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1. Introduction

Let (A, d, v) be a complete, totally a-finite, positive measure space and S be
an ordered finite dimensional real vector space with its usual topology and the
Borel a-field 9 generated by this topology. Given a function y from A to Y(S),
the set of subsets of S, we define its integral over E E d by

(1.1) I ydv = {x E SI there is an integrable functionffrom E to S such that

x = ,fdv and a.e. in E, f(a)E y(a)}.

And given a function rfrom a? to g(S), we say that a function y from A to Y(S)
is a Radon-Nikodym derivative of F if

(1.2) for every E e X, F(E) = fE ydv.

When F(E) is nonempty for every E e d, we call F a correspondence from d
to 9'. In this article we characterize the correspondences from d to S, having a
measurable, positive, closed, convex valued Radon-Nikodym derivative, where
a function y from A to g(S) is defined as measurable if its graph

(1.3) G(y) = {(a, x) E A x SIx vy(a)}
belongs to the product a-field ? ®& 9'.
The need for such a characterization arose in the theory of economic systems

in which certain sets of negligible agents are not negligible. To describe this
situation mathematically one introduces a set A of agents, a a-field d? of subsets
ofA (the a-field of coalitions), and a positive measure v defined on a'. Now the
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primitive concepts of the economic theory under discussion can be presented
either in terms of functions and correspondences defined on the set of agents
(this is the "individual" point of view of R. J. Aumann [1]) or in terms of
functions and correspondences defined on the set of coalitions (this is the
"collective" point of view of K. Vind [15]). The study of the equivalence of
these two viewpoints requires a theory of the Radon-Nikodym derivatives of
correspondences.

2. Statement of results

The positive cone P of the space S is a closed, convex cone with vertex 0 such
that [x c P and -x E P] implies [x = 0]. A subset of S is said to be positive if
it is contained in P. An element v of the dual S' of S is said to be strictly positive
if [x E P and x * 0] implies [v(x) > 0].

Occasionally it will be convenient to use a norm on S. The norm of x E S will
then be denoted by Ixl.

Given a sequence {Xi} of subsets of S, we define

(2.1) E Xi = {x E S I there is an absolutely convergent series (xi)

such that x = xi and for every i, xi E Xi}.
i

A function F from d to .A(S) is said to be (i) countably additive if for every
sequence {Ei} of pairwise disjoint elements of sl, F(Ui Ei) = -i F(Ei); (ii) con-
tinuous if [E E a and v(E) = 0] implies [r(E) = {0}].
The characterization of correspondences from sl to S having a measurable,

positive, closed, convex valued Radon-Nikodym derivative will be in terms of
the following concepts. For two correspondences q, T2 from 4' to S, the
ordering relation T' ( T2 is defined by VP(E) e T2(E) for everyE E a?. Given
a correspondence 'D from as to S, the correspondence 4D from sl to S is defined
by 4)(E) = 4D(E) for every E E a?. Consider then a countably additive corres-
pondence F) from a? to S and let dA be the set of countably additive corres-
pondences T from d to S such that TP c (IP.
THEOREM 1. If 1D is a countably additive positive valued correspondence fromt

s4 to S such that D(0)D {1}, then /# has a greatest element 4iD. If. in addition,
(D is convex valued, then d is convex valued.
Our main result is:

THEOREM 2. A countably additive. v continuous positive, convex valued corres-
pondence sfrom s to S has a measurable, positive, closed, convex valued Radon-
Nikodym derivative if and only if (D = @.

In the particular case in which (D is compact valued (and therefore trivially
satisfies the equality ED = ED) the proof of Section 4 admits of a considerable
simplification. This case can also be treated by an entirely different technique.
Since the set of nonempty, compact, convex subsets of S can be embedded in a
Banach space in the manner of H. Radstr6m [11], ED can be considered as a
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function from si to a Banach space to which the Radon-Nikodym theorem of
M. Rieffel [12] (see also M. Metivier [10]) is applied. Indeed this remark was
the point ofdeparture ofthe present study. We also notice that when 4) is compact
convex valued, generalizations to infinite dimensional spaces S are possible
(C. Castaing [3], M. Valadier [14]).

3. Lemmas and proof of Theorem 1

LEMMA 1. If y is a measurable correspondence from A to S and v is a linear
form on S, then the function a -m sup v(y(a)) from A to R is measurable.

PROOF. We repeat the proof of (4.5) of [5]. Let c be a real number. The set

(3.1) A, = {acAlsupv(v(a)) > c}

is the projection on A of the set {(a, x) E G(0y) v(x) > c} which belongs to
sl sM. Therefore, A, belongs to sd (see, for instance, (3.4) of [5]). QE.D.
The following lemma and its proof are borrowed from W. Hildenbrand [9].
LEMMA2. If yisa measurablecorrespondencefromA toS suchthatfA ydv 0

and v is a linear form on S, then

(3.2) sup v(J' ydv) = fAsup v(y(a)) dv(a).
PROOF. The left side is clearly at most equal to the right side.
To prove the reverse inequality we first remark that we lose no generality in

assuming that in A, 0 E y(a), since JA ydv =# 0. Let r be a strictly positive inte-
grable function from A to R, and for every positive integer n let B"(a) be the
closed ball with center 0, radius nr(a). Let y.(a) = y(a) n B.(a). For every a E A,
one has y"(a) # 0. Moreover, the correspondence Bn from A to S is measurable
by (5.10) of [5]. As G(y") = G(y) n G(Bn), the correspondence yn is measurable.
Now let sn(a) = sup v(yn(a)) and s(a) = sup v(y(a)). By Lemma 1, the functions
sn and s are measurable. They are positive and for every a E A, sn(a) T s(a). Hence
IA sndv converges to IA sdv (by [7], p. 112).

Consider a real number a < |A sdv. For some n, a < |A sndv. There is an
integrable function g from A to R such that a < |A gdv and in A, g(a) < sn(a).
Let

(3.3) t/,(a) = {x C-yY(a) I v(x) > g(a)}.
For every a E A, *(a) 7E 0. Moreover, the graph of the correspondence q is
clearly measurable. Therefore, by a measurable selection theorem of Aumann
[2], there is a measurable function f from A to S such that in A, f(a) E *(a).
As If(a)| _ nr(a), the functionf is integrable. Since in A, g(a) < v(f(a)), one has
a < v(JAfdv). Thus, a < sup V(JA ydv), and consequently, JA sdv _ sup V(JA ydv).
COROLLARY 1. If {Xi} is a sequence of subsets of S having a nonempty sum

and v is a linear form on S, then sup v(7i Xi) = -i sup v(Xi).
LEMMA 3. If in S, C is a closed cone with vertexiO and L is a straight line such

that C r) L = {0}, then C + L is closed.
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PROOF. Let L1 and L2 be the two closed half lines with origin 0 whose union
is L. Consider a sequence {xi} in C + L converging to x. For every i, there are
ci E C and ei E L such that xi = ci + {i. We wish to prove that the sequence
{tfij is bounded. Assume that it has in L, a subsequence {e} such that Je!J
tends to + oo, and let {x'} and {cj} be the corresponding subsequences of {xiJ and
{ci}. Since xt converges to x and ct = x - e', the closed half line with origin 0
containing ci converges to L2 which would therethore be contained in C, a con-
tradiction of C n L = {0}.
Thus the sequence {ti} is bounded and so is the sequence {ci}. Extract from

the sequence {(ci, {i)} a subsequence converging to (c, e) E C x L. The equality
x = c + e shows that x e C + L.
LEMMA 4. If dim S > 0 and H is a hyperplane through 0, then there is in S a

straight line L through 0 such that the projection of P into H parallel to L is a
closed, convex cone with vertex 0 containing no straight line.

PROOF. The assertion of the lemma is trivially true if dim S = 1. In the
remainder of the proof, we shall assume that dim S > 1. Since P contains no
straight line, its polar has a nonempty interior and there is a hyperplane M
different from H, supporting for P, and such that M n P = {0}. Select a straight
line L through 0, contained in M but not contained in H. Denote the projection
of a subset X of S into H parallel to L by X and notice that X = (X + L) n H.
Clearly P is a convex cone with vertex 0. By Lemma 3, P + L is closed. There-
fore, P5 is closed. Finally, P n Mr = {0} because

(3.4) [(P + L)rH]r[(M + L)nH] = (P + L)nM - H = {0}.
The first equality follows from the fact that M + L = M and the second from
the fact that (P + L) r M = L and L n H = {O}. In H, M is a hyperplane
supporting for P. Thus, P r Mr = {0} implies that P5 contains no straight line.
Q.E.D.
The convex hull of a subset X of S is denoted by co X.
LEMMA 5. If {XiJ is a sequence of subsets of P, then co (Xi Xi) = 1i co Xi.
PROOF. If 1i coXi = 0, then 1i Xi = 0 and co (i Xi) = 0.
Assume now that 1i co Xi ¢ 0. For every i, there is xi E co Xi such that the

series (xi) converges. Let v° be a strictly positive linear form on S. For every i,
there is x' E Xi such that vo(xj) < vo(xi). The series (v0(xj)) converges. So does
the series (xi). Thus, 1i Xi ¢ 0.

Therefore, for every linear form v on S, one has

(3.5) sup v( co Xi) = sup v(co Xi) = sup v(Xi) = sup v(Z Xi)
i i i i

= sup v(co Xi),

the first and the third equalities resulting from the corollary of Lemma 2. Con-
sequently, 1i co Xi and co (Ii Xi) have the same closure.

Given a nonempty subset X of S and a linear form v on S, let

(3.6) x' = {x E X Iv(x) = sup v(X)}.



DERIVATIVE OF A CORRESPONDENCE 45

It is immediately seen that (i) if {Yi} is a sequence of subsets of S having a
nonempty sum, then (Ii Yi)' = Li Yi', and (ii) if Y is a nonempty subset of S,
then (co Y)v = co Yv.
We complete the proof by showing that for every v * 0, one has (i co Xi)v

(co Li Xi)v. This follows from the chain of equalities (the first and the fourth by
(i); the second and the fifth by (ii); and the third by induction on dim S as we
prove below):

(3.7) (Zco Xi)v = E (co Xi)v =
Z co X' = co E Xi = co ( Xi)v

= (co E XJ).
Let H = {x E S| v(x) = 0} and let L be a straight line in S through 0 as in

Lemma 4. Project (that is, in this case, translate) the sets X? into H parallel to L.
The induction assumption according to which the lemma is true in H establishes
the third equality.
PROOF OF THEOREM 1. For every E E X, let ¢D(E) = Upwe T(E). Clearly

¢D(E) c: @D(E) c @D(E). Thus, D is a correspondence from s to P included in (D.
It is also clear that P E X implies ' c 4&. To establish that $ is the greatest
element of X it will therefore suffice to prove that $ is countably additive. To
this end consider a sequence {Ei} of pairwise disjoint elements of aS and their
union E.

Let x be an element of @D(E). There is P E X such that x E T(E). Since ' is
countably additive, there is a sequence {xi} in P such that x = lixi and for
every i, xi e PT(Ei), which is contained in (D(Ei).

Conversely, let {xi} be a sequence in P such that x = 1i xi and for every i,
xi E 4'(Ei). For every i, there is Ti E A' such that xi E TPi(Ei). For everyF e X, let

(3.8) TP(F) = EPi(Ei PF).

We wish to prove that ' E M. Since T(Ei) = Ti(Ei), this will establish that
x belongs to @I(E).

First we notice that

(3.9) '(F) = E 'i(Ei riP) c E D(Ei n F) c E D(Ei rF) = ¢(F),
the second inclusion following from the fact that the sum of the closures of a
sequence of subsets of S is contained in the closure of their sum. Thus,
T(F) Ca(fl.

Next we show that ' is countably additive. Consider a sequence {Fj} of pair-
wise disjoint elements of a? and their union F.

Let {yj} be a sequence of elements of P such that y = Lj yj and for every j,
yj E T(Fj). For everyj, there is a sequence {yi,j) in P such that yj = Li yi,j and
for every i, yi, j E 'i(Ei ri Fj). Let y! = Ej Yi, j. Then y = Li yi and for every i,

Y. P1i(Ei n F). Thus, y ET(F).
Conversely, let y be an element of T(F). There is a sequence {yj} in P such

that y = vi yi and for every i, yi E 'i(Ei rn F). For every i, there is a sequence



46 SIXTH BERKELEY SYMPOSIUM: DEBREU AND SCHMEIDLER

{yi,j} in P such that y' = Ej yi, j and for everyj, yi, j E Ti(Ei n Fj). Let yj = 1j yi, j.
Then y = :j yj and for everyj, yj E TP(Fj).

Finally, we remark that for every B E sl, TP(B) is not empty because

(3.10) T(A) = T(B) + T(A\B)

and x E T(A).
There remains to prove that if (D is convex valued, then so is (F. Define the

correspondence co iD from dal to S by co @D(E) = co (4P(E)) for every E E sl.
Clearly co i c . Moreover, by Lemma 5, co di is countably additive. Therefore,
co iD E .4. Hence, Of = co (F.

4. Lemmas and proof of Theorem 2

LEMMA 6. If X is a closed, convex subset of S containing no straight line and
0 0 X, then the smallest closed cone C with vertex 0 containing X contains no
straight line.

PROOF. The assertion of the lemma is trivially true if X is empty. We exclude
this case in the remainder of the proof. IfLo is a ray contained in C and such that
Lo nX = 0, then there is a sequence {x"} in X such that Ix"l tends to + oo and
the ray through x" tends to Lo. Let x be a point of X. The closed half line with
origin x through Xq tends to {x} + Lo. Therefore {x} + Lo c X.

Suppose now that C contains a straight line L through 0 and let L1, L2 be the
rays whose union is L.

If L1 n X 7 0 and L2 n X ¢ 0, then 0 E X, a contradiction.
If L1 r X = 0 and L2 nX 7 0, select a point x' in L2 nX. According to

the first paragraph, {x'} + L1 c X. Therefore, again 0 E X.
If L1 n X = 0 and L2 rn)X = 0, select a point x in X. According to the first

paragraph, {x} + L1 c X and {x} + L2 c X. Therefore, X contains a straight
line, also a contradiction.

COROLLARY 2. IfK is a nonempty, closed, convex subset of S containing no
straight line and x is a point ofS not belonging to K, then there is a nonempty open
set of elements of the dual of S strictly separating x and K.

PROOF. The closed cone C with vertex 0 generated byK - {x}, the translate
ofK by -x, contains no straight line by Lemma 6. Therefore, the polar of C has
a nonempty interior. Since 0 0 K - {x}, every element of this interior strictly
separates 0 andK - {x}, therefore, also x and K.
LEMMA 7. Let i1 be a measurable correspondence from A to S having a non-

empty integral over A, and let *2 be a measurable, positive, closed, convex valued
correspondence from A to S. If, for every E E ., |E j dv c JE 112 dv, then a.e.,

(a) C *2(a).
PROOF. Let V = {vj} be a countable dense subset of the dual of S. For

every i, for every E E X,

(4.1) sup vi(JE 01 dv) _ sup vifE 42 dv).



DERIVATIVE OF A CORRESPONDENCE 47

By Lemma 2,

(4.2) ssup vi(*I/(a)) dv(a) _fE sup Vi(O 2(a)) dv(a).

Therefore, for every i, a.e.,

(4.3) sup vi(f1 (a)) _ sup Vi(II2 (a)).
Let a be an element ofA for which this inequality holds for every i and consider
a point x of S not in 02(a). The set 0r2(a) is closed, convex, and contains no
straight line. Consequently, Corollary 2 applies. For some element vj of V one
has

(4.4) sup Vj(O2 (a)) < vj(x).
Hence, x 0 *1(a).
LEMMA 8. Let {Xi} be a sequence of subsets of P having a nonempty sum X,

and let v be a strictly positive linear form on S. If

(4.5) Yi = {ye Xi I v(y) = inf v(Xi)}
and

(4.6) Y = {y E XI v(y) = inf v(X)},
then Y = £i Yi.
PROOF. Let {xi} be a sequence of points of P such that x = yI xi and for

every i, xi E Yi. Thus, xi E Xi and consequently, x E X. Moreover, by Corollary
1, inf v(X) = -i inf v(Xi). Therefore, v(x) = inf v(X) and x E Y.

Conversely, let x be an element of Y. There is a sequence {xq} of elements of
X converging to x. For every q, there is a sequence {x?} of elements of P such
that Xq = 1i x? and for every i, xi E Xi. Since for every i and q, v(x9) < v(xq)
and V(Xq) converges to v(x), for some well-chosen positive real number c, all the
x? belong to the compact set {y E PI v(y) _ c}. Thus, one can extract from the
sequence {sq} (where Sq = {x?j}) a subsequence {tq}(where tq = { y1}) converging
pointwise to t = {yi}. Since yiq E Xi and YI converges to yi, one has yi E Xi.
Moreover, letting yq = -i y, one has

(4.7) v(y?) - infv(Xi) _ v(yq) - infv(X).

Therefore, v(yl) converges to inf v(Xi). Hence, v(yi) = inf v(Xi). Summing up,
yi E Yi. There remains to prove that x = 1i yi.

Given a real number a _ 0, the diameter of the compact set {y e PI v(y) . a}
is proportional to a. Let k > 0 be the proportionality factor. For every i and q,
Yiq- yI <kv(yiq). Thus, for any positive integer l,

(4.8) Y IY - yi _ k Y v(y?) = k Ev(y )- v(yi)] + k i v(yi)
i>i i>i i>i i>i

. k(v(y )-v(x)) + k Y v(yi).
i>i
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Consequently,

(4.9) yIE -yi IY? - yil + k(v(y") - v(x)) + k E v(yi).
i ~~~~~~isi i>j

Given a real number E > 0, choose i so that k 1i> v(yi) < Ie. There is q' such
that for every q > q', k(v(y7) - v(x)) < je and there is q" such that for
every q > q", Y4i yiq-yi < e. Therefore, for every q greater than q' and q",
1i i_-YiI < S. This proves that Xi y? converges to Ti yi. In other words,
x = Si Yi
LEMMA 9. For every i in a finite set I, let fi be a measurable function from

E E s to R, bounded below by an integrable function, and let vi be a linear form
on S such that for every a E E, the set

(4.10) L'(a) = {x ESI for every i E I, vi(x) = fi(a)}
is not empty. Let K' be the correspondence from E to S defined by

(4.11) K'(a) = {x E S for every i E I, vi(x) _ fi(a)}.
If v(E) > 0, then

(4.12) JK dv = {x E SIfor every i I, vi(x) fidv}.

PROOF. Obviously, JE K' dv c {x E S I for every i E I, vi(x) - |Efi dv}.
To prove the converse inclusion, let

(4.13) DI = {x E SI for every iE I, vi(x) = 0}

and

(4.14) C' = {X E S Ifor every i E I, vi(x) _ 0};

let J = {i E II fi is not integrable over E} and J' = I\J. Denoting the interior
of C' by int CJ, we first observe that

(i) Int CJ 0.
Let us prove (i). If Int C' = 0, the polar of C' contains a straight line.

Therefore, for i E J, there are real numbers .i > 0, not all equal to zero, and
such that Ii,j )ivi = 0. For every a E E, select an element e(a) of LJ(a). One
has for every a E E,

(4.15) E 2iAf(a) = E 2ivi(e(a)) = 0.
ieJ iei

Consider j E J for which Ai > 0. One has for every a E E,

(4.16) )jfj(a) = - E AJfi(a).
iEJ, 0 j

For every i E J, fi is bounded below by a function integrable over E. Therefore,
fj is bounded above by a function integrable over E, and consequently, is inte-
grable over E, a contradiction. Q.E.D.
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Our second observation is that
(ii) SEK dv +0.
Proving (ii) in S is clearly equivalent to proving it in the quotient space S/D".

In the proof of (ii) we shall, therefore, assume, without loss of generality, that
for every a E E, LJ (a) has exactly one element.
For every i E J, fi is bounded below by a function fi' integrable over E. For

every a e E, let

(4.17) X(a) = {x E SI for every iE J, vi(x) -fj(a)}.
The set X(a) is contained in KJ(a). According to (i), X(a) is not empty. Since
LJ(a) has exactly one element, X(a) has a nonempty set X(a) of extreme points.
Each such extreme point is the intersection ofa family of hyperplanes of the form

(4.18) Hi(a) = {x e S Ivi(x) = fi(a)}

with i E J. Therefore, one can easily obtain a measurable selector s for X. The
function s is clearly integrable over E. Q.E.D.
Now observe that
(iii) JE KJ dv = S.
Proving (iii) for KJ is equivalent to proving it for the correspondence a

KJ(a) - {s(a)} from E to S. In the proof of (iii), we shall therefore assume,
without loss of generality, that for every a E E, one has 0 E KJ(a). Thus, for
every a e E, for every i E J, fi (a) _ 0. As in the proof of (ii), we shall also assume
in the proof of (iii) that for every a E E, LJ(a) has exactly one element {J(a).

Consider a point x E S. Let r be a strictly positive integrable real valued
function on E, and for every positive integer n, let

(4.19) M. = {a c E I for every i E J, fi(a) _ nr(a)}.
The set M. belongs to d. For every i E J, fi is integrable over M,. Since M. tE,
one has for every i e J, fM. fi dv -. + ao. Choose insuch that for every i E J,
vi(x) <SM- fi dv. Define the function g from E to S as follows: for every a E M",
g(a) e e j(a); for every a E E\M5, g(a) = 0. Clearly, for every a e E, g(a) E KJ(a)
and, letting y = JE gdv, for every i E J, Vi(y) = JM fi dv > vi(x). Choose now
an integrable nonnegative function t from E to R such that JE tdv = 1 and let
h(a) = g(a) + (x - y)t(a). For every a E E, h(a) E KJ(a) and JE hdv = x. Q.E.D.
By considering the quotient space S/D', one immediately obtains an integrable

function q from E to S such that for every a E E, q(a) E LJ (a). Since proving the
lemma for K' is equivalent to proving it for the correspondence a -* Kl(a) -

{q(a)} from E to S, without loss of generality, we shall assume until the end of
the proof of Lemma 9 that for every a E E, 0 E L"'(a). That is to say, for every
a E E, LJ (a) = D', or for every a E E, for every i E r, fi(a) = 0.

Finally observe that
(iv) DJ' n Int CJ' ¢ 0.
If this intersection is empty, there is a hyperplane H containing DJ' and sup-

porting for Cj. In other words, there is v * 0 in the polar of CJ, vanishing on
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DJ . Thus, v = lieJ Aivi where the Ai are nonnegative and not all zero, and the
condition [for every i E J', vi(x) = 0] implies [v(x) = 0]. For every a E E, select
an element e(a) of L'(a). One has for every a E E, for every i E J', vi(e(a)) =
fi(a) = 0, hence, v(e(a)) = 0, hence,

(4.20) E Aifi(a) = E Aivi(e(a)) = 0.
iEJ ieJ

As in the proof of (i), the equality Siej Aifi(a) = 0 for every a E E leads to a
contradiction. Q.E.D.
We now consider a point x E S such that for every i E 1, vi(x) _ 0. Because

of (iv), ({x} + DJ') n CJ ¢ 0. Select a point y in that intersection. Clearly,
y E C' and z = x - y belongs to DJ'. Because of (ii) applied to the space DJ,
there is an integrable function g from E to DJ' such that for every a E E,

(4.21) g(a) E KJ(a) n DJ' = K(a) n DJ'

and that z = SE gdv. Choose now an integrable nonnegative function t from E
to R such that JE tdv = 1 and let h(a) = g(a) + yt(a). For every a e E, h(a) E
K'(a) and JE hdv = x, which completes the proof of Lemma 9.
We recall the definition of the asymptotic cone AM of a subset M of S. For

every positive integer k, let Mk = {x E M |x| _ k} and let Ck be the smallest
closed cone with vertex 0 containing Mk. By definition AM = nk Ck. About the
properties of asymptotic cones that we shall use, we refer to W. Fenchel [6], to
R. T. Rockafellar [13], and to [4].
Given a correspondence i from A to S, we denote by Ail the correspondence

a-&) A(O (a)) fromA to S.
LEMMA 10. If / is a measurable correspondence from A to S, then so is AO.
PROOF. For every positive integer k, we define the correspondence 1k from

A to S by

(4.22) /k(a) = {xe-(a)Ilxl _ k} ifthissetisnotempty,
}{0} otherwise.

The set Ak = {a eAI/k(a) ¢ {0}} is the projection on A of the set {(a, x) E

G(O)IIxl > k} which belongs to sl Y &. By (3.4) of [5], AkE s. Therefore,

(4.23) G(Ik) = {(a, x) e G(o) lxi _ k} u [(A\Ak) x {0}]

belongs to l ® 9Y. Consequently, the correspondence r/k from A to S is
measurable for every r E Q +, the set ofpositive rationals. So is the correspondence
Yk defined by yk(a) = UreQ+ rOk(a). The smallest closed cone with vertex 0 con-

taining ok(a) is yk(a) and the correspondence yk is measurable by 4.3 of [5] or
Lemma 3 of [8]. Finally, A*(a) = nk yk(a). Therefore, the graph of A*, which
is the intersection of the graphs of the yk, belongs to s 9Y.
LEMMA 11. Let E be an element of d, H be a hyperplane through 0 in S, and

O be a measurable, closed, convex valued correspondence from E to S such that
|E qdv ¢ 0. If H n A JE i/idv = {O}, then a.e. in E, H r' A*(a) = {0}.
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PROOF. Since JE idv $ 0 and since the asymptotic cone of a subset of S is
invariant under translations of this subset, there is no loss of generality in
assuming that in E, 0 E * (a). Let I = {x E HIxI = 1} and let

(4.24) E' = {a E|EnAAO(a) * 0}.

The latter set is the projection on E of (E x n)n G(AO) which belongs to
da (® S9 by Lemma 10. Therefore, by (3.4) of [5], E' belongs to d. And by a
measurable selection theorem of Aumann [2], there is a measurable function f
from E' to S such that in E', f(a) E I n A*/(a). In E', If(a)I = 1. Therefore, if E'
is not null, there is a subset E" of E' belonging to X, of finite strictly positive
measure, such that x = JE" fdv * 0. For every real number t> 0, and every
a E E", tf(a) E AO*(a) c *(a), this last inclusion following from the fact that 0
belongs to the closed, convex set *(a). Therefore, tx e fE" ,dv. Hence, x e
A|E" /dv a A|E /dv. Since x # 0 and x E H, a contradiction of the assumption
that E' is not null has been obtained.
LEMMA 12. If {Xi} is afamily of closed, convex subsets of S having a nonempty

intersection, then A(ni Xi) = ni AX,.
PROOF. For everyj, ni Xi c Xj, hence, A(ni Xi) c AX.. Therefore, A(nli Xi)
cniAXi.
To prove the reverse inclusion, notice that there is no loss of generality in

assuming that 0 E ni Xi. Then for every j, ni AXi c AX, c Xi. Therefore,
ni AXi c-ni Xi. Hence, ni AX, c A(ni Xi).
LEMMA 13. If {Xi} is a decreasing sequence of closed, convex subsets of S

having a nonempty intersection, H is a hyperplane through 0 in S such that
H n A(ni Xi) = {0}, H' is a hyperplane parallel to H in S such that H' n (ni Xi) =
0, then there is j such that H' nX= 0.
PROOF. By Lemma 12, A(ni Xi) = ni AXi. Therefore, H n (nf AXi) = {0}.
Let I = {x E HIIx = 1} be the unit sphere in H and let Ki = rn AXi. The

decreasing sequence of compact sets {KJ} has an empty intersection. Therefore,
for some n, K,, = 0; hence, H n AX,, = {0}, and H' r X. is compact. The de-
creasing sequence of sets {H' n Xi} has an empty intersection and for i > n,
these sets are compact. Therefore, for some j, H' n Xj = 0.
PROOF OF THEOREM 2. In the first part of the proof, we assume that (D is a

countably additive, v continuous, positive, convex valued correspondence from
sl to S satisfying (D = (F.

Let V = {vi} be a countable dense subset of the dual of S. For every i and
every E E d, define Fi(E) = sup vi(D(E)). The function Fi is from sl to ] - oo,
+ oo] is clearly v continuous. By the corollary of Lemma 2, it is also countably
additive. It then follows from P. R. Halmos ([7], p. 131, Ex. 7) that there is a
measurable function fi from A to ]-oo, + oo] such that for every E e X,
FP(E) = JEfidv.
Define V/i(a) = {x c SIvg(x) _ fi(a)} and qp(a) = ni fi(a).

Clearly, for every a e A, (p(a) is closed and convex. Moreover, the function (P
from A to Y(S) is measurable, for its graph G(p) equals ni G(oi) and every G(q/i)
belongs to d ® M.
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We shall prove below that (i) JA (pdv ¢ 0 and (ii) for every E E , JE (pdv c
@D(E), which implies that a.e. cp(a) c P. To see this, notice that for every E ed,
(D(E) is contained in the integral over E of the correspondence fromA to S which
is constant and equal to P. The assertion follows from Lemma 7.

(i) JA (pdv ¢ 0.
To prove (i), let v be a strictly positive linear form on S. For every E E d,

define

(4.25) F(E) = {x E 'D(E)Iv(x) = inf v(cD(E))}.
The set F(E) is nonempty and convex. By Lemma 8, the correspondence F from
d to S is countably additive. It is clearly v continuous. Since F is compact valued,
it trivially satisfies F = r. Now let H = {x E SIv(x) = O} and select in S a
straight line L through 0 as in Lemma 4. Denote the projection (that is, in this
case, the translate) of F(E) into H parallel to L by t'(E). The correspondence r
from sW to H has all the properties that have been assumed about the corres-
pondence 4 from sa to S, and a reasoning by induction on dim S establishes
that t has a measurable Radon-Nikodym derivative y. Thus, F has a measurable
Radon-Nikodym derivative y, which can be assumed to be a correspondence.
For every E E X, |E ydv = F(E) c C(E). Therefore, for every i, for every E E S,
SUp Vi(JF ydv) _ sup vi(D(E)). By Lemma2,the left side equals JE sup vi(y(a))dv(a)
while the right side equals JE fi dv. Consequently, for every i, a.e. in A,
sup vi(y(a)) < fi(a), hence, y(a) c ri(a). Therefore, a.e. in A, y(a) cflni /,(a),
which yields F(A) = JA ydv C fA pdv. Q.E.D.

Denoting by A* the set {a E A IT(a) ¢ 0}, we obtain as an immediate con-
sequence of (i) that A\A* is null.

(ii) For everyE e sl, JE pdv c( @if(E).
To prove (ii), note one has sup vi(q (a)) _ fi(a) for every i and every a E A*.

Therefore, for every i, for every E E X,

(4.26) i sup vi(p(a)) dv(a) _ Fi(E).

By Lemma 2, sup Vi(JE pdv) . sup vi(D(E)). Consider now a point x of S not
belonging to 4D(E). The set O(E) is closed, convex and contains no straight line.
Consequently, Corollary 2 applies. For some element vi E Vone has sup vi(D(E)) <
vi(x). Therefore, x 0 JE qdv. Q.E.D.

(iii) For every n, for every E E X, @D(E) is contained in the closure of

JE[n,=1 i(a)] dv(a).
The proof of (iii) is by induction on n. Assume that for every set I of indices

such that card I < n, and for every E E X,

(4.27) D(E) is contained in the closure ofjn[ i(a)] dv(a).
E ievl

Consider an index j _ n. According to (4.27), for every E E- X,
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(4.28) sup vj((D(E)) . sup vJf [nini(a)] dv(a)

f sup v[iin (i (a)] dv(a).
i<n,i*#j

Therefore, a.e. in A*,fj(a) < sup vj[nif,,,j 0i(a)]. Since in A*, n1i,i(a) #
0, one has,
(4.29) a.e. in A *, fj(a) = supv[iin i (a)]

iSn

Given a E A*, let t(a) = {i _ nlfi(a) < + oo}. For a subset T of {1, ,n},
define AT = {a E A* t(a) = T}. The sets of the family {A T} clearly form a finite
measurable partition of A*. Since ¢D(E) and JE[nif, 0i(a)] dv(a) are finitely
additive relative to E E d, it suffices to prove the inclusion in (iii) for each T, for
every E belonging to sl and contained in AT.

Therefore, we consider now a fixed T. Given a E AT and I c T, we define
K'(a) to be the cone

(4.30) {X E S I for every i II, vi(x) - fi(a)}
if the constraints vi(x) = fi(a) for every i E I are compatible, K'(a) to be the
empty set otherwise.
For every a E AT, the sets nieT i(a) have the same asymptotic cone

(4.31) CT = {x E sI for every iE T, vi(x) . 0}.

Let v be a linear form on S such that V(CT) < 0. Given a E AT, we maximize v
on nieT Li(a). Let xo be a maximizer and let I = {i E TIvi(x0) = fi(a)}. Clearly,

(4.32) maxv[fin(a)] = max v[K'(a)].
ieT

The correspondence a-, nieT i/(a) from AT to S is measurable since its graph
is the intersection of the graphs of the i each of which is measurable. There-
fore, by Lemma 1, the function a -m max v[niET 0i(a)] is measurable. On the
other hand, given I, one has

(4.33) {a E ATIK'(a) = 0} = prOjA, n {(a, x) EAT x SIvi(x) = f,(a)}.
ielI

Each set in this intersection is measurable; so is their intersection and, by (3.4)
of [5], so is the projection on AT of their intersection. Clearly, the graph of the
correspondence K' from {a E AT K'(a) * 0} to S is measurable by a repetition
of the reasoning of the first sentence of this paragraph. And, by a new application
of Lemma 1, the function a -* max v [K'(a)] is measurable.
Summing up, given I, the set of a E AT for which the equality (4.32) holds is

measurable. Therefore, AT can be partitioned into finitely many measurable
sets {A'T} such that for every k, for every a E Ak, the same set Ik of indices
satisfying (4.32) can be chosen.



54 SIXTH BERKELEY SYMPOSIUM: DEBREU AND SCHMEIDLER

Consider now E belonging to sl and contained in AT. Let Ek = EnAkT.
The Ek form a finite measurable partition of E. According to Lemma 9, if
v(Ek) > 0, then

(4.34) fEk Kik dv = {x E SI for everyj E Ik, Vj(X) _Fj(Ek).

hence, (D(Ek) c JEk Kj' dv. Clearly, this inclusion also holds if v(Ek) = 0. Con-
sequently,

(4.35) sup v(bD(Ek)) _ sup v( KI dv) = J' max v[KIk (a)] dv(a)

fr max v[fni(a)] dv(a) = sup v X in (a)] dv(a),
Ek ieT Ek ieT

the first and the third equalities following from Lemma 2, and the second from
(4.32). The first term being at most equal to the fifth, we obtain by summation
over k,

(4.36) sup v(D(E)) _ sup v(f in(a)] dv(a))-
This inequality implies

(4.37) (D(E) is contained in the closure of f [n if(a)] dv(a),
E iceT

as we now show. Let x be a point of S not in the right set M. There is a linear
form v on S such that sup v(M) < v(x). If v(E) > 0, then clearly, V(CT) < 0,
hence, by (4.36), sup v(1D(E)) < sup v(M). If v(E) = 0, then sup v((D(E)) =
sup v(M) = 0. In either case, sup v(D(E)) < v(x). Therefore, x 0 ¢D(E).

(iv) For every E e .I, @D(E) c JE qdv.
To prove (iv), consider a point x of S not belonging to JE pdv. According to

(ii), JE pdv is contained in P and consequently, contains no straight line. By
Lemma 6 neither does the closed cone C with vertex 0 generated by JE cpdv - {x}.
Therefore, we can select a linear form v in the nonempty interior of the polar
of C. Let H = {YE SIv(y) = 0}. We have

(4.38) sup v f (pdv) < v(x),

(4.39) HrnA fE pdv = {0}.

According to Lemma 11, equation (4.39) implies a.e. in E,

(4.40) H n A(p(a) = {0}.
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Then let f be an integrable function from E to R such that a.e. in E,

(4.41) sup v(cp(a)) < f(a), J fdv < v(x).

Also let Eo be the null subset ofE in which (4.40) does not hold, or (4.41) does
not hold, or nf i/,i(a) = 0. Given a E E\EO, by Lemma 13, there is n such that

(4.42) max inIi(a)) <f(a).

Denote by En the subset of E\Eo in which this inequality is satisfied. As we
have seen in the proof of (iii), the function a -# max v(nfl I/i (a)) from E\E0 to
R is measurable. Therefore, En e .. Clearly, En c En+1. Define E1 = E'1 and
for n > 1, E. = E' E' The sets {E"}" form a countable measurable parti-
tion of E. By (iii), for every n > 1,

(4.43) sup v('D(En)) -< SUP VTE
f

I /() va))( nO'(a1 dv

However, by Lemma 2 and (4.42), the right side is at most equal to |E. fdv.
Therefore, summing over n, we obtain sup v(1(E)) _ JE fdv < v(x). Hence,
x / ¢D(E).

(v) For every E E d;, @D(E) c fE pdv.

To prove (v), note @D(E) c JE pdv, by (iv). Therefore, it suffices to prove that
if a point x of cF(E) is in the boundary of 42(E), then x E JE cpdv.
Let v :& 0 be a linear form on S such that sup v(F(E)) = v(x) and let

X = {B e |IB C E}. For every BeE , we define

(4.44) F(B) = {y E ¢D(B) Iv(y) = sup v(F(B))}.
According to (i) in the proof of Lemma 5, F is countably additive. Since
r(E) # 0, for every B E , F(B) # 0. The correspondence F from + to S is
clearly v continuous, positive, convex valued. It also satisfies F = F because if
. is a countably additive correspondence from -J to S such that P c r, then
P c CD 1v,, the restriction of 4i to -. Hence, Cb being the greatest element of X,
. c D l. This inclusion with T c IF implies P c F. How project F(B) into
H = {y E SIv(y) = 0} parallel to a straight line L chosen as in Lemma 4. An
induction assumption on dim S yields a measurable Radon-Nikodym derivative
y for F. One has for every B E E,

(4.45) fjB ydvc qD(B)c fdv,
the last inclusion by (iv). By Lemma 7, a.e. in E, y(a) c (p(a). From x E JE ydv,
we obtain x E JE (pdv.

(vi) For every E E d, @D(E) = JE q,dv.
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For proof of (vi), clearly, by (ii), the correspondence E JE pdv from d to
S belongs to #. Since cD is the greatest element of X, one hass SE pdv c (D(E)
which, with (v) yields the conclusion. Q.E.D.
To complete the proof of Theorem 2, we consider a measurable positive,

closed, convex valued function 4 from A to Y(S) such that JA fdv * 0. Denote
|E /dv by @(E). Clearly, CD is a countably additive, v continuous, positive, convex
valued correspondence from s to S. The greatest element 4) of M is obviously
v continuous and positive valued. According to the second assertion of Theorem
1 it is convex valued. By the first part of the present proof, cD has a measurable
positive, closed, convex valued Radon-Nikodym derivative (p. For every E E .4,
@D(E) c @D(E), hence, JE 9dv ' JE /dv. By Lemma 7, a.e., p(a) c *(a). There-
fore, 4D c (D. Hence, (D = (D.
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