
CONSISTENT EXTENSIONS OF
LINEAR FUNCTIONALS AND OF

PROBABILITY MEASURES

DOROTHY MAHARAM
UNIVERSITY OF ROCHESTER

1. Introduction

Suppose we are given a family of fields 3;a, a E a?, of subsets of a fixed set X,
and for each a a finite measure ma defined on JF. Under what conditions will
there exist a measure m, defined on a field F containing each .0, and agreeing
with each ma on 9;;? This problem is of some importance in probability theory
(it arises in the theory of marginals), and has been studied, for instance, in [3],
[5], [7], [14], [16]. The problem takes several forms: the measures considered
can be positive or signed, dominated by a previously given measure or not, and
countably or finitely additive. The countably additive cases are the most signifi-
cant, but also the most difficult (see [1], [4], [8]); the most far reaching results
here seem to be those of Kellerer [5], [6]. However, the finitely additive cases
are also of interest (in fact, the case in which X itself is finite is of significance;
see [16]), and the present paper deals almost entirely with them.
Our main object is to give a unified, simple, general treatment of the finitely

additive cases, allowing arbitrarily many measures ma (in the literature, only
finitely many are usually considered). From this we shall obtain one theorem
providing a countably additive extension, under additional topological assump-
tions. We shall also deal with a second general problem (see [16]): under what
conditions on the fields 3a will every consistent set of measures have a (finitely
additive) consistent extension?

It is convenient to reformulate the finitely additive problems in a slightly
more general form, which reduces them to linear algebra. Let L denote the set
of all real valued functions on X; for each a E X, let La be the subset of L con-
sisting of all F. measurable step functions on X, and for each f e L., let

(1.1) 4a(f) = f dma.
Then the measures ma have a common extension to a (finitely additive) measure
m if and only if the linear maps 0,,: La -+ R have a common extension to a linear
map 4 of a linear space containing each La (which, as we shall see, may as well
be taken to be L itself). Thus, throughout most of what follows, we shall be
concerned with the problem of extending the linear maps 40, Since it makes
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things no harder, we permit the L. to be arbitrary linear subspaces ofan arbitrary
linear space L, and allow the values of the linear maps O. to be in an arbitrary
linear space M. For simplicity, all linear spaces are understood to be over the
real numbers as groundfield (though in Sections 2 through 5 any other field
would do as well; in Sections 6 and 7 we would require an ordered field); and
the letters A, It, v are reserved for real numbers, and 6, - for positive real numbers.
The extension problem in its simplest form is dealt with in Section 2 (the

content of which is essentially known). In Sections 3 through 5, we consider the
second (and harder) problem in the form: under what conditions on the linear
spaces L. will every consistent system of linear maps 0k have a common exten-
sion? We show that our results here apply to marginals (in the finitely additive
signed case). In Section 6, we return to the first problem for the case ofpositive
measures (reformulated in terms of positive linear maps), and we also cover the
case in which the (positive) measure is to be dominated by a previously given
measure. In Section 7, we deal with the second problem for positive measures,
and for positive dominated ones. Finally, in Section 8, we consider briefly the
positive, countably additive case. Throughout, all measures considered will be
finite.

2. Extension of consistent linear maps

Let Y = {L. I eE d.} be a nonempty family of linear subspaces of a linear
space L and, for each a E X, let 0, be a linear map ofL. in afixed linear space M.
We say that the maps 0,, a E .', are extendable (or, more accurately, form an
extendable family) if there exists a linear map 4: L -. M such that, for each
a E X, the restriction ¢k L, = O.. Obviously, a necessary condition for this is
that the maps 0, are consistent (that is, 04 La r L;, = 0 I Larn Lo for all a, ,B E sl)
and we assume the consistency of the maps 4, throughout what follows. They
then combine to give a well-defined (but in general not linear!) map qU: U -M,
where

(2.1) U= UY= U{L I oed}.

We write S = S(U) for the linear subspace of L spanned by U; generally, if
A c L, S(A) denotes the linear subspace of L spanned by A.

The question of when the consistent family {|a d} is extendable has the
following simple and essentially known answer (see [5], Saitze 2.1 and 2.2, and
[12]).
THEOREM 2.1. Thefollowing statements are equivalent (for a consistentfamily

of linear maps 40, a E ds):
(i) the maps 04, a E X, are extendable;
(ii) eu can be extended to a linear map 4: L M;

(iii) 'u can be extended to a linear map t; S M;
(iv) whenever x1, X2, * *x,,nE U and 1% IX = 0, then Ei= I 4uu(xi) = 0.
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PROOF. Obviously (i) and (ii) are equivalent, and (ii) (iii) -+ (iv). It is an
easy matter of routine to verify that (iv) -+ (iii), while, finally, the implication
(iii) -+ (ii) is the "pre-Hahn-Banach" theorem (see, for instance, [15], p. 140).
COROLLARY 2.1. If I|I = 2, then every consistent pair of maps 01, 02 is

extendable.
In fact, condition (iv) holds automatically in this case. For, suppose xi E U =

L1uL2 for i = 1, 2, * , n, and that x1 + x2 + - * - + x. = 0. Write

(2.2) Yi = E {xilxi E L1}, Y2 = E {xixXi 0 L1}
(with the usual convention that empty sums are 0). Then yj E Lj, j = 1, 2, and
YI + Y2 = 0. Hence, Y2 = -Y1i E L1, so

(2.3) E {4u(Xi)ji = 1, 2, - n} = 4I(Y1) + 02(Y2) = 0&(Y1 + Y2) = 0,
as required.
However, when ||W1 _ 3, not every consistent system is extendable; in other

words, condition (iv) is not vacuous. This is shown by the following simple
example.
EXAMPLE 2.1. Let L be two dimensional Euclidean space R2, M the real

line R, and g = {L1, L2, L3}, where L1, L2, L3 are the one dimensional sub-
spaces of L spanned by the vectors (1, 0), (0, 1), (1, 1), respectively. Define 0
and k2 to be the constant maps sending L1 and L2 to 0, and define 13 (x, x) =
x (x E R). These maps are consistent, but clearly the only linear extension of 0
and 42 to L is 0, which disagrees with 031.

In the next sections we consider the less trivial problem: under what con-
ditions on £ is every consistent system {4, oa E a} of linear maps extendable?

3. . equivalence

3.1. We say that the family Y = {L,,Ia Ee?} of linear subspaces ofthe linear
space L has the "M extension property," where M is a linear space, provided
that every consistent system of linear maps 4>1: Lx -* M is extendable. It turns
out that this property is independent of M (providing M * {0}); once this is
proved, we shall refer to it merely as the "extension property." In this section, we
introduce and study an equivalence relation which we shall use to characterize
theM extension property. (For a completely different characterization in a special
case, see [16].)

Notation. Let .F denote the set of all finite sequences (x1, x2, * *, xn), where
xi EU =UY for each i = 1, 2, * - -, n and where n = 1, 2, . If F=
(x1, * * x") E .F and A E R, then )F denotes the sequence (Ax, * , Ax). We
abbreviate (-1)F to -F as usual. If F = (1 * * *, Xn) and G = (Y1, ,* * X ym),
then (F, G) denotes the sequence (x1, * * Xn, I1, * * *, Ym). We define IF, where
F = (xl, * * *, x") E, , to be the element x, + x2 + ±* * + xn of L.
The elements x1, - * *, xn of L are said to be "Y related" provided that there

exists some L,, EY which contains all of them. Finally, a map 1: A -+ M, where
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A c L, is called "' linear" provided that: whenever x1, * * *, x, are Y related
elements of A and Al, * *, , are real numbers such that 1% I )ixi = 0, then
F,%1 Ai (xi) = 0. Note that 4u, in Section 2, is automatically £ linear; con-

versely, every £ linear map 4: U -. M, where U = U Y, is expressible in the
form 4u for a consistent family of linear maps 0),,: La -+ M (namely, 4)a = 41 L.a).
Thus, in what follows, the £ linearity of 4u enables us to forget about the
individual linear maps 4)a.

3.2. Now consider the following relations on .F: FR1G means that G is a
permutation ofF; FR2G means that F = (x1, * * * I Xn -1 x") and G = (xi,X * * I

x"- 1,y 1, * * *, y,.), where X", Y1, * * *, y, are Y related and x. = YI + * + Y,-
Here n, r are arbitrary positive integers. FR3G means that GR2F.
We say that F, G are Y equivalent, and write F - G, provided there exists a

finite sequence H1, H2,.* *, H. E ,F (where m _ 2) such that F = H1, G = Hm,
and, for each i = 1, * - *, mr-1, we have HiRjiH+1 for some j = 1, 2, 3.
Clearly £ equivalence is just the equivalence relation generated by R1 and R2.
We shall make frequent use of the following easily verified properties of Y

equivalence, where it is understood that F, C, H E .F and A E R:
(a) if F = (x1, * , x.), and xi 1 xIi2 ...

I xi, are £ related and xj,, * - *, xj,
are the other elements of F, then F - (xj, * * * X, xi, + xi2 + + xi,);

(b) ifF - G then iF AG;
(e) (F, (0, Ox * * * X O)) F;
(d) (F,G) - .(G,F);
(e) if Fi ' Gi, i = 1, * * , m, then (F1, F2, * Fm) - (G1, G2, * * *, G.);
(f) ifF G, then E F = I G (the converse is not true; see Theorem 3.1 and

Example 5.2);
(g) F - G if and only if (F, -G) - (0); in particular, (H, -H) - (0)

always;
(h) if (F, H) - (G, H), then F -G (and conversely, by (e)).
Of these assertions, only (g) and (h) need be proved here. We first establish

the special case of (g), that (H, -H) - (0). Suppose H = (h1, * * , hj); then

(3.1) (H, -H)R1(hl, -hl, h2, -h2, * * , hn, -hn)
R3(hl, -hl, *** h.-,, -hn-1, O)
R3(hl, -hA, * * , hn-1, -hn-1) . R3(hl, -h,)R3(0).

From (e), it now follows that
(i) (F, H, -H) - F.
Now if F - G then, from (e), (F, -G) (G, -G) - (0), from the special

case of (g) just established. Conversely, if (F, -G) - (0), then by (i) we have
F (F, -G, G) - (0, G) , by (e) and (c). This proves (g), and (h) follows
easily from (g) and (i).
The following lemma permits us to express the Y linearity of 4u in terms of

f equivalence.
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LEMMA 3.1. Let il be a map from U = U f to M. The following statements
are equivalent:

(i) 0 is Y linear;
(ii) if (A11X, )2X2, )* ALX.) - (O), where xi E U and Ai E R, i = 1, 2, n,

then 1I= )ifr(Xi) = 0;
(iii) if (AIXI, * * n,).nXn) - (IlYi * , jUmYm), where the x and the y are in U

and the A and the it are real, then ZV=,Ii if(xi) = I7=T I'jN(yj).
Suppose (ii) holds, and suppose that x1, * , x,, are Y related elements of U

and Al, * - *, .,, are real numbers such that -i Aixi = 0. Then )1xl, * -,IA,,x, are
also Y related; hence, (Alxl, - , )nxn)R3(0), so (ii) gives Ei )ifr(xi) = 0, and
(i) follows.

If (i) holds, we easily check for each of the three relations R, j = 1, 2, 3, that
if (AIxI, * * *, AnXn)Rj(lys1y *, jimym), then Ii )if(xi) = E juji(yj); and from
this (iii) follows.

Finally, the implication (iii) -+ (ii) is trivial.
We can now state the first main theorem.
THEOREM 3.1. The follouwing assertions are equivalent:

(i) Y has the M extension property, for some M # {0};
(ii) Y has the M extension property for all M;

(iii) for each F E JF such that Y F = 0, we have F (0).
REMARKS. The converse of (iii) always holds by (f), so (iii) could be restated:

I F = 0 is equivalent to F - (0). It has already been shown (Example 2.1) that
(ii) does not hold automatically, in general; thus, the requirement in (iii) is not
vacuous. However, it follows from Corollary 2.1 that, when Ijs?| = 2, then
{L1, L2} always has the M extension property for all M, so that (iii) must hold
automatically in this case.

PROOF. Assume (iii) holds, and let xl, * , xn be elements of U such that
x1 + * * * + x,, = 0. Then (xl, * , x") - (0), by (iii). Since 4u is Y linear,
Lemma 3.1 (ii) (with all the)i = 1) shows Ii Ou(xi) = 0. By Theorem 2.1, 4u
can be extended to a linear map 4>: L -. M, so (ii) follows.
The implication (ii) -* (i) being trivial, all that remains is to prove (i) -+ (iii).

This we do in the next section, after developing some further machinery.

4. Y span and fS linearity

4.1. To complete the proofofTheorem 3.1, we introduce two further notions.
First, if A is a nonempty subset of U = U 9, its "9 span" YS(A) is the set of
all y E U such that, for somex1, * * , xn c A and Al, - - *, An e R (and some posi-
tive integer n), (y) - (AIX1, * * n,).Xn). The following properties of the 9' span
are easily verified:

(j) A c 9S(A) c S(A) n U (from (f));
(k) if yeE'S(A) and A E R, then Ay E 9S(A) (from (b));
(1) if xi, * * *, xn are 9' related elements of 9S(A), then xl + * + xn E

9S(A) (from (a) and (e)).
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Together, (k) and (1) give:
(m) for each a E X, La rn LS(A) is a linear subspace of L,,;
(n) LS(LIS(A)) = Y?S(A) (from (j) and (e)).
Caution. 5PS(A) is not, in general, a linear space; it will be so only when it

coincides with the span S(A).
4.2. Next, with A as above, suppose i/i is a map ofA into the linear space M.

We saythat O is °S linear (on A) if, whenever x1,a * * , xn EA and Al, * * *, An c- R
are such that (Alx1, * * , 2 (x,)(0), then 1% I i (xi) = 0. The following
easily proved properties will be relevant:

(o) if / is the restriction to A of a linear map ofL into M, then / is IS linear;
(p) if ? is LS linear, then fr is Y linear (from (a)); the converse of (p) holds

when A = U, from Lemma 3.1, but not in general;
(q) if / and 0 are LS linear on A, then so is AO + juO, A, y E R;
(r) if 0 EA and 1 is LS linear, then i/(0) = 0.
LEMMA 4.1. If07EA c U, and iff:A M is SS linear, theni can be

extended to an LS linear map I: 5PS(A) -+ M.
If ye LIS(A), we have (y) - (21x1, * * n,2"xn), where the x are in A (and the

A in R). Define
n

(4.1) P(y) = Ei(xi)
i=l1

This is well defined, for if we also have (y) (uI1z1, * , P4mZm), where the z
are in A, then by (g) we have (21x1, * **, Anxn, *IZ, * '*,-mZm) (0), SO
that the LS linearity of 0 shows that Li Aifr(xi) = Li !Lj1(zj).
To verify that T is -TS linear on LIS(A), suppose y1, * * Yyk E LS(A) and

(PlYl, * * *, MOy)- (0). For each i = 1, - * *, k, we have (yi) - (Ai,1xi,1, * * ,

Ai,,xi,), where the x are in A, and Li 1liT(yi) = lij yiAijo(xi,j). But, by (e),
(4.2) (i1)41,L1X, , XiAI,nUiX,ni,U22,1X2,1, Pkk,nikXk,nk)

1( Y1, , Ikyk) - (0);

hence, the fact that f is LS linear on A shows that i PiT(yi) = 0, as required.
REMARK. It is easily seen that the LS linear extension ' here is unique.
LEMMA 4.2. Let A be a nonempty subset of U, and suppose xo e U\LIS(A),

mO E M. Write B = A u {x0}, and let / be any LS linear map ofA into M. Then
the map if*:B -. M, defined to agree with f onA and to make I*,(xo) = mo, is
LS linear on B.
Suppose y1, -.. , yk eB and (AIyi, Akyk) - (0); we must show that

Li Ai/i* (yi) = 0. If none of the y is xo, this follows from the LS linearity of /.
If all of them are xo, we see from (f) that (2A + * * * + Ak)XO = 0; but xo #E 0
since xo0 YS (A); thus, Li Ai = 0 and again the result follows. So we may
assume, without loss of generality, that YI, * - *, y, are different from xo and that
Yr+1, yk all = xo, where 0 < r < k. Then we have

(4.3) (0) - (2lYl, * * *, AkYk) - (AlYl.* * *, yY,, PxO),
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where It = i,, 1 + * * * + Ak* If 9u 0, an application of (b) and (g) would make
(xo) (V1y1, * * *, v, y,), where vi = -Ai/j, so that x0 E £°S (A), a contradiction.
So ,u = 0, and it follows by (c) that (AiYi, - * *, A,y,) - (0). Thus,

(4.4) Ajl*(yj) + + Ak4, (Yk) = A1Y(Y). + + AIMY,) + ,imo = 0,

as required.
LEMMA 4.3. Let I be an YS linear map of A into M, where 0 ¢ A c U.

Then there exists an £S linear map T of U into M which extends /. Moreover,
given xo e U\YS(A) and mO E M, we may choose P so that T(xO) = mO.

For, using Zorn's lemma, we obtain a maximal £S linear extension T of ,
mapping, say, B in M, where A B C U and B is maximal. By Lemma 4.2,
YS(B) = U; by Lemma 4.1, B = YS(B); hence, B = U as asserted.
PROOF OF THEOREM 3.1, CONCLUDED. Suppose that Theorem 3.1 (iii) is false

(we must show that Theorem 3.1 (i) is also false). There is then a smallest positive
integer n for which n elements xl, * * *, xn of U exist such that xl + * * * + x, = 0
but (xl, * * *, x") is not - (0). Clearly, n _ 2 here (it is not hard to see that in
fact n _ 3). We first show:

(1) every n - 1 of xl, * * -, x. are linearly independent.
For if, say, xl = A2x2 + *-- + A,-1x,-1, write yi = (1 + Ai)xi for i =

2, 3, - * -, n-1, and yn = xn. Then each yi c U and Y2 + * * * + Yn = °
Because of the minimality of n, it follows that (Y2, * * *, Y.) - (0). Again, write
z= xl and zi = -ixi for i = 2, * *, n - 1; a similar argument shows that
(z1 * * zn-)z. (0). Thus, by (g), we have

(4-5) (Zl, Z2, ,' Zn-II Y2, ,' Yn-1, Y.) (°).
Now, for i = 2, * *, n - 1, we observe that yi and Zi are Y related and
yi + zj = xi. Thus, from the foregoing Y equivalence we deduce (x,,
x - , x") - (0), a contradiction; and (1) is established.

Next we show that, for all real Al, * * *,A-,
(2) (Awlxl, - An-1Xn,- 1 Xn) is not - (0).
For if (2) were false, (f) would give AIx1 + * + A, x,1 + xn = 0 and,

hence, 11=1 (i- 1)xi = 0. This contradicts (1) unless Al = A2= * =
A." 1= 1, but in that case (2) holds by hypothesis.
Now put A = {Xj, X2, . , XnI}, a nonempty subset of U. From (2),

Xn .YS(A). Choose any linear map 4: L -. M (for instance, the zero map),
and any mO E M different from +(x") (this is where we use the hypothesis M #-
{0}). Let f be the restriction k IA; by (o). 0 is YS linear on A. By Lemma 4.3
there exists an YS linear map T: U -+ M which extends f, and which is such
that T(x") = mo. In particular, by (p), T is Y linear on U, so that if Theorem
3.1 (i) holds, ' has an extension to a linear map T*: L -. M. Since xl + * +

x. = 0, we see that
"-1 n-I

(4.6) ¢ (X.) = YZ (xi) = - T'*(xi) = T*(x) = T(Xn) = MO,
i=1 i=l

a contradiction.
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5. Simpler conditions

5.1. As Theorem 3.1 shows, if the family Y of linear subspaces of the linear
space L has the M extension property for one nontrivial linear space M, it has
this property for all and, accordingly, we refer to it as "the extension property"
in what follows. (Note also that, by Theorem 2.1, the extension property is in a
sense independent of L, too, since L can be replaced by S(U Y).) The characteri-
zation of the extension property provided by Theorem 3.1 is somewhat compli-
cated (though, as we shall see, quite usable), and in the present section we
consider two plausible simplifications of it. It turns out that one of these is
necessary and the other is sufficient, and that no more is true in general. We
conclude the section by applying the simpler sufficient condition to the problem
of marginals (in the case of finitely additive signed measures).
THEOREM 5.1. Consider the following statements.
(i) Whenever L0, L1, * **, Lk E Y (where k is a positive integer),

Lo n S(LI u . . u Lk) = S((Lo nLI)u . . u (Lo n Lk))-
(ii) Y has the extension property.
(iii) For each ax E d,

(5.1) L. n S(U {LpIfl| e- d\{a}}) = S(Lx n U {LpI # E- .4\{a}}).
Then (i) = (ii) =. (iii); but in general neither implication is reversible.

PROOF. For the proof that (i) = (ii), suppose that (i) holds but (ii) fails; then,
by Theorem 3.1, there exist xO, xl, * * *, Xk E U such that xo + * * * + Xk = 0
and (xo, - - *, Xk) is not - (0). We may suppose that k here is as small as possible;
note that k _ 2. We have xi E La(i) for some ac(i) E sd, i = 0, * * *, k, and then

(5.2) xO = -(x1 + * * * + xk) E L,(O)n S(La(l)u ... u L.(k))
From (i) we can, therefore, write xo = y, + * * - + Yk, where yi e L,(o) r L,(,)
i = 1, * * *, k. Thus, xo, y1, *, Yk are g related, and we have

(1) (Xo, - Yl, , Yk) - (0)-
Again, for each i = 1, - * *, k, we have that xi, yi are Y£ related, and (xl + Y1) +

*-- + (Xk + Yk) = 0.Theminimalityofkshowsthat(x1 + Y1, ,Xk + Yk)
(0), from which we obtain

(2) (xl, * * , Xk, Yl, - Yk) -(0)-
By applying (c) and (e) to (1) and (2), we obtain

(5.3) (xi, , Xk, YI, XYk,Yk, - Yl, , - Yk, Xo) (0),
and thence, (xo, xl, * - *, x") - (0), a contradiction.
For (ii) => (iii), assume that Theorem 5.1 (ii) holds, and write

Ma, = La, n S(U {flLp I P d-\{oel)),
(5.4) Ne = S(L rnU {LoIfl# c a - {a}});
we must prove Ma = Na, and since N, ' Ma, trivially, it is enough to prove
Ma c N,
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It will be convenient to introduce the following notation. For each F =
.(x1, * * *, Xk) Ed and a E X, write

(5.5) 7(F) = I {xiIxi E L,. i = 1, 2, * , k}.

Clearly (for F, 0 E .f), we have
(3) 1(F, -G) = a(F) -
We shall show:
(4) ifF - G, then 1,,(F, G) E N,.

Because of (3), it is enough to verify (4) in the three cases FRjG, j = 1, 2, 3,
separately (see Section 3.2). The case j = 1 (permutation) is trivial. If FR2 0,
sayF = (x1, ., x.), G = (xl, * , Xk-1 Xk+1, ''* * Xk+,),wherexk = Xk+1 +
.*.*+ Xk+, and the elements Xk+i, i = 0, 1, * , r, are Y related; say they all
belong to L;,. If /B = oc, clearly, ,(F, -0) = E N,,; and if ,B + a, it is also
easy to see that I(F, -G) E N,. This verifies (4) in the R2 case; and the R3 case
follows. Thus (4) is established.
Now suppose x E M,,; then x E Le and there exist Yi, * *, yn such that

x = yI + + y., yiyLp(L), and P3(i) * a, i = 1, 2, ,n. We may suppose
the y so numbered that Y1, - - * y, 0 L,, and y,r+ y,* *,Y La, where 0 _ r . n.
Clearly, y,+I + * * * + yn c N<, so if z = yI/ + + y, it will be enough to
prove that z E N,, also. Since £f has the extension property, Theorem 3.1 (iii)
shows that (z, Y-y1, * , - y,) (0). Thus, by (4), I., (z, y Y,) = 0.
That is, z = 0, and x E N,, as required.
EXAMPLE 5.1. To see that (ii) does not imply (i) in Theorem 5.1, let Y be

any system of linear subspaces L. of a linear space L, which does not have the
extension property (for instance, Example 2.1), and consider T* = Y u {L}.
Trivially, Y.* has the extension property (ii) (for L E w*). But if (i) were true
of g*, it would be true ofY also, so that (from Theorem 5.1) Y would have the
extension property, a contradiction.
EXAMPLE 5.2. To see that (iii) does not imply (ii) in Theorem 5.1, take

L = R3 and let Y consist of the lines L1, L2, L3 spanned by the vectors (1, 0, 0),
(0, 1, 0), (1, 1, 0), respectively, together with the planes L4, L5, L6, where Li 3
is spanned by Li and (0, 0, 1), i = 1, 2, 3. One readily verifies that (iii) holds; but
the extension property fails for the same reason as in Example 2.1.

5.2. Application. Consider a product space X = Hn{X I a A}. For each
B c A, we write XB = n {X I a E B} and B' = A\B; thus X can be regarded as
XB X XEB. For x E X, we write XB for the projection ofx in XB; thus, we can write
X = (XB, XB.). (With the usual convention that points of X are maps from A to

U. XE,XB = xIB.) A function f: X R is a "cylinder function on B" if
f (XB, XBE) is independent of XBE.
Now suppose that a nonempty family .- of subsets of A is given, and that

for each T E .9 a linear space L, of real valued functions on X is given, in such
a way that:

(s) LT consists of cylinder functions on T, T E .-, and
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(t) given T, TI, * * *, Tn E Y, and fi E LTr, i = 1, * * *, n, there exists YT' E XT'
such that the function gi: X -+ R, defined by gi(x) = fi(XT, YT'), is in LT ( LTi,
i = 1, * * *, n. (Note that, in (t), gi is automatically a cylinder function on
T n Ti.)

This situation arises, for example, in the theory of marginals (see [5]), where
each Xa has a given field -ia of measurable subsets specified; we put V4T for the
field (of subsets of X) generated by the cylinders on the sets in ia' a E T, and LT
consists of all the -VT measurable T cylinder functions. (In this case, (t) is satisfied
automatically by choosing YT' arbitrarily in XT-.) The problem there is whether
a consistent system of measures on the various spaces (XT, -VT), T E -I, can be
extended to a measure on X. Kellerer ([5], Satz 2.2) shows that the answer is
"yes" when we are dealing with a finite number of countably additive signed
measures. The following theorem is a partial generalization; it allows the number

of fields to be arbitrary, but produces only a finitely additive (signed)
measure.
THEOREM 5.2. Under conditions (s) and (t), the family {LTIT e.} has the

extension property.
(As remarked in 5.1, it is not necessary to specify L precisely; any linear space

containing all the LT as subspaces would do, for instance, the space of all real
functions on X.)
PROOF. We show that Theorem 5.1 (i) applies. Let fe LTr) S(LT,u ... u

LTk), where T, Ti E g, i = 1, * * *, k. Then there exist functions fi E LTf such
thatf = f, + - * * + fk . Applying condition (t), we obtain functions gi E LT n LTi,
where gi(X) = fi(XT, YT)- Clearly, f = g1 + * ** + gk (since f is a cylinder
function on T). Thusf E S (LT n LT, u ... u LT n LTk). This proves one inclusion
between the sets in Theorem 5.1 (i); the reverse inclusion holds in any case, so the
proof is complete.

6. Extending positive maps

6.1. Positive extensions. In order to cover the case of positive (that is, non-
negative) finitely additive measures, we introduce the notion of (partial) order
into the previous setup (Section 2). Accordingly, we make the following standing
assumptions. We suppose that L and M are given p.o. (partially ordered) linear
spaces over the reals (for simplicity; any other ordered field would do). For the
definition and basic properties of p.o. linear spaces, see for instance [11],
Chapter 1. We assume that M is order complete (that is, every nonempty subset
which is bounded above has a least upper bound), and that L has a given order
unit e (that is, e > 0 and for each x E L there exists A E R such that Ae _ x). (In
the application to measures, as described in the introduction, where L consists
of all real functions on the space X, e will be the constant function 1.) As before,
we suppose given a family Y = {L,,I a E d} of linear subspaces of Y, and for
each a E sl a linear map 0,,-: L,,- M; but we now suppose that each 0,is
positive in the sense: if x E LM and x > 0, then +,, (x) _ 0. We say that the maps



EXTENSIONS OF LINEAR FUNCTIONS 137

are "positively extendable" if there exists a positive linear map 0: L -. M
such that 0 La = 40, cx E d. As before, it is necessary for this that the maps 4a
be consistent, and we assume the consistency of the maps 4,, throughout what
follows. Then they combine to give a well defined map 4u: U -* M, where
U = U Y. Note that ku is now "positively Y linear" in the sense: it is Y linear
(see Notation, Section 3.1), and its restriction to each La is positive.
The question of when the maps O. are positively extendable is answered by

the following analog of Theorem 2.1.
THEOREM 6.1. Thefollowing statements are equivalent (for a consistentfamily

of positive linear maps 0, ca E d):
(i) the maps O., a E Xd, are positively extendable;
(ii) du can be extended to a positive linear map 4: L -+ M;

(iii) ifu can be extended to a positive linear map V: S(U) -. M;
(iv) whenever x1, X2, * *,* E U and Y.% I xi > 0, then X, I ku(xi) > 0.
REMARK. In the case of two maps (IsI = 2), this theorem is due to Guy

[3]. For related results (especially in the case of marginals) see [7], [14],
Theorem 7.1, and [16], p. 156. The condition (iv) has been used, in a somewhat
different connection, by von Neumann ([10], p. 90). It should be remarked that,
even in the case of marginals, where the existence of an extension for signed
measures is automatic (see Section 5.2), some condition is needed to ensure the
existence of a positive extension for positive measures; see [16], p. 147 for an
example.

PROOF. Obviously (i) and (ii) are equivalent, and (ii) = (iii) => (iv). It is an
easy matter of routine to verify that (iv) => (iii) (note that (iv) here implies con-
dition (iv) of Theorem 2.1). Finally, the implication (iii) => (ii) follows easily
from the following (essentially known) modification of the Hahn-Banach
theorem.
LEMMA 6.1. Suppose X, Y are p.o. linear spaces, where X has an order unite

and Y is order complete. Let X' be a linear subspace ofX containing e, and let O'
be a positive linear map of X' in Y. Then O' can be extended to a positive linear
map ofX in Y.
When Y = R this is in [9], p. 119; the argument carries over to the general

case without difficulty.
EXAMPLE 6.1. We observe that, even when || = 2, not every consistent

system of positive linear maps 40,,, a E X, is positively extendable-in other
words, condition. (iv) in Theorem 6.1 is not vacuous. Moreover, it can even
happen that two positive linear maps 01, 02 are extendable without being positively
extendable. To see this, take L = R3, M = R, ordering L so that (X1, X2, X3) _ 0
if and only if all ofx1, x2, x3 _ 0. Take e = (1, 1, 1); let L1 be the two dimen-
sional subspace of L spanned by e and (1, 1, 0); and let L2 be the subspace
spanned similarly by e and (1, 0, 1). Define 01 on L1 by +1(x, x, z) = 8x + 4z,
and 02 on L2 by 02(x, y, x) = 3x + 9y. Then p1 and 02 are consistent, and
have a unique common linear extension 4 to L, where +(x, y, z) = -x + 9y +
4z. Clearly, 4 is not positive.
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6.2. Dominated extension. Suppose that, in the setup described in 6.1, we
are given a positive linear map 0: L -+ M which "dominates" each O., in the
sense: ifx E La and x > 0, then 0(x) _ 0,, (x). Under what conditions will there
exist a positive extension 4 of the 0)a which is likewise dominated by 0 (that is,
0(x) _ + (x) for all positive x E L)? This question is answered by the expected
modification of Theorem 6.1.
THEOREM 6.2. The following statements are equivalent:
(i) the maps 0), a E X, are positively extendable to a map dominated by 0;
(ii) 4u can be extended to a positive linear map 4: i -* M which is dominated

by 0;
(iii) 4u can be extended to a positive linear map k: S(U) -. M which is domi-

nated by 0;
(iv) whenever x1, X2, x*, Xn E U and El= I xi > 0, then 0 -. 1 4)u(xi) <

t7_= I 0 (xi)
REMARK. This is the analog of a characterization due to Kellerer ([5], Satz

4.3) inthe case ofmarginals (witha finitenumberofcountablyadditive measures).
The proof is essentially the same as that of Theorem 6.1. Instead of Lemma

6.1, we use the following variation of the Hahn-Banach theorem, proved by a
slight sharpening of the proof of that lemma.
LEMMA 6.2. Under the hypotheses of Lemma 6.1, suppose that a linear map

0: X -. Y is given such that 0 _ +'(x) . 0(x) for each positive x E X'. Then 4'
can be extended to a linear map 4: X -+ Y such that 0 . +(x) . 0(x) for each
positive x E X.

7. The positive extension property

7.1. With the same assumptions and notation as in 6.1, we say that Y has
the positive M extension property providing every consistent family of positive
linear maps 0,a: La -+ M is positively extendable. As with the M extension pro-
perty (3.1), it turns out that this is independent of M (if M * {0}), as well as
(in a sense) of L (since L could be replaced by S(U), from Theorem 6.1). Once
this is proved (Theorem 7.1) we refer to it simply as the "positive extension
property". First we need some further notation. If F = (xl, * * ,x") E .F, we
say that F is "positive" if there exists G = (y1, * * *, Y,) E . such that F - G
and yj > 0, j = 1, * * *, m. We shall make use of the following obvious properties:

(u) if xi and yi are £ related and xi > yi, i = 1, * * ,n, and if (y1, * y**,Y) is
positive, then so is (x1, - * *,x.);

(v) ifFi E F and is positive, and if Zi > 0, i = 1, ,n, then (A 1F *, AnFn)
is positive;

(w) if F E F is positive, then IF _ 0;
(x) if F G and G is positive, then so is F.
THEOREM 7.1. Under the assumptions of 6.1, the following statements are

equivalent:
(i) £? has the positive M extension property, for some M * {0};
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(ii) .£ has the positive M extension property for every (order complete) M;
(iii) ifF E ,F and IF > 0, then (F, se) is positive for all s > 0.
REMARK. When L is finite dimensional, a characterization along entirely

different lines has been given by Vorob'ev [16].
PROOF. Trivially (ii) => (i). To prove (iii) = (ii), suppose du: U -+ M is

positively £ linear (Section 6.1) and that (iii) holds. By Theorem 6.1 it is enough
to prove that, given xl, * , x, E U such that 1i xi > 0, then 1i 4u(xi) _ 0.
For each c > 0, (x1, - x, se) is positive (by (iii)); that is, there exist
y1, - - *,ym c U such that each yj _ 0 and (xl, ,x,ee) - (y1,, Ym).
Lemma 3.1 shows that

(7.1) 4u(x1) + . + Ou(X.) + eku(e) = 'ku(yl) + + Ou(y.) _ 0.

Since this is true for all e > 0, it follows that 4u(xl) + * + Ou(x") _ 0, as
required.

Before completing the proof by showing that (i) > (iii), we need some further
notation and some lemmas.

7.2. Suppose / is a map of U into M. It is easy to see that
(1) 1 is positively £ linear if and only if, whenever x1, * * *, x" are £9 related

elements ofUand Ax1 + *--+ A.x. > 0, then A I(x1) + *-- + /in(xn) 0.
Now suppose, more generally, that / is a map of A into M, where A is an

arbitrary subset of U. We say that f is positively £S linear (on A) if, whenever
Xl,--* ,xeA and(Alxl,- ,A"x")ispositive,thenAO/(x,) + *- * + )A/i(xn) > 0.
When A = U, these notations are equivalent, as we state in Lemma 7.1.
LEMMA 7.1. If : U -M is positively £S linear (on U), then / is positively

£ linear; and conversely.
For if x1, * * *, x, are as in (1), then (21xl, * * n,).xn) - (AIxI + * nXn)

and is, therefore, positive; thus, the conclusion of (1) follows. The converse is
proved by an argument similar to the proof of Lemma 3.1.
REMARK. If /: A -. M is positively £9S linear, then clearly / is both £S

linear (Section 4.2) and positive on A. The converse is false in general, though it
is true ifA = U.
LEMMA 7.2. If 0 ¢ A c U, and if ': A -+ M is positively £S linear, then

f can be extended to a positively £9S linear map I: £S(A) -+ M.
By Lemma 4.1, i/ can be extended to an £S linear map T: £S(A) - M.

We verify that v is positively £9S linear. Suppose, then, that x1, * * *, xn E £S (A),
and that (AL1x1, * * *, AnXn) is positive. Since xi E £S(A), we have (xi)
(ti,lYi,1, * , i,mji,mi), i = 1, ... I n, where the y are in A; hence

(7.2) (AIXI,' X iAnXn) - (Al111,1Y1,1, '

, A11A1,mjY1,mj,' , An.Un,m,,nY,mj)
which is, therefore, also positive. Because v is £9 linear by (p), Lemma 3.1 gives

(7.3) E AiT(xi) = ZLAwiYi,j(Yij) = Z Aili,f(iyjj) > 0,
i i,j i,j

since 4 is positively £9S linear, completing the proof.
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REMARK. As in Lemma 4.1, the map ' here is unique.
LEMMA 7.3. Suppose e EA c U and xo E U\A, and let / be a positively S8

linear map of A into M. Then / can be extended to a positively fS linear map
**: B -+ M, where B = A u {x0}.
REMARK. In contrast to Lemma 4.2, the value of q/* (x0) here cannot be

assigned arbitrarily, even if x0 YfS (A).
PROOF. Because of Lemma 7.2, we may replace A by YS(A); this allows

us to use a somewhat simpler notation in view of (k).
Let I be the set of all finite sequences {g1, * * , g9} of elements ofA for which

(g1, * *, gn, -x0) is positive; similarly, let X be the set of all finite sequences
{h1,l , h)} of elements of A for which (-h1, -* h,-h., x0) is positive. We
first note that neither Cnor *' is empty. In fact, ifN is a large enough integer, we
have Ne _ xo; also Ne and x0 are f related (because each Lo: contains e); hence
(Ne, -xo) - (Ne - xo) and is positive. Thus, the one term sequence {Ne} E C;
and similarly {-Ne} E ..

Next we show that, for all {g1,I , g.} E C and {h1,l h,,} E X,
(2) if(g1) + *-- + if(g,) > i/(h1) + *-- + If(hm).
In fact, (v) shows that (g1,I I *, g, -x0, -h1, * * , -h,, x0) is positive, and

thus (g1, *..g* , -h,, -hm) is also positive by (x). Our assumption on i
now gives

(7.4) /(gl) + * + i(g.) - O(hj) - * -- II(hm) _ 0,

establishing (2). Define

q = inf {0(g1) + * ±* + (g")I{g1, g,g,.} e},
(7.5) r = sup {0/(h,) + * + lI(hm)I{hi,,* hm,,} e

(using the fact that M is order complete). From (2), we see that q, r indeed exist
and that r _ q. Choose any mO E M such that r . mO . q (for instance,
mo = q),andextend i toamap B*: - Mbysetting *(xo) = mo.We verify
that i* is positively fS linear.

Suppose, then, that (9lf,, * * *,fn) is positive, where fi, * * ,fneB = A u
{x0}. We must prove

(3) 2A1 * (fl) + + i/(fn) _ 0.
If none off1, - , f. is xo, this follows from the assumption that i is positively

fS linear (on A). If all of them are x0, we have from (w) that Axo _ 0, where
A = AI + . + in, and have to prove that A1O*(xo) _ 0. If A = 0 there is
nothing to prove. If2 > 0, we have x0 _ 0, so that (0, x0) is positive and {0} E A';
thus 0 _ r _ mO = *(xo), as required. Finally, if A < 0 the argument is
similar, using C.

Thus, we may assume fl, f* fk different from x0 and fk +1, f.*,fn all equal
to x0, where 1 _ k < n. Write gto = Ak+ 1 + + i"; then

(7.6) (Alf,, ... , A.fn) (Alfl, X Akfk, iOXO),
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and thus
(4) (Alfl, Akfk, pOxO) is positive.
Again there are three cases, depending now on yI0.
First, if po = 0, (3) follows from (4) and the fact that i is positively YS linear

on A.
Second, if /1o > 0, write pi = -'i/Wo, i = 1, , k; from (4), (-Muf**

-!kXk, Xo) is positive, and thus (1fl*, ukfk) E X (since each pf-i E A; this
is the point of replacingA by YS(A) at the beginning). Hence, p1I(f1) + * +
IkOI(fk) < r _ mO = If* (xo) from which (3) follows.

Third, if uo < 0, the argument is similar.
LEMMA 7.4. Let A be a nonempty subset of U, and 1 a positively £S linear

map ofA into M. Then there exists a positively £ linear map TP of U intoM which
extends /.

This follows straightforwardly from the foregoing lemmas and Zorn's lemma.
7.3. Now we conclude the proof of Theorem 7.1. Assume that Theorem 7.1

(iii) fails; we show that Theorem 7.1 (i) fails with M = R.
For some positive integer n, there exist fl, * * *, f, E U such thatf±+ * * +

fn _ 0, and E > 0, such that (fl, * * *,,f, Be) is not positive. We take n to be as
small as possible; note that n _ 2 from (v). We are going to apply Lemma 7.4
to A = {f1, * * * f,, e}, but the definition of a suitable / requires some
preparation.

Consider the subset K of R"1 consisting of all points p = (Al, *A+ 1) for
which (A1 fl, * * *, Ajg, A"1Ie) is positive. It is easy to see, using (v), that K is a
convex cone. Let q be the point (1, * , 1, 0) E R"'. We show that

(5) q ¢K (the closure of K).
For, take N to be an integer large enough to make - Ne _ fi < Ne,

i= 1, * , n, and put 5 = e/(Nn + 1). If (5) were false, there would exist
P1, * **,n+1 such that Igil < 5, i = 1, - * *, n + 1, and (1 + p , 1 + p,
pi+1) ceK; that is,

(6) F = ((1 + pI)fl, - * *, (1 + p.)f., 4u.+1e) is positive.
Now bNe -,ifi > 0, i = 1, * * *, n, from the choice of N and the fact that

e > 0. Hence,
(7) G = (bNe - pfl * , 5Ne - jguf, (b -p+1)e) is positive.
Accordingly, (F, G) is positive. But e andfi are . related for each i; hence, we

may perform an Y equivalence on (F, G) by combining each pair (1 + Yuj)f1,
6Ne - .gi, into the single term fi + 5Ne. We can also replace the pair .+ Ie,
(6 - pn+1)e by the single term be. Thus, (F, G) - H = (f, + 5Ne, - * ,f, +
bNe, 6e). Now we apply a further Y equivalence to H, replacing the pair
f, + 6Ne, be first by their sum, and then this sum by the pair fl, 5(N + 1)e.
Applying this principle n times, we obtain H - (fl, * * * , fn, 6(Nn + 1 )e), which
therefore - (F, 0) and is positive. From (u) and the choice of C, it follows that
(fi, * - * , f,, se) is positive, contrary to the hypothesis. Thus (5) is proved.
From (5), q and K can be separated by a hyperplane through the origin; that

is, there exist real numbers 01, - * -*, On+1 such that
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(8) 01 + + on < 0 .OIA0 + + O,+l,,+l for all (Al, * * *, An+) eK.
Now, because of the minimality of n, no two off1,fl , fn can be Y related,

for if f1, f2 were Y related we could have started with the n - 1 elements
f1 + f2, f3, .* * , f, instead off1, * * *, fn. In particular, no two of them are equal,
and (since n _ 2) none of them is e. Writingf,,+1 = e, we have thatf, * * *,Inf 1
are all different. Thus, we can define a map I: A R, where A = { f* +1 },
by: I0(fi) = Oi, i = 1, , n + 1.
We shall show that i is positively YS linear. Suppose X1 * , Xm cE A and

that (ulxl, * * *, y,xm) is positive; we must show
(9) IAI1q(Xl) + * + JLmrf(Xm) _ 0.
For each i = 1, ,n + 1 write Ji = {ij I < j _ m, xj = fi}; of course, Ji

may be empty. Let Ai = I {/j Ij -E Ji} (with the convention that an empty sum
is 0). Then

(10) (p1x1, PXmXm) - (Alfl, in+lfn+,),
because if Ji * 0 we may apply an £ equivalence (see (a)) to replace the terms
yjxj;, j E Ji, i fixed, by their sum, Aifi. (If Ji = 0, we appeal instead to (c).)

Thus, (A1fl,- , A. +1f+) is positive, that is, (Ak, , A. c+-) K. By (8),
21i(fl) + * + in+lq/(fn+1) _ 0, and therefore,

(7.7) E pif(Xi) = E E {pij (fi) Ij e Ji} = E 1u/(fi) _ 0,

as required.
By Lemma 7.4,1f can be extended to a positively £. linear map T: U -+ R.

However, T can not be extended to a positive linear map T*: L -. R; for such
an extension would make T *(f1 + * * * + fn) = 011 + * * * + on < 0, whereas
fl + * * - + fn _ 0. This completes the proof of Theorem 7.1.
EXAMPLE 7.1. It is tempting to conjecture that, in Theorem 7.1, condition

(iii) could be replaced by the simpler (and stronger) condition:
(iii') ifF Ee; and I F > 0, then F is positive.
However, this is not possible in general, even ifY consists of only two linear

spaces. This is shown by the following example. Take L = m, the space of all
bounded sequences x = {41, 2, . *.* of real numbers, ordered coordinatewise
(that is, x > 0 means ,n _ 0 for all n = 1, 2, * * *). Put e = {1, 1, *} (this in an
order unit), a = {1, 1/2, * I*,l/n, *}, b = {2, 3/4, * *, l/n + 1/n2, ... }, and
let Lo denote the subspace of L consisting of the sequences which have only
finitely many terms # 0. We define L1 to be the span S(L°u {e} u {a}), and L2
to be S(L°u {e}u {b}); c£° will consist of L1 and L2. The standing hypotheses
in Section 6.1 are clearly satisfied.
We show that Y has the positive extension property by verifying condition

(iii) of Theorem 7.1. Suppose, then, that x1,x2, * , xn EU = u L2, that
x1 + * -" +xn _ 0, and that s > 0; we must show that (x1 , Xn, ee) is
positive. Writing y1 = sum of the x in L1, y2 = sum of the others, we see that
this is equivalent to showing that F = (y , y2, se) is positive, where y' E L1,
y2eL2, and y' + y2 > 0. We have y=) A1a + 1e + p, y2 = A2b + ,2e + q,
where p, q E Lo. Thus, F - (y 1e, 21a, p, Pi2e, )2b, q, se) and, therefore,
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(1) P - G = ((tu + e)e, A1a, 22b, r), where u = yl + /12 and r =p + q e Lo.
Take a positive integer N so large that
(2) EN > 4(IAlj + IA21)
(3) the nth coordinate of r is 0 for all n > N.
Since yi + y2 > 0, we have
(4) 4 + A,/n + A2(1/n + I/n2) _ 0 for all n 2 N.
Now for each x = {R1, 2,* } E L, write

X = { .I XN, 0, 0,° },

(7.8) X" =X -X' = {0, -_ , °, cN+, N+2, }-

Note that ifxeLj,j = 1,2, then x'eLo c L L2, x"eLj, so that x, x', x"
are g related for each x E U. Thus, on writing

(7.9) 8 = r + (yL + e)e' + Ala' + A2b',
we obtain

(5) G - H = ((,u + e)e", Ala", Y2b", s) where s E Lo.
Further, from (3), we have
(6) the nth coordinate of s is 0 for all n _ N.
Again, e" and a" are Y related, as are e" and b". Thus, on writing 6 = E/2,

we obtain
(7) H - K = (,e", be" + Ala", be" + A2b", s).
We assert that each of the terms of K is > 0, which then shows that F is

positive, as required. By making n - oo in (4), we see that y _ 0 and, thus,
ye" > 0. From (2), it easily follows that be" + Al1a" and be" + A2b" are _ 0.
Finally, since SK = PF> 0, we see that, in particular, each of the first N co-
ordinates of s is _ 0. Thus, from (6), s > 0, and F is positive.

Nevertheless, (iii') does not hold. For consider F = (-a, b). Clearly, PF> 0,
but we claim that F is not positive. For otherwise we obtain, as before, FP
(yl1 y2) where yi E Lj and yi > 0, j = 1, 2. As before, we write y1 = 11a +
ple + p, y2 = A2b + M2e + q, where p, q E L°. Thus, the nth coordinate if
yl +y iS

(7.10) M1+M2+ 1+2 + O(n2
n

for large n. But y' + y2 = ZF = b - a, and its nth coordinate is O(n-2). This
proves that pM + M2 = 0 = A + A2. However, the fact that y1 > 0 shows that
Mi > 0, and Al > 0 ifM1 = 0; similarly, M2 > 0, and A2 > 0 ifM2 = 0. Thus,
we have Al = 12 = JUl = ,2 = 0, so that b - a = p + q. But the nth co-
ordinate ofp + q is 0 if n is large enough, while that of b - a is not, giving the
desired contradiction.

It would be interesting to know whether (iii') can replace (iii), in Theorem 7.1,
when L is finite dimensional.
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EXAMPLE 7.2. There is no implication between the extension property and
the positive extension property, in general. That the extension property does
not imply the positive extension property has been remarked in Theorem 6.1;
see also Example 6.1 and the remark in Theorem 3.1. What is perhaps more
surprising is that the positive extension property does not imply the extension
property. This is shown by the following example.

Let L, Lo, e have the same meaning as in Example 7.1, and select three
elements d', d2, d3 of L, no two of them linearly dependent, such that their nth
coordinatesdonotequalzerobuttendtozeroasn -+ oo,andd' + d2 + d3 = 0;
this is easily done. Define Li = S(L° u {e} u {di}),j = 1, 2, 3; 2 will consist of
L1, L2 and L3. Consider the following linear maps 41j: Lj -. R, j = 1, 2, 3:
+1 (x) = 0 for all x E L1, 02(x) = 0 for all x E L2, and, for each p E Lo,
3 (AP + yie + vd3) = v.
It is easy to see that L1 n L2 = L2 n L3 = L3 n L1 = S(L°u {e}), so that

the maps 01, 02, 03 form a consistent system. However, they have no common
linear extension because d' + d2 + d3 = 0, whereas 41(dl) + 42(d2) +
03(d3) = 1. Thus, the extension property fails here. Nevertheless, the positive
extension property holds, as we now show by verifying condition (iii) of
Theorem 7.1.

Suppose H E .F and EH _ 0. As before we may assume H = (xl, x2, x3),
where xi E Lj; thus, xi = Ajpj + pie + vjdj, where pi E Lo, j =1, 2, 3. Since
x1 + X2 + x3 0O, we see (by considering the nth coordinates and making
n -* oo) that !, + P2 + !13 = /i, say, _ 0. Given s > 0, put c = s/3, and pick
N large enough. We use the same decomposition x = x' + x" as in Example
7.1; thuspi" = 0,j - 1, 2, 3. The same reasoning as in Example 7.1 will show that

(7.11) (H, se) (lie', be" + A1d'", be" + A2d2", be" + A3d3", s),

where each of the terms appearing on the right is _ 0, as required.
7.4. Dominated positive extension.
THEOREM 7.2. If Y2 has the positive extension property, then 2 has the

dominated positive extension property.
By this we mean that if linear maps 0,a: La -+ M and 0: L -. M are given

such that 0 _ +(x) < 0(x) for each positive x E La, ox E sl, and 0 _ 0(x) for
each positive x E L, then the 4)a can be extended to a linear map 4: L -+ M
such that 0 _ +(x) _ 0(x) for each positive x E L.
By Theorem 6.2 it is enough to prove that, if x1,.*, x,, E U and Li xi _ 0

then 0 _ Li Ou(xi) _ Li 0(xi). By Theorem 7.1, we know that (xl, * * *X., se)
is positive for each e > 0, say (x1, *.. ,x*, se) - (Y *, ym), where yj e U and
yj > 0, j = 1, * , m. By Lemma 3.1, we have

(7.12) E 4u(xi) + s4u(e) = E 4u(yj) > 0,
i i

and also

(7.13) E 4u(xi) + e4u(e) < E 0(yj) = E 0(xi) + s0(e).
i j i

On making e -+ 0, the result follows.
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COROLLARY 7.1. Suppose that L has the positive extension property, and that
linear maps 0*, 0*: L -. M such that 0*(x) < 0.(x) < 0*(x) for each positive
x E L, Oa E s, are given. Then there exists a linear map 4: L -+ M, extending the
40, such that 0*(x) < +(x) _ 0*(x) for each positive x E L.

It would be interesting to know whether, conversely, the dominated positive
extension property implies the positive extension property.

8. Countably additive measures

8.1. In this section we turn to the difficult but important problem of extending
a consistent family of countably additive measures to a countably additive
measure. We consider only positive finite measures.

There is a sense in which the preceding considerations suffice here, too, pro-
vided we are willing to enlarge the space X on which the measure is to be defined.
We have obtained criteria which are necessary and sufficient for there to exist a
finitely additive common extension, say m, on a field F of measurable sets. Now
there always exists a space X O X, with a a-field X4 of subsets of X and a count-
ably additive measure A on 9, such that each F E .F is of the form X n B for
some B E AR, and for each such B we have m(B) = m(F). To see this, we take X
to be the Stone representation space of F (see [13], p. 24); the points of X are
the ultrafilters ofF, and we identify x E X with the ultrafilter consisting of those
elements of F which contain x. Each F E Y determines a set F c X (consisting
of those ultrafilters on F to which F belongs); the family of all such P is a field
~F* of subsets ofX which is isomorphic to .F (under the correspondence F -+ F;
note that F = Prn X). We take 9 to be the Borel field generated by F*, and we
define mi on F* by: mii(F) = m(F), F E F. It is easily seen (by using the Stone
topology on.X, which makes X compact and F* consist of the open-closed sets)
that if F1, F2, * * *, are disjoint elements of F* whose union is also in pF*, then
Th(Ui Pi) = 1i A(Pi); thus, by a standard theorem, A has a countably additive
extension to all of -, as asserted. Under reasonable topological conditions on
X, one can even embed X topologically in X; see [2].

8.2. But it is more interesting to try to obtain a countably additive extension
without enlarging the space. In this direction we have the following fairly simple
theorem.
THEOREM 8.1. Let ma, a E sl, be a positive, finite, finitely additive measure

defined on a field J.F of subsets of a fixed Hausdorff space X, and assume that each
ma is "regular" in the sense that, for each F E Jra,
(8.1) ma(F) = sup {ma(K) IK E 3%,Kc F, K compact}.

Suppose further that, whenever fi is an m., measurable real valued step function on
X, i = 1, ,n, such that X,=1 fi(x) _ Ofor all x E X, then

(8.2) E f fidmaO>-.
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Then there exists a countably additive (positive, finite) measure ,u, defined on the
Borel field generated by U,,F,,, which extends all the ma simultaneously.
REMARK. Though we have not explicitly required the ma to be countably

additive, or consistent, it follows easily from (8.2) that they are consistent, and
from (8.1) that they have countably additive extensions.

PROOF. By Theorem 6.1, the measures ma have a common extension to a
finitely additive (positive, finite) measure ju which, for convenience, we restrict
to the field .F generated by Ua JFa. We need only show that it can be extended
to a countably additive measure on -, the a-field generated by F. The first
step is to show that, given F E -F and e > 0, there exist a compactK c F and open
G v F such that

(1) K, GE .F and p/(K) + E > /1(F) > M(G)- .
Suppose first that F is of the form A, rA2 r . A, where A, ce- ,

i = 1, - * *, n. Using (8.1) (applied both to Ai and to its complement), we find
compact Ki E J.a, and open Gi E fJ, such that

(8.3) p(Ki) + n > u(Ai) > t(GOi) -n n

Put K = ni G = ni Go; it is easy to see that (1) holds in this case.
But ifF is an arbitrary member of .F, it is well known that F is expressible as a

union of disjoint sets F,, * * *, Fm each of the form just considered. Since (1)
holds for each Fj, it follows that (1) holds for F.
The rest is standard, but for completeness we sketch the argument. It is enough

to prove that if F1, F2, * * - are disjoint members of F whose union F is also in
.F, then 1(F) = E.(F.). One inequality is trivial. For the other, given E > 0,
take open G5 E Y such that Gn- F,, and p(G0\F,,) < s/2"+1, and take compact
K e- . such that K c F and ji(F\K) < £/2. Then K is covered by the sets
01, 02, * * *, and, hence, K c 01 u * - * u G,, for some n. It follows that ji(K) .
.= 1 4u(i), whence M(F) . Y,, yu(F,,) + £, for all s > 0.
8.3. We remark, in conclusion, that in the case of marginals, and with only

finitely many measures involved, Kellerer ([5], Satz 2.2) has shown (by explicit
construction) that a consistent family of countably additive signed measures
always has a countably additive common extension. It would be desirable to
have an abstract theorem which includes this.
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