THE RADON-NIKODÝM DERIVATIVE OF A CORRESPONDENCE

GERARD DEBREU
and
DAVID SCHMEIDLER
University of California, Berkeley

1. Introduction

Let (A, \mathscr{A}, v) be a complete, totally σ-finite, positive measure space and S be an ordered finite dimensional real vector space with its usual topology and the Borel σ-field \mathscr{S} generated by this topology. Given a function γ from A to $\mathscr{P}(S)$, the set of subsets of S, we define its integral over $E \in \mathscr{A}$ by

$$
\begin{align*}
& \int_{E} \gamma d v=\{x \in S \mid \text { there is an integrable function } f \text { from } E \text { to } S \text { such that } \tag{1.1}\\
& \left.\qquad x=\int_{E} f d v \text { and a.e. in } E, f(a) \in \gamma(a)\right\} .
\end{align*}
$$

And given a function Γ from \mathscr{A} to $\mathscr{P}(S)$, we say that a function γ from A to $\mathscr{P}(S)$ is a Radon-Nikodým derivative of Γ if

$$
\begin{equation*}
\text { for every } E \in \mathscr{A}, \Gamma(E)=\int_{E} \gamma d v \tag{1.2}
\end{equation*}
$$

When $\Gamma(E)$ is nonempty for every $E \in \mathscr{A}$, we call Γ a correspondence from \mathscr{A} to \mathscr{S}. In this article we characterize the correspondences from \mathscr{A} to S, having a measurable, positive, closed, convex valued Radon-Nikodým derivative, where a function γ from A to $\mathscr{P}(S)$ is defined as measurable if its graph

$$
\begin{equation*}
G(\gamma)=\{(a, x) \in A \times S \mid x \in \gamma(a)\} \tag{1.3}
\end{equation*}
$$

belongs to the product σ-field $\mathscr{A} \otimes \mathscr{S}$.
The need for such a characterization arose in the theory of economic systems in which certain sets of negligible agents are not negligible. To describe this situation mathematically one introduces a set A of agents, a σ-field \mathscr{A} of subsets of A (the σ-field of coalitions), and a positive measure v defined on \mathscr{A}. Now the

[^0]primitive concepts of the economic theory under discussion can be presented either in terms of functions and correspondences defined on the set of agents (this is the "individual" point of view of R. J. Aumann [1]) or in terms of functions and correspondences defined on the set of coalitions (this is the "collective" point of view of K. Vind [15]). The study of the equivalence of these two viewpoints requires a theory of the Radon-Nikodým derivatives of correspondences.

2. Statement of results

The positive cone P of the space S is a closed, convex cone with vertex 0 such that $[x \in P$ and $-x \in P]$ implies $[x=0]$. A subset of S is said to be positive if it is contained in P. An element v of the dual S^{\prime} of S is said to be strictly positive if $[x \in P$ and $x \neq 0$] implies $[v(x)>0]$.

Occasionally it will be convenient to use a norm on S. The norm of $x \in S$ will then be denoted by $|x|$.

Given a sequence $\left\{X_{i}\right\}$ of subsets of S, we define

$$
\begin{align*}
& \sum_{i} X_{i}=\left\{x \in S \mid \text { there is an absolutely convergent series }\left(x_{i}\right)\right. \tag{2.1}\\
& \text { such that } \left.x=\sum_{i} x_{i} \text { and for every } i, x_{i} \in X_{i}\right\} .
\end{align*}
$$

A function Γ from \mathscr{A} to $\mathscr{P}(S)$ is said to be (i) countably additive if for every sequence $\left\{E_{i}\right\}$ of pairwise disjoint elements of $\mathscr{A}, \Gamma\left(\cup_{i} E_{i}\right)=\Sigma_{i} \Gamma\left(E_{i}\right)$; (ii) continuous if $[E \in \mathscr{A}$ and $v(E)=0]$ implies $[\Gamma(E)=\{0\}]$.
The characterization of correspondences from \mathscr{A} to S having a measurable, positive, closed, convex valued Radon-Nikodým derivative will be in terms of the following concepts. For two correspondences Ψ^{1}, Ψ^{2} from \mathscr{A} to S, the ordering relation $\Psi^{1} \subset \Psi^{2}$ is defined by $\Psi^{1}(E) \subset \Psi^{2}(E)$ for every $E \in \mathscr{A}$. Given a correspondence Φ from \mathscr{A} to S, the correspondence $\bar{\Phi}$ from \mathscr{A} to S is defined by $\bar{\Phi}(E)=\overline{\Phi(E)}$ for every $E \in \mathscr{A}$. Consider then a countably additive correspondence Φ from \mathscr{A} to S and let \mathscr{M} be the set of countably additive correspondences Ψ from \mathscr{A} to S such that $\Psi \subset \bar{\Phi}$.

Theorem 1. If Φ is a countably additive positive valued correspondence from \mathscr{A} to S such that $\Phi(\varnothing)=\{0\}$, then \mathscr{M} has a greatest element $\hat{\Phi}$. If, in addition, Φ is convex valued, then $\hat{\Phi}$ is convex valued.

Our main result is :
Theorem 2. A countably additive, v continuous, positive, convex valued correspondence Φ from \mathscr{A} to S has a measurable, positive, closed, convex valued RadonNikody'm derivative if and only if $\Phi=\hat{\Phi}$.

In the particular case in which Φ is compact valued (and therefore trivially satisfies the equality $\Phi=\hat{\Phi}$) the proof of Section 4 admits of a considerable simplification. This case can also be treated by an entirely different technique. Since the set of nonempty, compact, convex subsets of S can be embedded in a Banach space in the manner of H. Rådström [11], Φ can be considered as a
function from \mathscr{A} to a Banach space to which the Radon-Nikodým theorem of M. Rieffel [12] (see also M. Métivier [10]) is applied. Indeed this remark was the point of departure of the present study. We also notice that when Φ is compact convex valued, generalizations to infinite dimensional spaces S are possible (C. Castaing [3], M. Valadier [14]).

3. Lemmas and proof of Theorem 1

Lemma 1. If γ is a measurable correspondence from A to S and v is a linear form on S, then the function $a \rightarrow \sup v(\gamma(a))$ from A to \bar{R} is measurable.

Proof. We repeat the proof of (4.5) of [5]. Let c be a real number. The set

$$
\begin{equation*}
A_{c}=\{a \in A \mid \sup v(\gamma(a))>c\} \tag{3.1}
\end{equation*}
$$

is the projection on A of the set $\{(a, x) \in G(\gamma) \mid v(x)>c\}$ which belongs to $\mathscr{A} \otimes \mathscr{S}$. Therefore, A_{c} belongs to \mathscr{A} (see, for instance, (3.4) of [5]). Q.E.D.

The following lemma and its proof are borrowed from W. Hildenbrand [9].
Lemma 2. If γ is a measurable correspondence from A to S such that $\int_{A} \gamma d v \neq \varnothing$ and v is a linear form on S, then

$$
\begin{equation*}
\sup v\left(\int_{A} \gamma d v\right)=\int_{A} \sup v(\gamma(a)) d v(a) \tag{3.2}
\end{equation*}
$$

Proof. The left side is clearly at most equal to the right side.
To prove the reverse inequality we first remark that we lose no generality in assuming that in $A, 0 \in \gamma(a)$, since $\int_{A} \gamma d v \neq \varnothing$. Let r be a strictly positive integrable function from A to R, and for every positive integer n let $B_{n}(a)$ be the closed ball with center 0 , radius $n r(a)$. Let $\gamma_{n}(a)=\gamma(a) \cap B_{n}(a)$. For every $a \in A$, one has $\gamma_{n}(a) \neq \varnothing$. Moreover, the correspondence B_{n} from A to S is measurable by (5.10) of [5]. As $G\left(\gamma_{n}\right)=G(\gamma) \cap G\left(B_{n}\right)$, the correspondence γ_{n} is measurable. Now let $s_{n}(a)=\sup v\left(\gamma_{n}(a)\right)$ and $s(a)=\sup v(\gamma(a))$. By Lemma 1, the functions s_{n} and s are measurable. They are positive and for every $a \in A, s_{n}(a) \uparrow s(a)$. Hence $\int_{A} s_{n} d v$ converges to $\int_{A} s d v$ (by [7], p. 112).

Consider a real number $\alpha<\int_{A} s d v$. For some $n, \alpha<\int_{A} s_{n} d v$. There is an integrable function g from A to R such that $\alpha<\int_{A} g d v$ and in $A, g(a)<s_{n}(a)$. Let

$$
\begin{equation*}
\psi(a)=\left\{x \in \gamma_{n}(a) \mid v(x)>g(a)\right\} \tag{3.3}
\end{equation*}
$$

For every $a \in A, \psi(a) \neq \varnothing$. Moreover, the graph of the correspondence ψ is clearly measurable. Therefore, by a measurable selection theorem of Aumann [2], there is a measurable function f from A to S such that in $A, f(a) \in \psi(a)$. $\mathrm{As}|f(a)| \leqq n r(a)$, the function f is integrable. Since in $A, g(a)<v(f(a))$, one has $\alpha<v\left(\int_{A} f d v\right)$. Thus, $\alpha<\sup v\left(\int_{A} \gamma d v\right)$, and consequently, $\int_{A} s d v \leqq \sup v\left(\int_{A} \gamma d v\right)$.

Corollary 1. If $\left\{X_{i}\right\}$ is a sequence of subsets of S having a nonempty sum and v is a linear form on S, then $\sup v\left(\Sigma_{i} X_{i}\right)=\Sigma_{i} \sup v\left(X_{i}\right)$.

Lemma 3. If in S, C is a closed cone with vertex 0 and L is a straight line such that $C \cap L=\{0\}$, then $C+L$ is closed.

Proof. Let L_{1} and L_{2} be the two closed half lines with origin 0 whose union is L. Consider a sequence $\left\{x_{i}\right\}$ in $C+L$ converging to x. For every i, there are $c_{i} \in C$ and $\ell_{i} \in L$ such that $x_{i}=c_{i}+\ell_{i}$. We wish to prove that the sequence $\left\{\ell_{i}\right\}$ is bounded. Assume that it has in L_{1} a subsequence $\left\{\ell_{i}^{\prime}\right\}$ such that $\left|\ell_{i}^{\prime}\right|$ tends to $+\infty$, and let $\left\{x_{i}^{\prime}\right\}$ and $\left\{c_{i}^{\prime}\right\}$ be the corresponding subsequences of $\left\{x_{i}\right\}$ and $\left\{c_{i}\right\}$. Since x_{i}^{\prime} converges to x and $c_{i}^{\prime}=x_{i}^{\prime}-\ell_{i}^{\prime}$, the closed half line with origin 0 containing c_{i}^{\prime} converges to L_{2} which would therethore be contained in C, a contradiction of $C \cap L=\{0\}$.

Thus the sequence $\left\{\ell_{i}\right\}$ is bounded and so is the sequence $\left\{c_{i}\right\}$. Extract from the sequence $\left\{\left(c_{i}, \ell_{i}\right)\right\}$ a subsequence converging to $(c, \ell) \in C \times L$. The equality $x=c+\ell$ shows that $x \in C+L$.

Lemma 4. If $\operatorname{dim} S>0$ and H is a hyperplane through 0 , then there is in S a straight line L through 0 such that the projection of P into H parallel to L is a closed, convex cone with vertex 0 containing no straight line.

Proof. The assertion of the lemma is trivially true if $\operatorname{dim} S=1$. In the remainder of the proof, we shall assume that $\operatorname{dim} S>1$. Since P contains no straight line, its polar has a nonempty interior and there is a hyperplane M different from H, supporting for P, and such that $M \cap P=\{0\}$. Select a straight line L through 0 , contained in M but not contained in H. Denote the projection of a subset \dot{X} of S into H parallel to L by \dot{X} and notice that $\dot{X}=(X+L) \cap H$. Clearly \dot{P} is a convex cone with vertex 0 . By Lemma 3, $P+L$ is closed. Therefore, \dot{P} is closed. Finally, $\dot{P} \cap \dot{M}=\{0\}$ because

$$
\begin{equation*}
[(P+L) \cap H] \cap[(M+L) \cap H]=(P+L) \cap M \cap H=\{0\} \tag{3.4}
\end{equation*}
$$

The first equality follows from the fact that $M+L=M$ and the second from the fact that $(P+L) \cap M=L$ and $L \cap H=\{0\}$. In H, \dot{M} is a hyperplane supporting for \dot{P}. Thus, $\dot{P} \cap \dot{M}=\{0\}$ implies that \dot{P} contains no straight line. Q.E.D.

The convex hull of a subset X of S is denoted by co X.
Lemma 5. If $\left\{X_{i}\right\}$ is a sequence of subsets of P, then co $\left(\Sigma_{i} X_{i}\right)=\Sigma_{i} \operatorname{co} X_{i}$.
Proof. If $\Sigma_{i} \operatorname{co} X_{i}=\varnothing$, then $\Sigma_{i} X_{i}=\varnothing$ and $\operatorname{co}\left(\Sigma_{i} X_{i}\right)=\varnothing$.
Assume now that $\Sigma_{i} \operatorname{co} X_{i} \neq \varnothing$. For every i, there is $x_{i} \in \operatorname{co} X_{i}$ such that the series $\left(x_{i}\right)$ converges. Let v^{0} be a strictly positive linear form on S. For every i, there is $x_{i}^{\prime} \in X_{i}$ such that $v^{0}\left(x_{i}^{\prime}\right) \leqq v^{0}\left(x_{i}\right)$. The series $\left(v^{0}\left(x_{i}^{\prime}\right)\right)$ converges. So does the series $\left(x_{i}^{\prime}\right)$. Thus, $\Sigma_{i} X_{i} \neq \varnothing$.

Therefore, for every linear form v on S, one has

$$
\begin{align*}
\sup v\left(\sum_{i} \operatorname{co~} X_{i}\right)=\sum_{i} \sup v\left(\operatorname{co~} X_{i}\right)=\sum_{i} \sup v\left(X_{i}\right) & =\sup v\left(\sum_{i} X_{i}\right) \tag{3.5}\\
& =\sup v\left(\operatorname{co} \sum_{i} X_{i}\right)
\end{align*}
$$

the first and the third equalities resulting from the corollary of Lemma 2. Consequently, $\Sigma_{i} \operatorname{co} X_{i}$ and co ($\Sigma_{i} X_{i}$) have the same closure.

Given a nonempty subset X of S and a linear form v on S, let

$$
\begin{equation*}
X^{v}=\{x \in X \mid v(x)=\sup v(X)\} . \tag{3.6}
\end{equation*}
$$

It is immediately seen that (i) if $\left\{Y_{i}\right\}$ is a sequence of subsets of S having a nonempty sum, then $\left(\Sigma_{i} Y_{i}\right)^{v}=\Sigma_{i} Y_{i}^{v}$, and (ii) if Y is a nonempty subset of S, then $(\operatorname{co} Y)^{v}=\operatorname{co} Y^{v}$.

We complete the proof by showing that for every $v \neq 0$, one has $\left(\Sigma_{i} \operatorname{co} X_{i}\right)^{v}=$ (co $\left.\Sigma_{i} X_{i}\right)^{v}$. This follows from the chain of equalities (the first and the fourth by (i); the second and the fifth by (ii); and the third by induction on $\operatorname{dim} S$ as we prove below):

$$
\begin{align*}
\left(\sum_{i} \operatorname{co} X_{i}\right)^{v}=\sum_{i}\left(\operatorname{co~} X_{i}\right)^{v}=\sum_{i} \operatorname{co} X_{i}^{v}=\operatorname{co} \sum_{i} X_{i}^{v} & =\operatorname{co}\left(\sum_{i} X_{i}\right)^{v} \tag{3.7}\\
& =\left(\operatorname{co} \sum_{i} X_{i}\right)^{v}
\end{align*}
$$

Let $H=\{x \in S \mid v(x)=0\}$ and let L be a straight line in S through 0 as in Lemma 4. Project (that is, in this case, translate) the sets X_{i}^{v} into H parallel to L. The induction assumption according to which the lemma is true in H establishes the third equality.

Proof of Theorem 1. For every $E \in \mathscr{A}$, let $\hat{\Phi}(E)=\cup_{\Psi \in \mathscr{M}} \Psi(E)$. Clearly $\Phi(E) \subset \hat{\Phi}(E) \subset \bar{\Phi}(E)$. Thus, $\hat{\Phi}$ is a correspondence from \mathscr{A} to P included in $\bar{\Phi}$. It is also clear that $\Psi \in \mathscr{M}$ implies $\Psi \subset \hat{\boldsymbol{\Phi}}$. To establish that $\hat{\Phi}$ is the greatest element of \mathscr{M} it will therefore suffice to prove that Φ is countably additive. To this end consider a sequence $\left\{E_{i}\right\}$ of pairwise disjoint elements of \mathscr{A} and their union E.

Let x be an element of $\hat{\Phi}(E)$. There is $\Psi \in \mathscr{M}$ such that $x \in \Psi(E)$. Since Ψ is countably additive, there is a sequence $\left\{x_{i}\right\}$ in P such that $x=\Sigma_{i} x_{i}$ and for every $i, x_{i} \in \Psi\left(E_{i}\right)$, which is contained in $\hat{\Phi}\left(E_{i}\right)$.

Conversely, let $\left\{x_{i}\right\}$ be a sequence in P such that $x=\Sigma_{i} x_{i}$ and for every i, $x_{i} \in \hat{\Phi}\left(E_{i}\right)$. For every i, there is $\Psi_{i} \in \mathscr{M}$ such that $x_{i} \in \Psi_{i}\left(E_{i}\right)$. For every $F \in \mathscr{A}$, let

$$
\begin{equation*}
\Psi(F)=\sum_{i} \Psi_{i}\left(E_{i} \cap F\right) \tag{3.8}
\end{equation*}
$$

We wish to prove that $\Psi \in \mathscr{M}$. Since $\Psi\left(E_{i}\right)=\Psi_{i}\left(E_{i}\right)$, this will establish that x belongs to $\hat{\Phi}(E)$.

First we notice that

$$
\begin{equation*}
\Psi(F)=\sum_{i} \Psi_{i}\left(E_{i} \cap F\right) \subset \sum_{i} \overline{\Phi\left(E_{i} \cap F\right)} \subset \overline{\sum_{i} \Phi\left(E_{i} \cap F\right)}=\overline{\Phi(F)} \tag{3.9}
\end{equation*}
$$

the second inclusion following from the fact that the sum of the closures of a sequence of subsets of S is contained in the closure of their sum. Thus, $\Psi(F) \subset \Phi(F)$.

Next we show that Ψ is countably additive. Consider a sequence $\left\{F_{j}\right\}$ of pairwise disjoint elements of \mathscr{A} and their union F.

Let $\left\{y_{j}\right\}$ be a sequence of elements of P such that $y=\Sigma_{j} y_{j}$ and for every j, $y_{j} \in \Psi\left(F_{j}\right)$. For every j, there is a sequence $\left\{y_{i, j}\right\}$ in P such that $y_{j}=\Sigma_{i} y_{i, j}$ and for every $i, y_{i, j} \in \Psi_{i}\left(E_{i} \cap F_{j}\right)$. Let $y_{i}^{\prime}=\Sigma_{j} y_{i, j}$. Then $y=\Sigma_{i} y_{i}^{\prime}$ and for every i, $y_{i}^{\prime} \in \Psi_{i}\left(E_{i} \cap F\right)$. Thus, $y \in \Psi(F)$.

Conversely, let y be an element of $\Psi(F)$. There is a sequence $\left\{y_{i}^{\prime}\right\}$ in P such that $y=\Sigma_{i} y_{i}^{\prime}$ and for every $i, y_{i}^{\prime} \in \Psi_{i}\left(E_{i} \cap F\right)$. For every i, there is a sequence
$\left\{y_{i, j}\right\}$ in P such that $y_{i}^{\prime}=\Sigma_{j} y_{i, j}$ and for every $j, y_{i, j} \in \Psi_{i}\left(E_{i} \cap F_{j}\right)$. Let $y_{j}=\Sigma_{i} y_{i, j}$. Then $y=\Sigma_{j} y_{j}$ and for every $j, y_{j} \in \Psi\left(F_{j}\right)$.

Finally, we remark that for every $B \in \mathscr{A}, \Psi(B)$ is not empty because

$$
\begin{equation*}
\Psi(A)=\Psi(B)+\Psi(A \backslash B) \tag{3.10}
\end{equation*}
$$

and $x \in \Psi(A)$.
There remains to prove that if Φ is convex valued, then so is $\hat{\Phi}$. Define the correspondence $\operatorname{co} \hat{\Phi}$ from \mathscr{A} to S by co $\hat{\Phi}(E)=\operatorname{co}(\hat{\Phi}(E))$ for every $E \in \mathscr{A}$. Clearly co $\hat{\Phi} \subset \Phi$. Moreover, by Lemma 5 , co $\hat{\Phi}$ is countably additive. Therefore, $\operatorname{co} \hat{\Phi} \in \mathscr{M}$. Hence, $\hat{\Phi}=\operatorname{co} \hat{\Phi}$.

4. Lemmas and proof of Theorem 2

Lemma 6. If X is a closed, convex subset of S containing no straight line and $0 \notin X$, then the smallest closed cone C with vertex 0 containing X contains no straight line.

Proof. The assertion of the lemma is trivially true if X is empty. We exclude this case in the remainder of the proof. If L_{0} is a ray contained in C and such that $L_{0} \cap X=\varnothing$, then there is a sequence $\left\{x^{q}\right\}$ in X such that $\left|x^{q}\right|$ tends to $+\infty$ and the ray through x^{q} tends to L_{0}. Let x be a point of X. The closed half line with origin x through x^{q} tends to $\{x\}+L_{0}$. Therefore $\{x\}+L_{0} \subset X$.

Suppose now that C contains a straight line L through 0 and let L_{1}, L_{2} be the rays whose union is L.

If $L_{1} \cap X \neq \varnothing$ and $L_{2} \cap X \neq \varnothing$, then $0 \in X$, a contradiction.
If $L_{1} \cap X=\varnothing$ and $L_{2} \cap X \neq \varnothing$, select a point x^{\prime} in $L_{2} \cap X$. According to the first paragraph, $\left\{x^{\prime}\right\}+L_{1} \subset X$. Therefore, again $0 \in X$.

If $L_{1} \cap X=\varnothing$ and $L_{2} \cap X=\varnothing$, select a point x in X. According to the first paragraph, $\{x\}+L_{1} \subset X$ and $\{x\}+L_{2} \subset X$. Therefore, X contains a straight line, also a contradiction.

Corollary 2. If K is a nonempty, closed, convex subset of S containing no straight line and x is a point of S not belonging to K, then there is a nonempty open set of elements of the dual of S strictly separating x and K.

Proof. The closed cone C with vertex 0 generated by $K-\{x\}$, the translate of K by $-x$, contains no straight line by Lemma 6 . Therefore, the polar of C has a nonempty interior. Since $0 \notin K-\{x\}$, every element of this interior strictly separates 0 and $K-\{x\}$, therefore, also x and K.

Lemma 7. Let ψ_{1} be a measurable correspondence from A to S having a nonempty integral over A, and let ψ_{2} be a measurable, positive, closed, convex valued correspondence from A to S. If, for every $E \in \mathscr{A}, \int_{E} \psi_{1} d v \subset \int_{E} \psi_{2} d v$, then a.e., $\psi_{1}(a) \subset \psi_{2}(a)$.

Proof. Let $V=\left\{v_{i}\right\}$ be a countable dense subset of the dual of S. For every i, for every $E \in \mathscr{A}$,

$$
\begin{equation*}
\sup v_{i}\left(\int_{E} \psi_{1} d v\right) \leqq \sup v_{i}\left(\int_{E} \psi_{2} d v\right) \tag{4.1}
\end{equation*}
$$

By Lemma 2,

$$
\begin{equation*}
\int_{E} \sup v_{i}\left(\psi_{1}(a)\right) d v(a) \leqq \int_{E} \sup v_{i}\left(\psi_{2}(a)\right) d v(a) \tag{4.2}
\end{equation*}
$$

Therefore, for every i, a.e.,

$$
\begin{equation*}
\sup v_{i}\left(\psi_{1}(a)\right) \leqq \sup v_{i}\left(\psi_{2}(a)\right) \tag{4.3}
\end{equation*}
$$

Let a be an element of A for which this inequality holds for every i and consider a point x of S not in $\psi_{2}(a)$. The set $\psi_{2}(a)$ is closed, convex, and contains no straight line. Consequently, Corollary 2 applies. For some element v_{j} of V one has

$$
\begin{equation*}
\sup v_{j}\left(\psi_{2}(a)\right)<v_{j}(x) \tag{4.4}
\end{equation*}
$$

Hence, $x \notin \psi_{1}(a)$.
Lemma 8. Let $\left\{X_{i}\right\}$ be a sequence of subsets of P having a nonempty sum X, and let v be a strictly positive linear form on S. If

$$
\begin{equation*}
Y_{i}=\left\{y \in \bar{X}_{i} \mid v(y)=\inf v\left(X_{i}\right)\right\} \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
Y=\{y \in \bar{X} \mid v(y)=\inf v(X)\} \tag{4.6}
\end{equation*}
$$

then $Y=\Sigma_{i} Y_{i}$.
Proof. Let $\left\{x_{i}\right\}$ be a sequence of points of P such that $x=\Sigma_{i} x_{i}$ and for every $i, x_{i} \in Y_{i}$. Thus, $x_{i} \in \bar{X}_{i}$ and consequently, $x \in \bar{X}$. Moreover, by Corollary $1, \inf v(X)=\Sigma_{i} \inf v\left(X_{i}\right)$. Therefore, $v(x)=\inf v(X)$ and $x \in Y$.

Conversely, let x be an element of Y. There is a sequence $\left\{x^{q}\right\}$ of elements of X converging to x. For every q, there is a sequence $\left\{x_{i}^{q}\right\}$ of elements of P such that $x^{q}=\Sigma_{i} x_{i}^{q}$ and for every $i, x_{i}^{q} \in X_{i}$. Since for every i and $q, v\left(x_{i}^{q}\right) \leqq v\left(x^{q}\right)$ and $v\left(x^{q}\right)$ converges to $v(x)$, for some well-chosen positive real number c, all the x_{i}^{q} belong to the compact set $\{y \in P \mid v(y) \leqq c\}$. Thus, one can extract from the sequence $\left\{s^{q}\right\}$ (where $s^{q}=\left\{x_{i}^{q}\right\}$) a subsequence $\left\{t^{q}\right\}$ (where $t^{q}=\left\{y_{i}^{q}\right\}$) converging pointwise to $t=\left\{y_{i}\right\}$. Since $y_{i}^{q} \in X_{i}$ and y_{i}^{q} converges to y_{i}, one has $y_{i} \in \bar{X}_{i}$. Moreover, letting $y^{q}=\Sigma_{i} y_{i}^{q}$, one has

$$
\begin{equation*}
v\left(y_{i}^{q}\right)-\inf v\left(X_{i}\right) \leqq v\left(y^{q}\right)-\inf v(X) \tag{4.7}
\end{equation*}
$$

Therefore, $v\left(y_{i}^{q}\right)$ converges to $\inf v\left(X_{i}\right)$. Hence, $v\left(y_{i}\right)=\inf v\left(X_{i}\right)$. Summing up, $y_{i} \in Y_{i}$. There remains to prove that $x=\Sigma_{i} y_{i}$.

Given a real number $\alpha \geqq 0$, the diameter of the compact set $\{y \in P \mid v(y) \leqq \alpha\}$ is proportional to α. Let $k>0$ be the proportionality factor. For every i and q, $\left|y_{i}^{q}-y_{i}\right| \leqq k v\left(y_{i}^{q}\right)$. Thus, for any positive integer \bar{i},

$$
\begin{align*}
\sum_{i>i}\left|y_{i}^{q}-y_{i}\right| & \leqq k \sum_{i>i} v\left(y_{i}^{q}\right)=k \sum_{i>i}\left[v\left(y_{i}^{q}\right)-v\left(y_{i}\right)\right]+k \sum_{i>i} v\left(y_{i}\right) \tag{4.8}\\
& \leqq k\left(v\left(y^{q}\right)-v(x)\right)+k \sum_{i>i} v\left(y_{i}\right)
\end{align*}
$$

Consequently,

$$
\begin{equation*}
\sum_{i}\left|y_{i}^{q}-y_{i}\right| \leqq \sum_{i \leqq i}\left|y_{i}^{q}-y_{i}\right|+k\left(v\left(y^{q}\right)-v(x)\right)+k \sum_{i>i} v\left(y_{i}\right) \tag{4.9}
\end{equation*}
$$

Given a real number $\varepsilon>0$, choose $\bar{\imath}$ so that $k \Sigma_{i>i} v\left(y_{i}\right)<\frac{1}{3} \varepsilon$. There is q^{\prime} such that for every $q>q^{\prime}, k\left(v\left(y^{q}\right)-v(x)\right)<\frac{1}{3} \varepsilon$ and there is $q^{\prime \prime}$ such that for every $q>q^{\prime \prime}, \Sigma_{i \leq i}\left|y_{i}^{q}-y_{i}\right|<\frac{1}{3} \varepsilon$. Therefore, for every q greater than q^{\prime} and $q^{\prime \prime}$, $\Sigma_{i}\left|y_{i}^{q}-y_{i}\right|<\varepsilon$. This proves that $\Sigma_{i} y_{i}^{q}$ converges to $\Sigma_{i} y_{i}$. In other words, $x=\Sigma_{i} y_{i}$.

Lemma 9. For every i in a finite set I, let f_{i} be a measurable function from $E \in \mathscr{A}$ to R, bounded below by an integrable function, and let v_{i} be a linear form on S such that for every $a \in E$, the set

$$
\begin{equation*}
L^{I}(a)=\left\{x \in S \mid \text { for every } i \in I, v_{i}(x)=f_{i}(a)\right\} \tag{4.10}
\end{equation*}
$$

is not empty. Let K^{I} be the correspondence from E to S defined by

$$
\begin{equation*}
K^{I}(a)=\left\{x \in S \mid \text { for every } i \in I, v_{i}(x) \leqq f_{i}(a)\right\} \tag{4.11}
\end{equation*}
$$

If $v(E)>0$, then

$$
\begin{equation*}
\int_{E} K^{I} d v=\left\{x \in S \mid \text { for every } i \in I, v_{i}(x) \leqq \int_{E} f_{i} d v\right\} \tag{4.12}
\end{equation*}
$$

Proof. Obviously, $\int_{E} K^{I} d v \subset\left\{x \in S \mid\right.$ for every $\left.i \in I, v_{i}(x) \leqq \int_{E} f_{i} d v\right\}$.
To prove the converse inclusion, let

$$
\begin{equation*}
D^{I}=\left\{x \in S \mid \text { for every } i \in I, v_{i}(x)=0\right\} \tag{4.13}
\end{equation*}
$$

and

$$
\begin{equation*}
C^{I}=\left\{x \in S \mid \text { for every } i \in I, v_{i}(x) \leqq 0\right\} \tag{4.14}
\end{equation*}
$$

let $J=\left\{i \in I \mid f_{i}\right.$ is not integrable over $\left.E\right\}$ and $J^{\prime}=I \backslash J$. Denoting the interior of C^{J} by int C^{J}, we first observe that
(i) Int $C^{J} \neq \varnothing$.

Let us prove (i). If Int $C^{J}=\varnothing$, the polar of C^{J} contains a straight line. Therefore, for $i \in J$, there are real numbers $\lambda_{i} \geqq 0$, not all equal to zero, and such that $\Sigma_{i \in J} \lambda_{i} v_{i}=0$. For every $a \in E$, select an element $e(a)$ of $L^{J}(a)$. One has for every $a \in E$,

$$
\begin{equation*}
\sum_{i \in J} \lambda_{i} f_{i}(a)=\sum_{i \in J} \lambda_{i} v_{i}(e(a))=0 . \tag{4.15}
\end{equation*}
$$

Consider $j \in J$ for which $\lambda_{j}>0$. One has for every $a \in E$,

$$
\begin{equation*}
\lambda_{j} f_{j}(a)=-\sum_{i \in J, i \neq j} \lambda_{i} f_{i}(a) \tag{4.16}
\end{equation*}
$$

For every $i \in J, f_{i}$ is bounded below by a function integrable over E. Therefore, f_{j} is bounded above by a function integrable over E, and consequently, is integrable over E, a contradiction. Q.E.D.

Our second observation is that
(ii) $\int_{E} K^{J} d \nu \neq \varnothing$.

Proving (ii) in S is clearly equivalent to proving it in the quotient space S / D^{J}. In the proof of (ii) we shall, therefore, assume, without loss of generality, that for every $a \in E, L^{J}(a)$ has exactly one element.

For every $i \in J, f_{i}$ is bounded below by a function f_{i}^{\prime} integrable over E. For every $a \in E$, let

$$
\begin{equation*}
X(a)=\left\{x \in S \mid \text { for every } i \in J, v_{i}(x) \leqq f_{i}^{\prime}(a)\right\} \tag{4.17}
\end{equation*}
$$

The set $X(a)$ is contained in $K^{J}(a)$. According to (i), $X(a)$ is not empty. Since $L^{J}(a)$ has exactly one element, $X(a)$ has a nonempty set $\widehat{X}(a)$ of extreme points. Each such extreme point is the intersection of a family of hyperplanes of the form

$$
\begin{equation*}
H_{i}(a)=\left\{x \in S \mid v_{i}(x)=f_{i}^{\prime}(a)\right\} \tag{4.18}
\end{equation*}
$$

with $i \in J$. Therefore, one can easily obtain a measurable selector s for \hat{X}. The function s is clearly integrable over E. Q.E.D.

Now observe that
(iii) $\int_{E} K^{J} d v=S$.

Proving (iii) for K^{J} is equivalent to proving it for the correspondence $a \mathrm{~m}$ $K^{J}(a)-\{s(a)\}$ from E to S. In the proof of (iii), we shall therefore assume, without loss of generality, that for every $a \in E$, one has $0 \in K^{J}(a)$. Thus, for every $a \in E$, for every $i \in J, f_{i}(a) \geqq 0$. As in the proof of (ii), we shall also assume in the proof of (iii) that for every $a \in E, L^{J}(a)$ has exactly one element $\ell^{J}(a)$.

Consider a point $x \in S$. Let r be a strictly positive integrable real valued function on E, and for every positive integer n, let

$$
\begin{equation*}
M_{n}=\left\{a \in E \mid \text { for every } i \in J, f_{i}(a) \leqq n r(a)\right\} \tag{4.19}
\end{equation*}
$$

The set M_{n} belongs to \mathscr{A}. For every $i \in J, f_{i}$ is integrable over M_{n}. Since $M_{n} \uparrow E$, one has for every $i \in J, \int_{M_{n}} f_{i} d v \rightarrow+\infty$. Choose \bar{n} such that for every $i \in J$, $v_{i}(x) \leqq \int_{M_{\bar{n}}} f_{i} d v$. Define the function g from E to S as follows: for every $a \in M_{\bar{n}}$, $g(a) \in \ell^{J}(a)$; for every $a \in E \backslash M_{\bar{n}}, g(a)=0$. Clearly, for every $a \in E, g(a) \in K^{J}(a)$ and, letting $y=\int_{E} g d v$, for every $i \in J, v_{i}(y)=\int_{M_{n}} f_{i} d v \geqq v_{i}(x)$. Choose now an integrable nonnegative function t from E to R such that $\int_{E} t d v=1$ and let $h(a)=g(a)+(x-y) t(a)$. For every $a \in E, h(a) \in K^{J}(a)$ and $\int_{E} h d v=x . Q . E . D$.

By considering the quotient space S / D^{J}, one immediately obtains an integrable function q from E to S such that for every $a \in E, q(a) \in L^{J^{\prime}}(a)$. Since proving the lemma for K^{I} is equivalent to proving it for the correspondence $a \rightarrow K^{I}(a)-$ $\{q(a)\}$ from E to S, without loss of generality, we shall assume until the end of the proof of Lemma 9 that for every $a \in E, 0 \in L^{J^{\prime}}(a)$. That is to say, for every $a \in E, L^{J^{\prime}}(a)=D^{J^{\prime}}$, or for every $a \in E$, for every $i \in J^{\prime}, f_{i}(a)=0$.

Finally observe that
(iv) $D^{J} \cap \operatorname{Int} C^{J} \neq \varnothing$.

If this intersection is empty, there is a hyperplane H containing $D^{J^{\prime}}$ and supporting for C^{J}. In other words, there is $v \neq 0$ in the polar of C^{J}, vanishing on
$D^{J^{\prime}}$. Thus, $v=\Sigma_{i \in J} \lambda_{i} v_{i}$ where the λ_{i} are nonnegative and not all zero, and the condition [for every $i \in J^{\prime}, v_{i}(x)=0$] implies $[v(x)=0$]. For every $a \in E$, select an element $e(a)$ of $L^{I}(a)$. One has for every $a \in E$, for every $i \in J^{\prime}, v_{i}(e(a))=$ $f_{i}(a)=0$, hence, $v(e(a))=0$, hence,

$$
\begin{equation*}
\sum_{i \in J} \lambda_{i} f_{i}(a)=\sum_{i \in J} \lambda_{i} v_{i}(e(a))=0 . \tag{4.20}
\end{equation*}
$$

As in the proof of (i), the equality $\Sigma_{i \in J} \lambda_{i} f_{i}(a)=0$ for every $a \in E$ leads to a contradiction. Q.E.D.

We now consider a point $x \in S$ such that for every $i \in J^{\prime}, v_{i}(x) \leqq 0$. Because of (iv), $\left(\{x\}+D^{J^{\prime}}\right) \cap C^{J} \neq \varnothing$. Select a point y in that intersection. Clearly, $y \in C^{I}$ and $z=x-y$ belongs to $D^{J^{\prime}}$. Because of (ii) applied to the space $D^{J^{\prime}}$, there is an integrable function g from E to D^{J} such that for every $a \in E$,

$$
\begin{equation*}
g(a) \in K^{J}(a) \cap D^{J^{\prime}}=K^{I}(a) \cap D^{J^{\prime}} \tag{4.21}
\end{equation*}
$$

and that $z=\int_{E} g d v$. Choose now an integrable nonnegative function t from E to R such that $\int_{E} t d v=1$ and let $h(a)=g(a)+y t(a)$. For every $a \in E, h(a) \in$ $K^{I}(a)$ and $\int_{E} h d v=x$, which completes the proof of Lemma 9.

We recall the definition of the asymptotic cone $A M$ of a subset M of S. For every positive integer k, let $M^{k}=\{x \in M| | x \mid \geqq k\}$ and let C_{k} be the smallest closed cone with vertex 0 containing M^{k}. By definition $\mathbf{A} M=\cap_{k} C_{k}$. About the properties of asymptotic cones that we shall use, we refer to W. Fenchel [6], to R. T. Rockafellar [13], and to [4].

Given a correspondence ψ from A to S, we denote by $\mathbf{A} \psi$ the correspondence $a \rightarrow \mathbf{A}(\psi(a))$ from A to S.

Lemma 10. If ψ is a measurable correspondence from A to S, then so is $\mathbf{A} \psi$.
Proof. For every positive integer k, we define the correspondence ψ^{k} from A to S by

$$
\psi^{k}(a)= \begin{cases}\{x \in \psi(a)| | x \mid \geqq k\} & \text { if this set is not empty }, \tag{4.22}\\ \{0\} & \text { otherwise }\end{cases}
$$

The set $A^{k}=\left\{a \in A \mid \psi^{k}(a) \neq\{0\}\right\}$ is the projection on A of the set $\{(a, x) \in$ $G(\psi)||x| \geqq k\}$ which belongs to $\mathscr{A} \otimes \mathscr{S}$. By (3.4) of [5], $A^{k} \in \mathscr{A}$. Therefore,

$$
\begin{equation*}
G\left(\psi^{k}\right)=\{(a, x) \in G(\psi)| | x \mid \geqq k\} \cup\left[\left(A \backslash A^{k}\right) \times\{0\}\right] \tag{4.2}
\end{equation*}
$$

belongs to $\mathscr{A} \otimes \mathscr{S}$. Consequently, the correspondence $r \psi^{k}$ from A to S is measurable for every $r \in Q^{+}$, the set of positive rationals. So is the correspondence γ^{k} defined by $\gamma^{k}(a)=\cup_{r \in Q^{+}} r \psi^{k}(a)$. The smallest closed cone with vertex 0 containing $\psi^{k}(a)$ is $\overline{\gamma^{k}(a)}$ and the correspondence $\overline{\gamma^{k}}$ is measurable by 4.3 of [5] or Lemma 3 of [8]. Finally, $\mathbf{A} \psi(a)=\cap_{k} \underline{\gamma^{k}(a)}$. Therefore, the graph of $\mathbf{A} \psi$, which is the intersection of the graphs of the $\overline{\gamma^{k}}$, belongs to $\mathscr{A} \otimes \mathscr{S}$.

Lemma 11. Let E be an element of \mathscr{A}, H be a hyperplane through 0 in S, and ψ be a measurable, closed, convex valued correspondence from E to S such that $\int_{E} \psi d v \neq \varnothing$. If $H \cap \mathbf{A} \int_{E} \psi d v=\{0\}$, then a.e. in $E, H \cap \mathbf{A} \psi(a)=\{0\}$.

Proof. Since $\int_{E} \psi d v \neq \varnothing$ and since the asymptotic cone of a subset of S is invariant under translations of this subset, there is no loss of generality in assuming that in $E, 0 \in \psi(a)$. Let $\Sigma=\{x \in H| | x \mid=1\}$ and let

$$
\begin{equation*}
E^{\prime}=\left\{a \in E \mid \sum \cap \mathbf{A} \psi(a) \neq \varnothing\right\} \tag{4.24}
\end{equation*}
$$

The latter set is the projection on E of $(E \times \Sigma) \cap G(\mathbf{A} \psi)$ which belongs to $\mathscr{A} \otimes \mathscr{S}$ by Lemma 10. Therefore, by (3.4) of [5], E^{\prime} belongs to \mathscr{A}. And by a measurable selection theorem of Aumann [2], there is a measurable function f from E^{\prime} to S such that in $E^{\prime}, f(a) \in \Sigma \cap \mathbf{A} \psi(a)$. In $E^{\prime},|f(a)|=1$. Therefore, if E^{\prime} is not null, there is a subset $E^{\prime \prime}$ of E^{\prime} belonging to \mathscr{A}, of finite strictly positive measure, such that $x=\int_{E^{\prime \prime}} f d v \neq 0$. For every real number $t \geqq 0$, and every $a \in E^{\prime \prime}, t f(a) \in \mathbf{A} \psi(a) \subset \psi(a)$, this last inclusion following from the fact that 0 belongs to the closed, convex set $\psi(a)$. Therefore, $t x \in \int_{E^{\prime \prime}} \psi d v$. Hence, $x \in$ $\mathbf{A} \int_{E^{\prime \prime}} \psi d v \subset \mathbf{A} \int_{E} \psi d v$. Since $x \neq 0$ and $x \in H$, a contradiction of the assumption that E^{\prime} is not null has been obtained.

Lemma 12. If $\left\{X_{i}\right\}$ is a family of closed, convex subsets of S having a nonempty intersection, then $\mathbf{A}\left(\cap_{i} X_{i}\right)=\cap_{i} \mathbf{A} X_{i}$.

Proof. For every $j, \cap_{i} X_{i} \subset X_{j}$, hence, $\mathbf{A}\left(\cap_{i} X_{i}\right) \subset \mathbf{A} X_{j}$. Therefore, $\mathbf{A}\left(\cap_{i} X_{i}\right)$ $\subset \cap_{i} \mathbf{A X}$.
To prove the reverse inclusion, notice that there is no loss of generality in assuming that $0 \in \cap_{i} X_{i}$. Then for every $j, \cap_{i} \mathbf{A X} X_{i} \subset \mathbf{A X} X_{j} \subset X_{j}$. Therefore, $\cap_{i} \mathbf{A} X_{i} \subset \cap_{i} X_{i}$. Hence, $\cap_{i} \mathbf{A} X_{i} \subset \mathbf{A}\left(\cap_{i} X_{i}\right)$.

Lemma 13. If $\left\{X_{i}\right\}$ is a decreasing sequence of closed, convex subsets of S having a nonempty intersection, H is a hyperplane through 0 in S such that $H \cap \mathbf{A}\left(\cap_{i} X_{i}\right)=\{0\}, H^{\prime}$ is a hyperplane parallel to H in S such that $H^{\prime} \cap\left(\cap_{i} X_{i}\right)=$ \varnothing, then there is j such that $H^{\prime} \cap X_{j}=\varnothing$.

Proof. By Lemma 12, $\mathbf{A}\left(\cap_{i} X_{i}\right)=\cap_{i} \mathbf{A} X_{i}$. Therefore, $H \cap\left(\cap_{i} \mathbf{A} X_{i}\right)=\{0\}$.
Let $\Sigma=\{x \in H| | x \mid=1\}$ be the unit sphere in H and let $K_{i}=\Sigma \cap A X_{i}$. The decreasing sequence of compact sets $\left\{K_{i}\right\}$ has an empty intersection. Therefore, for some $n, K_{n}=\varnothing$; hence, $H \cap \mathbf{A} X_{n}=\{0\}$, and $H^{\prime} \cap X_{n}$ is compact. The decreasing sequence of sets $\left\{H^{\prime} \cap X_{i}\right\}$ has an empty intersection and for $i \geqq n$, these sets are compact. Therefore, for some $j, H^{\prime} \cap X_{j}=\varnothing$.

Proof of Theorem 2. In the first part of the proof, we assume that Φ is a countably additive, v continuous, positive, convex valued correspondence from \mathscr{A} to S satisfying $\Phi=\hat{\Phi}$.

Let $V=\left\{v_{i}\right\}$ be a countable dense subset of the dual of S. For every i and every $E \in \mathscr{A}$, define $F_{i}(E)=\sup v_{i}(\Phi(E))$. The function F_{i} is from \mathscr{A} to]- ∞, $+\infty]$ is clearly v continuous. By the corollary of Lemma 2, it is also countably additive. It then follows from P. R. Halmos ([7], p. 131, Ex. 7) that there is a measurable function f_{i} from A to $\left.]-\infty,+\infty\right]$ such that for every $E \in \mathscr{A}$, $F_{i}(E)=\int_{E} f_{i} d v$.
Define $\psi_{i}(a)=\left\{x \in S \mid v_{i}(x) \leqq f_{i}(a)\right\}$ and $\varphi(a)=\cap_{i} \psi_{i}(a)$.
Clearly, for every $a \in A, \varphi(a)$ is closed and convex. Moreover, the function φ from A to $\mathscr{P}(S)$ is measurable, for its graph $G(\varphi)$ equals $\cap_{i} G\left(\psi_{i}\right)$ and every $G\left(\psi_{i}\right)$ belongs to $\mathscr{A} \otimes \mathscr{S}$.

We shall prove below that (i) $\int_{A} \varphi d v \neq \varnothing$ and (ii) for every $E \in \mathscr{A}, \int_{E} \varphi d \nu \subset$ $\overline{\Phi(E)}$, which implies that a.e. $\varphi(a) \subset P$. To see this, notice that for every $E \in \mathscr{A}$, $\overline{\Phi(E)}$ is contained in the integral over E of the correspondence from A to S which is constant and equal to P. The assertion follows from Lemma 7.
(i) $\int_{A} \varphi d v \neq \varnothing$.

To prove (i), let v be a strictly positive linear form on S. For every $E \in \mathscr{A}$, define

$$
\begin{equation*}
\Gamma(E)=\{x \in \overline{\Phi(E)} \mid v(x)=\inf v(\Phi(E))\} . \tag{4.25}
\end{equation*}
$$

The set $\Gamma(E)$ is nonempty and convex. By Lemma 8, the correspondence Γ from \mathscr{A} to S is countably additive. It is clearly v continuous. Since Γ is compact valued, it trivially satisfies $\Gamma=\hat{\Gamma}$. Now let $H=\{x \in S \mid v(x)=0\}$ and select in S a straight line L through 0 as in Lemma 4. Denote the projection (that is, in this case, the translate) of $\Gamma(E)$ into H parallel to L by $\dot{\Gamma}(E)$. The correspondence Γ from \mathscr{A} to H has all the properties that have been assumed about the correspondence Φ from \mathscr{A} to S, and a reasoning by induction on $\operatorname{dim} S$ establishes that $\dot{\Gamma}$ has a measurable Radon-Nikodým derivative $\dot{\gamma}$. Thus, Γ has a measurable Radon-Nikodým derivative γ, which can be assumed to be a correspondence. For every $E \in \mathscr{A}, \int_{E} \gamma d v=\Gamma(E) \subset \overline{\Phi(E)}$. Therefore, for every i, for every $E \in \mathscr{A}$, $\sup v_{i}\left(\int_{E} \gamma d v\right) \leqq \sup v_{i}(\Phi(E))$. By Lemma 2, the left side equals $\int_{E} \sup v_{i}(\gamma(a)) d v(a)$ while the right side equals $\int_{E} f_{i} d v$. Consequently, for every i, a.e. in A, $\sup v_{i}(\gamma(a)) \leqq f_{i}(a)$, hence, $\gamma(a) \subset \psi_{i}(a)$. Therefore, a.e. in $A, \gamma(a) \subset \cap_{i} \psi_{i}(a)$, which yields $\Gamma(A)=\int_{A} \gamma d v \subset \int_{A} \varphi d v . \quad Q . E . D$.

Denoting by A^{*} the set $\{a \in A \mid \varphi(a) \neq \varnothing\}$, we obtain as an immediate consequence of (i) that $A \backslash A^{*}$ is null.
(ii) For every $E \in \mathscr{A}, \int_{E} \varphi d v \subset \overline{\Phi(E)}$.

To prove (ii), note one has sup $v_{i}(\varphi(a)) \leqq f_{i}(a)$ for every i and every $a \in A^{*}$. Therefore, for every i, for every $E \in \mathscr{A}$,

$$
\begin{equation*}
\int_{E} \cdot \sup v_{i}(\varphi(a)) d v(a) \leqq F_{i}(E) . \tag{4.26}
\end{equation*}
$$

By Lemma 2, $\sup v_{i}\left(\int_{E} \varphi d v\right) \leqq \sup v_{i}(\Phi(E))$. Consider now a point x of S not belonging to $\overline{\Phi(E)}$. The set $\overline{\Phi(E)}$ is closed, convex and contains no straight line. Consequently, Corollary 2 applies. For some element $v_{i} \in V$ one hassup $v_{i}(\Phi(E))<$ $v_{i}(x)$. Therefore, $x \notin \int_{E} \varphi d v$. Q.E.D.
(iii) For every n, for every $E \in \mathscr{A}, \Phi(E)$ is contained in the closure of $\int_{E}\left[\cap_{i=1}^{n} \psi_{i}(a)\right] d v(a)$.

The proof of (iii) is by induction on n. Assume that for every set I of indices such that card $I<n$, and for every $E \in \mathscr{A}$,

$$
\begin{equation*}
\Phi(E) \text { is contained in the closure of } \int_{E}\left[\bigcap_{i \in I} \psi_{i}(a)\right] d v(a) . \tag{4.27}
\end{equation*}
$$

Consider an index $j \leqq n$. According to (4.27), for every $E \in \mathscr{A}$,

$$
\begin{align*}
\sup v_{j}(\Phi(E)) & \leqq \sup v_{j} \int_{E}\left[\bigcap_{i \leqq n, i \neq j} \psi_{i}(a)\right] d v(a) \tag{4.28}\\
& =\int_{E} \sup v_{j}\left[\bigcap_{i \leqq n, i \neq j} \psi_{i}(a)\right] d v(a)
\end{align*}
$$

Therefore, a.e. in $A^{*}, f_{j}(a) \leqq \sup v_{j}\left[\cap_{i \leqq n, i \neq j} \psi_{i}(a)\right]$. Since in $A^{*}, \cap_{i \leqq n} \psi_{i}(a) \neq$ \varnothing, one has,

$$
\begin{equation*}
\text { a.e. in } A^{*}, f_{j}(a)=\sup v_{j}\left[\bigcap_{i \leqq n} \psi_{i}(a)\right] \tag{4.29}
\end{equation*}
$$

Given $a \in A^{*}$, let $t(a)=\left\{i \leqq n \mid f_{i}(a)<+\infty\right\}$. For a subset T of $\{1, \cdots, n\}$, define $A_{T}=\left\{a \in A^{*} \mid t(a)=T\right\}$. The sets of the family $\left\{A_{T}\right\}$ clearly form a finite measurable partition of A^{*}. Since $\Phi(E)$ and $\int_{E}\left[\cap_{i \leqq n} \psi_{i}(a)\right] d v(a)$ are finitely additive relative to $E \in \mathscr{A}$, it suffices to prove the inclusion in (iii) for each T, for every E belonging to \mathscr{A} and contained in A_{T}.

Therefore, we consider now a fixed T. Given $a \in A_{T}$ and $I \subset T$, we define $K^{I}(a)$ to be the cone

$$
\begin{equation*}
\left\{x \in S \mid \text { for every } i \in I, v_{i}(x) \leqq f_{i}(a)\right\} \tag{4.30}
\end{equation*}
$$

if the constraints $v_{i}(x)=f_{i}(a)$ for every $i \in I$ are compatible, $K^{I}(a)$ to be the empty set otherwise.

For every $a \in A_{T}$, the sets $\bigcap_{i \in T} \psi_{i}(a)$ have the same asymptotic cone

$$
\begin{equation*}
C^{T}=\left\{x \in S \mid \text { for every } i \in T, v_{i}(x) \leqq 0\right\} \tag{4.31}
\end{equation*}
$$

Let v be a linear form on S such that $v\left(C^{\boldsymbol{T}}\right) \leqq 0$. Given $a \in A_{T}$, we maximize v on $\cap_{i \in T} \psi_{i}(a)$. Let x^{0} be a maximizer and let $I=\left\{i \in T \mid v_{i}\left(x^{0}\right)=f_{i}(a)\right\}$. Clearly,

$$
\begin{equation*}
\max v\left[\bigcap_{i \in T} \psi_{i}(a)\right]=\max v\left[K^{I}(a)\right] \tag{4.32}
\end{equation*}
$$

The correspondence $a \rightarrow \cap_{i \in T} \psi_{i}(a)$ from A_{T} to S is measurable since its graph is the intersection of the graphs of the ψ_{i} each of which is measurable. Therefore, by Lemma 1, the function $a \rightarrow \max v\left[\cap_{i \in T} \psi_{i}(a)\right]$ is measurable. On the other hand, given I, one has

$$
\begin{equation*}
\left\{a \in A_{T} \mid K^{I}(a) \neq \varnothing\right\}=\operatorname{proj}_{A_{T}} \bigcap_{i \in I}\left\{(a, x) \in A_{T} \times S \mid v_{i}(x)=f_{i}(a)\right\} \tag{4.33}
\end{equation*}
$$

Each set in this intersection is measurable; so is their intersection and, by (3.4) of [5], so is the projection on A_{T} of their intersection. Clearly, the graph of the correspondence K^{I} from $\left\{a \in A_{T} \mid K^{I}(a) \neq \varnothing\right\}$ to S is measurable by a repetition of the reasoning of the first sentence of this paragraph. And, by a new application of Lemma 1 , the function $a \rightarrow \max v\left[K^{I}(a)\right]$ is measurable.

Summing up, given I, the set of $a \in A_{T}$ for which the equality (4.32) holds is measurable. Therefore, A_{T} can be partitioned into finitely many measurable sets $\left\{A_{T}^{k}\right\}$ such that for every k, for every $a \in A_{T}^{k}$, the same set I^{k} of indices satisfying (4.32) can be chosen.

Consider now E belonging to \mathscr{A} and contained in A_{T}. Let $E^{k}=E \cap A_{T}^{k}$. The E^{k} form a finite measurable partition of E. According to Lemma 9 , if $v\left(E^{k}\right)>0$, then

$$
\begin{equation*}
\int_{E^{k}} K^{I^{k}} d v=\left\{x \in S \mid \text { for every } j \in I^{k}, v_{j}(x) \leqq F_{j}\left(E^{k}\right)\right\}, \tag{4.34}
\end{equation*}
$$

hence, $\Phi\left(E^{k}\right) \subset \int_{E^{k}} K^{I^{k}} d v$. Clearly, this inclusion also holds if $v\left(E^{k}\right)=0$. Consequently,

$$
\begin{align*}
\sup v\left(\Phi\left(E^{k}\right)\right) & \leqq \sup v\left(\int_{E^{k}} K^{I^{k}} d v\right)=\int_{E^{k}} \max v\left[K^{I^{k}}(a)\right] d v(a) \tag{4.35}\\
& =\int_{E^{k}} \max v\left[\bigcap_{i \in T} \psi_{i}(a)\right] d v(a)=\sup v \int_{E^{k}}\left[\bigcap_{i \in T} \psi_{i}(a)\right] d v(a),
\end{align*}
$$

the first and the third equalities following from Lemma 2, and the second from (4.32). The first term being at most equal to the fifth, we obtain by summation over k,

$$
\begin{equation*}
\sup v(\Phi(E)) \leqq \sup v\left(\int_{E}\left[\bigcap_{i \in T} \psi_{i}(a)\right] d v(a)\right) \tag{4.36}
\end{equation*}
$$

This inequality implies

$$
\begin{equation*}
\Phi(E) \text { is contained in the closure of } \int_{E}\left[\bigcap_{i \in T} \psi_{i}(a)\right] d v(a), \tag{4.37}
\end{equation*}
$$

as we now show. Let x be a point of S not in the right set M. There is a linear form v on S such that $\sup v(M)<v(x)$. If $v(E)>0$, then clearly, $v\left(C^{T}\right) \leqq 0$, hence, by (4.36), $\sup v(\Phi(E)) \leqq \sup v(M)$. If $v(E)=0$, then $\sup v(\Phi(E))=$ $\sup v(M)=0$. In either case, $\sup v(\Phi(E))<v(x)$. Therefore, $x \notin \Phi(E)$.
(iv) For every $E \in \mathscr{A}, \Phi(E) \subset \overline{\int_{E} \varphi d v}$.

To prove (iv), consider a point x of S not belonging to $\overline{\int_{E} \varphi d v}$. According to (ii), $\overline{\int_{E} \varphi d v}$ is contained in P and consequently, contains no straight line. By Lemma 6 neither does the closed cone C with vertex 0 generated by $\overline{\int_{E} \varphi d v}-\{x\}$. Therefore, we can select a linear form v in the nonempty interior of the polar of C. Let $H=\{y \in S \mid v(y)=0\}$. We have

$$
\begin{gather*}
\sup v\left(\int_{E} \varphi d v\right)<v(x) \tag{4.38}\\
H \cap \mathbf{A} \int_{E} \varphi d v=\{0\} \tag{4.39}
\end{gather*}
$$

According to Lemma 11, equation (4.39) implies a.e. in E,

$$
\begin{equation*}
H \cap \mathbf{A} \varphi(a)=\{0\} . \tag{4.40}
\end{equation*}
$$

Then let f be an integrable function from E to R such that a.e. in E,

$$
\begin{equation*}
\sup v(\varphi(a))<f(a), \quad \int_{E} f d v<v(x) \tag{4.41}
\end{equation*}
$$

Also let E_{0} be the null subset of E in which (4.40) does not hold, or (4.41) does not hold, or $\cap_{i} \psi_{i}(a)=\varnothing$. Given $a \in E \backslash E_{0}$, by Lemma 13, there is n such that

$$
\begin{equation*}
\max v\left(\bigcap_{i=1}^{n} \psi_{i}(a)\right)<f(a) . \tag{4.42}
\end{equation*}
$$

Denote by E_{n}^{\prime} the subset of $E \backslash E_{0}$ in which this inequality is satisfied. As we have seen in the proof of (iii), the function $a \leadsto \max v\left(\cap_{i=1}^{n} \psi_{i}(a)\right)$ from $E \backslash E_{0}$ to R is measurable. Therefore, $E_{n}^{\prime} \in \mathscr{A}$. Clearly, $E_{n}^{\prime} \subset E_{n+1}^{\prime}$. Define $E_{1}=E_{1}^{\prime}$ and for $n>1, E_{n}=E_{n}^{\prime} \backslash E_{n-1}^{\prime}$. The sets $\left\{E_{n}\right\}_{n \geqq 0}$ form a countable measurable partition of E. By (iii), for every $n \geqq 1$,

$$
\begin{equation*}
\sup v\left(\Phi\left(E_{n}\right)\right) \leqq \sup v\left(\int_{E_{n}}\left[\bigcap_{i=1}^{n} \psi_{i}(a)\right] d v(a)\right) . \tag{4.43}
\end{equation*}
$$

However, by Lemma 2 and (4.42), the right side is at most equal to $\int_{E_{n}} f d v$. Therefore, summing over n, we obtain $\sup v(\Phi(E)) \leqq \int_{E} f d v<v(x)$. Hence, $x \notin \Phi(E)$.
(v) For every $E \in \mathscr{A}, \Phi(E) \subset \int_{E} \varphi d \nu$.

To prove (v), note $\Phi(E) \subset \overline{\int_{E} \varphi d v}$, by (iv). Therefore, it suffices to prove that if a point x of $\Phi(E)$ is in the boundary of $\Phi(E)$, then $x \in \int_{E} \varphi d \nu$.

Let $v \neq 0$ be a linear form on S such that $\sup v(\Phi(E))=v(x)$ and let $\mathscr{B}=\{B \in \mathscr{A} \mid B \subset E\}$. For every $B \in \mathscr{B}$, we define

$$
\begin{equation*}
\Gamma(B)=\{y \in \Phi(B) \mid v(y)=\sup v(\Phi(B))\} \tag{4.44}
\end{equation*}
$$

According to (i) in the proof of Lemma $5, \Gamma$ is countably additive. Since $\Gamma(E) \neq \varnothing$, for every $B \in \mathscr{B}, \Gamma(B) \neq \varnothing$. The correspondence Γ from \mathscr{B} to S is clearly v continuous, positive, convex valued. It also satisfies $\Gamma=\hat{\Gamma}$ because if Ψ is a countably additive correspondence from \mathscr{B} to S such that $\Psi \subset \bar{\Gamma}$, then $\left.\Psi \subset \bar{\Phi}\right|_{\mathscr{E}}$, the restriction of $\bar{\Phi}$ to \mathscr{B}. Hence, Φ being the greatest element of \mathscr{M}, $\left.\Psi \subset \Phi\right|_{\mathscr{D}}$. This inclusion with $\Psi \subset \bar{\Gamma}$ implies $\Psi \subset \Gamma$. How project $\Gamma(B)$ into $H=\{y \in S \mid v(y)=0\}$ parallel to a straight line L chosen as in Lemma 4. An induction assumption on $\operatorname{dim} S$ yields a measurable Radon-Nikodým derivative γ for Γ. One has for every $B \in \mathscr{B}$,

$$
\begin{equation*}
\int_{B} \gamma d v \subset \Phi(B) \subset \overline{\int_{B} \varphi d v} \tag{4.45}
\end{equation*}
$$

the last inclusion by (iv). By Lemma 7, a.e. in $E, \gamma(a) \subset \varphi(a)$. From $x \in \int_{E} \gamma d v$, we obtain $x \in \int_{E} \varphi d \nu$.
(vi) For every $E \in \mathscr{A}, \Phi(E)=\int_{E} \varphi d v$.

For proof of (vi), clearly, by (ii), the correspondence $E \rightarrow \int_{E} \varphi d v$ from \mathscr{A} to S belongs to \mathscr{M}. Since Φ is the greatest element of \mathscr{M}, one has $\int_{E} \varphi d \nu \subset \Phi(E)$ which, with (v) yields the conclusion. Q.E.D.

To complete the proof of Theorem 2, we consider a measurable positive, closed, convex valued function ψ from A to $\mathscr{P}(S)$ such that $\int_{A} \psi d v \neq \varnothing$. Denote $\int_{E} \psi d v$ by $\Phi(E)$. Clearly, Φ is a countably additive, v continuous, positive, convex valued correspondence from \mathscr{A} to S. The greatest element $\hat{\Phi}$ of \mathscr{M} is obviously v continuous and positive valued. According to the second assertion of Theorem 1 it is convex valued. By the first part of the present proof, $\hat{\Phi}$ has a measurable positive, closed, convex valued Radon-Nikodým derivative φ. For every $E \in \mathscr{A}$, $\hat{\Phi}(E) \subset \overline{\Phi(E)}$, hence, $\int_{E} \varphi d v \subset \overline{\int_{E} \psi d v}$. By Lemma 7, a.e., $\varphi(a) \subset \psi(a)$. Therefore, $\hat{\Phi} \subset \Phi$. Hence, $\Phi=\hat{\Phi}$.

REFERENCES

[1] R. J. Aumann, "Markets with a continuum of traders," Econometrica, Vol. 32 (1964), pp. 39-50.
[2] -_, "Measurable utility and the measurable choice theorem," La Décision, Paris, Colloques Internationaux du CNRS, No. 171, 1969.
[3] C. Castaing, "Le théorème de Dunford-Pettis généralisé," C. R. Acad. Sci. Paris, Vol. 268 (1969), pp. 327-329.
[4] G. Debreu, Theory of Value, New York, Wiley, 1959.
[5] ——, "Integration of correspondences," Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley and Los Angeles, University of California Press, 1967, Vol. 2, pp. 351-372.
[6] W. Fenchel, Convex Cones, Sets, and Functions, mimeographed, Department of Mathematics, Princeton University, 1953.
[7] P. R. Halmos, Measure Theory, New York, Van Nostrand, 1950.
[8] W. Hildenbrand, "Pareto optimality for a measure space of economic agents," International Economic Review, Vol. 10 (1969), pp. 363-372.
[9] ——, "Existence of equilibria for economies with production and a measure space of consumers," Econometrica, Vol. 38 (1970), pp. 608-623.
[10] M. Métivier, "Martingales à valeurs vectorielles. Applications à la dérivation des mesures vectorielles," Ann. Inst. Fourier (Grenoble), Vol. 17 (1967), pp. 175-208.
[11] H. Rådström, "An embedding theorem for spaces of convex sets," Proc. Amer. Math. Soc., Vol. 3 (1952), pp. 165-169.
[12] M. A. Rieffel, "The Radon-Nikodým theorem for the Bochner integral," Trans. Amer. Math. Soc., Vol. 131 (1968), 466-487.
[13] R. T. Rockafellar, Convex Analysis, Princeton, Princeton University Press, 1970.
[14] M. Valadier, "Contribution à l'analyse convexe," Doctoral dissertation, University of Paris, December, 1970.
[15] K. Vind, "Edgeworth-allocations in an exchange economy with many traders," International Economic Review, Vol. 5 (1964), pp. 165-177.

[^0]: The work of G. Debreu was done partly at the University of California, Berkeley under a research grant of the National Science Foundation, partly while he was visiting the Institute of Mathematics of the Hebrew University of Jerusalem, and partly while he was visiting the Center for-Operations Research and Econometrics of the Catholic University of Louvain as a Guggenheim Fellow. The work of D. Schmeidler was done at the Institute of Mathematics of the Hebrew University of Jerusalem.

