NON1 ... N, is a cois. It follows that C,, can be chosen as the union
of all elements of order n (or of a fixed order _ n) of the group GIN. Now it
remains to show that, for every m > 1, Wilm(b) is a uniformly tight set of
measures. For every E such that

(3.9) 0 < E _ 3

there exists a compact subset C of G such that

(3.10) b(C) _ 1 - E.

Let c be any measure from Wjlm(b). Then (3.10) implies

(3.11) JGJ'G Ic(yX) dck(y) dc (X) _ 1 -

for every natural number k < m, where Ic is the indicator function of the set C.
It follows from (3.11) that there exists an Xk E G with

(3.12) ck(Cxk) _ 1 - 8.

Define xm = e. Then, whenever k + t' . m, one obtains from (3.12)

(3.13) ck+ (CxkCxl) _ (1 - E)2

It is easy to see that

(3.14) c(cxkcx( nk Cxk+6) _ c (CxkCxk) - ck [(G\C)xk+ ].

It also follows from (3.12) that if k + f < m, or from (3.10) if k + e = m, that

(3.15) ck+ [(G\C)xk+j] . E.

Inequalities (3.13), (3.14), (3.15), and (3.9) imply

(3.16) ck+ (CxkCxe r) Cxk+6) > 0.

We deduce immediately from (3.16) that CXkCXf n CXk+e # 0 for k + e < m.

Therefore, there exists a compact subset Cm of G which contains all the elements
of the sequence x1, * , x., and so choosing k = 1, equation (3.12) implies
c(CC ) > 1 - s. The compact set CC,,, does not depend on c and so the lemma
is proven.

4. Examples

In this section examples are collected which illustrate some results of the
previous section and also point out some new features.
EXAMPLE 4.1. Let G be the two dimensional torus and let {x,,} be a sequence

of positive real numbers such that X"'. oc , converges. Let x,, = exp {2iri/n} for
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n 1. It is obvious that v = Ynt 1 0Cn6., - (X°-' 1 Xn)b, belongs to Y It follows
that it,= expt.1, {tv} is a Poisson law for every real t > 0. Let Yt = exp {-22lit} for
t > 0, and w, = byj. It is easy to see that w, is not a Poisson process. But t -w
is a homomorphism from R+ into Z. Moreover, one finds by an easy calculation
that 11Wi/n - 6.,I1 < 2 when n _ 1. Furthermore, the fact that w,z3, is a Poisson
process implies the existence of a natural number nO with Iwi,no10I-/no-xjI < 1;
that is, w, satisfies condition (2.19).

Another example is concerned with the problem that the representation of a
Poisson law b is not necessarily unique. More precisely, it is possible to find a
Poisson law b such that b = expH v1 and b = expH v2 with vi E fH for i = 1, 2
and v1 :E v2. The construction of such a Poisson law which admits (at least)
two different representations can be carried out with the help of the following
argument. Let G, for simplicity, be an abelian group. Suppose that there exists a
U E RH(G) with u : 0 such that

(4.1) expH U = eH.

Let u = u - u2, where the ui E E are nonnegative measures for i = 1, 2 with

(4.2) ul :6 u2.

It follows that expH {u1 - u2} = exp {eH(ul - U2)} = eH, and so

(4.3) expH {eHul} = expH {eHu2}.

Write eHui = wi for i = 1, 2. Relation (4.2) implies

(44) Wl =k W2.

Moreover, the measures wi are nonnegative, belong to -4H' and satisfy

(4.5) w1 - w2 = u.

Relation (4.5) implies that (w1 - w2)(1) = u(1) = 0, and so

(4.6) llwl Il = 11w211
Obviously, vi = wi - lIwilleH belongs to -H for i = 1, 2, and it follows from
(4.3) and (4.6) that expH v1 = expH v2. Moreover, (4.4) and (4.6) imply that
V1 7E V2-

It is easy, even for finite groups, to find examples which realize condition (4.1).
EXAMPLE 4.2 (B6ge [1]). Let G be a finite group of order n which con-

tains at least one element g0 of order > 2. Denote by G' the character group
of G. For every a E X of the form YgeG agg (see the remark at the beginning of
Section 2) define x(a) by EgeG agx(g) for every X E G'. It follows that ag =
(1/n) EXcG'X'1(g)X(a) and ag is real if and only if

(4.7) x(a) = Z-1(a)
for every X E G'.
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Let e be the neutral element of the group G. There exists a u E ! satisfying

(4.8) exp{e}u = be

if and only if exp {x(u)} = 1 for every X E G', where exp denotes the usual
exponential function. To show that (4.8) has a real solution, u * 0, take into
account that g' + e and find a character Xo such that

(4.9) Xo(go) # x0-l(go)
Define u = EgeG Ugg, where ug = (1/n) [Xo(g)27ti - X (g)27i] for every g E G.
Equation (4.7) is satisfied for every X E G'. Moreover, it follows from (4.9) that
ugo 7 0 and so u ¢ 0, but u satisfies equation (4.8).
The following example shows that the product of two Poisson laws need not

be infinitely divisible.
EXAMPLE 4.3 (B6ge [1]). Let G be a finite group with neutral element e,

and let x, y be two elements of G such that

(4.10) xy + yx.

Let

(4.11) u = -

and

(4.12) v by -"e
It is trivial to show that u, v E XI{e}. On the other hand,

(4.13) uv - vu = b by - by 6x0 e}-
Take e > 0 and define a = exp{e) {su} and b = exp{e) {sv}. Clearly, a and b are
Poisson laws. If s is sufficiently small, then ab = exp{e} {log{e} ab}, according
to Lemma 1.1, and moreover, l|ab - 6e11 < 1. But log{e}ab = g(u + v) +
g2'[uv - vu + 0(e)] and it follows from (4.11), (4.12), and (4.13) that

log{e}(ab) 0 J if e > 0 is sufficiently small. Therefore ab is not a Poisson law,
and thus, not infinitely divisible, according to Theorem 2.1.

Another example shows that the well-known classical theorem of Raikov for
R1 does not necessarily hold for arbitrary (locally compact) groups.
EXAMPLE 4.4. Let q be a primenumber > 2and let M4 = {0, l, - * *, q - }

be the group of residues mod q. Let y be a positive real number and let x E Mq
with x 7E 0. Then we can show that the Poisson law b = exp(o) {v(6. -
can contain factors which are not of this form. Define v1 = tbo + (1 - t)eMq,
for 0 < t < 1, and v2 = t-b + (1 - t-)eMq. Clearly, v1 8 Z and v2 e_
Moreover,

(4.14) V1V2 = b.

We want to show that v2 E Z can be proven, if t is appropriately chosen. For this
purpose we observe that b * eMq and so minkeMqb(k) < l/q. Choose t in the
interval
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(4.15) 1 > t _1 -q min b(k).
ke-Mq

It follows from (4.15) that for every e E Mq

(4.16) V2(f) _ t- min b(k) + (1 -
kGMq

1 (q min b(k) - l)q- ± q1 .0.1 - q min b(k) keMq
keMq

Equation (4.16) together with V2(Mq) = 1 implies that v2 E Z if (4.15) is ful-
filled. It is easy to see that v, is infinitely divisible, and so it is a Poisson law (see
Theorem 2.1). But the Fourier transform of v1 is identically equal to t, while the
Fourier transform of b is given by j -m> exp {y(exp {27rixj/q - 1})}, for
0 < j . q - 1.

Note that Raikov's theorem holds for infinitely cyclic groups [10].
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