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1. Introduction

In this paper we will consider a problem whose formulation in probability
terms is essentially as follows: when can one construct a stochastic process
{Z(t), t E M} having continuous paths and preassigned one dimensional distri-
butions. We always take the state space X for the process to be a metric space
and the parameter setM to be a compact topological space. An obvious necessary
condition is that the preassigned distributions for the individual Z(t) vary con-
tinuously with t. This condition is also sufficient [1], ifX is complete metric and
M is zero dimensional, the Cantor set for example. If M is anything else, for
example an interval on the real line, the simple necessary condition is no longer
sufficient as one easily sees, and further conditions on X and on the desired
distributions for the Z(t) are needed. We will give here a theorem which treats
the case in which M is arbitrary.

First we must introduce some notation and a precise statement ofthe problem,
which also makes it look more like the sort of thing one ordinarily considers.

If Y is a topological space, let P(Y) denote the set of all probability measures
on the Borel sets of Y. Let C(Y) denote the continuous bounded real valued
functions on Y. We give C(Y) the uniform topology and P(Y) the topology
generated by the functions y -|J fdp, f E 0(Y). Given a measure space (Q, F, i)
and a mapping T from Q) to Y which is measurable relative to -F and the Borel
sets of Y let Tp denote the measure on the Borel sets of Y defined by py(A) =
p(q 1-(A)). From now on let M and X be compact metric spaces and let C(M, X)
denote the continuous functions from M to X under the uniform topology. Each
t in M defines, by evaluation at t, a continuous function from C(M, X) to X. We
denote this mapping simply by t, so that tf = f(t) forfeC(M, X). Let p be an
element of P(C(M, X)); then in the notation we have just introduced, tp defines
an element of P(X), namely, tu(A) = u({f: f(t) e A}). Moreover the mapping
t -. tp from M to P(X) is continuous.

In this paper we shall consider the converse construction; that is, given a con-
tinuous function T fromM to P(X), when is there a measure it in P(C(M, X)) such
that tp = T(t) for all t E M. Note that any such T defines, via the formula
(T*f)(t) = |fdT(t), a continuous linear mapping from 0(X) to C(M) such that
T*(1) = 1 = IIT*11; any such mapping T* arises in this way. The mappings of
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this sort which are also multiplicative are those of the form T*f(t) = f(g(t)) for
some g E C(M, X), and so the existence of M E P(C(M, X)) with T(t) = t4u is
equivalent to the existence of an integral representation for T* as an average of
multiplicative operators. Such integral representations are objects of general
interest. Finally one can check immediately that given a T, a measure y of the
desired sort exists if and only if there is a probability space (Q, F, P) and a
function Z from M x Q to X such that to -* Z(t, co) is Y measurable for each
t E M, and t -E Z(t, co) is continuous for each co E Q (that is, a stochastic process
with continuous paths), and such that P(Z(t) E A) = T(t) (A) for all t E M and
Borel sets A c X.

2. The main theorem

In the first few paragraphs we shall state our result and give a description of
what we require for the proof. The remainder of the section shall be devoted to
the rather complicated details. In Section 3 we shall discuss the necessity of our
hypotheses. We always use M and X to denote compact metric spaces, and I to
denote the closed unit interval.
THEOREM 2.1. Let X be connected and locally connected. Let T: M -* P(X)

be continuous and have the property thatfor each t E M the support of the measure
T(t) is all of X. Then there is a p e P(C(M, X)) such that tM = T(t) for all t E M.
LEMMA 2.1. Theorem 2.1 is valid in the case X = I.
PROOF. Let Q) = (0, 1), let F = Borel sets of (0, 1), and let P = Lebesgue

measure on .F. Let FP be the distribution function of T(t), that is, F,(x) =
T(t) ([O, x]) for x E [0, 1], and for cocEQ define Z(t, co) = inf {x:FP(x) > Cl}.
Then the following facts are easy to check: (a) co Z(t, co) is .F measurable and
P{co: Z(t, co) E A} = T(t) (A) for all t E M and Borel sets A c X; (b) for each
co E Q the mapping t -+ Z(t, cc) is continuous at each point r such that {x: FP(x) =
co} consists of at most one point. Since the support of T(t) is by hypothesis all
of I, it follows that t -+ Z(t, cc) is continuous for all co. In view of the remarks
at the end of Section 1 the proof is complete.
For the next statement let PO(X) denote the subspace of P(X) consisting of

those measures whose support is all of X.
THEOREM 2.2. Let X be connected and locally connected. Then there is a con-

tinuous function p from PO(X) to Po (I) and a continuous function cp from I to X
such that cp((p) = , for all p in PO(X).
REMARKS. First of all, Theorem 2.1 is an immediate consequence of Lemma

2.1 and Theorem 2.2. Indeed if qp and i are as in Theorem 2.2 and T is continuous
from M into PO(X), then T(t) = cp(T(t)) defines a continuous function T from
M into PO(I). By Lemma 2.1, there is a measure i in P(C(M, I)) such that ti =
T(t). Now Tp: I -+ X defines a mapping, also called cp, from C(M, I) to C(M, X)
by cpf(t) = cp(f(t)), f E C(M, I). If we define p c P(C(M, X)) by p = (pp, then it
is trivial to check that M satisfies the conclusion of Theorem 2.1. Secondly, we
should comment on the hypotheses on X and on the long proof of Theorem 2.2:
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according to a theorem of Hahn and Mazurkiewicz, X is compact metric, con-
nected, and locally connected if and only if there is a continuous function p
from I onto X. Now simply from the existence ofsuch a p, it follows immediately
that given any 0 E P(X) there is a 0 E P(I) such that 90 = 0. But unless p has
some additional properties it will not be true that 0 can be chosen to depend on
0 in a continuous manner. Much of the detail in the proof which follows stems
from this fact.

Before coming to the proof of Theorem 2.2 we must develop some additional
facts. A finite partition of unity on X is an indexed collection F = {fif, * - *,f}
of nonnegative continuous functions (not identically 0) on X such that
Fin 1 fi = 1. It is possible that fi :6 fj for some i = j; but we wish to regard func-
tions with different indices as different elements of the partition. It will simplify
the reading if this possibility is ignored. We shall first construct some partitions
of unity with additional properties.
LEMMA 2.2. There is a sequence {Fl}02: of finite partitions of unity and a

sequence {7rn}n>0 of mappings, 7rn mapping F,+I onto F, such that (i) for each n
and f E F. the support off is a connected set of diameter no greater than 1/n; (ii)
for each n andf e F,, we have f = E gi, the sum being over those g F.+1 such that
7rn(g) = f.

PROOF. Let $o = {X} and for each n _ 1 let $n be a finite open cover ofX
by open connected subsets each of diameter no greater than 2 (n+2). Since X is
locally connected such covers exist. Now given any subset A of X, define sn(A)
to be the union ofthose sets V E 1"n such that V r A * 4, and define Sn, .(A) to
be U-1 Sn+k ... (sn(A)). Then sn, .(A) is open, it is connected if A is connected,
and if A has diameter not exceeding E then SnC,(A) has diameter not exceeding
E + 2 . In addition it is easy to check that Sn, .(Au B) = Sn, .(A)u Sn, .(B).
Now define a sequence of covers {4n} of X by taking /,n to consist of the sets
Sn+ 1, ,0(V) as V ranges over the elements of *n. By what we have just said, each
qWn is a finite cover ofX by open connected sets each of diameter no greater than
I/n and in addition each set in 'W,, is the union of the sets in q4+ 1 which are
contained in it.
Now to construct the partitions of unity and mappings take PO to consist of

the function 1. Suppose Fn has been constructed and for each f E Fn, {f > 0} is
an element U(f) of &n. Let Z1, Zn(f) denote the elements of &n + l contained
in U(f ) and define

(2.1) 9f, i f fz + fz+M,

where fv denotes any nonnegative continuous function such that {fv > 0} is
the open subset V of X. We take Fn +1 to consist of the functions gf, i, f e Fn,
i _ n(f ), and we define 7rn by rngf, i = f. This defines inductively sequences with
the desired properties, so the proof is complete. We note once again that the same
function may appear more than once in a partition.
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Let F = { fl, * * , fn} be an indexed collection of continuous functions on X.
By the 1-complex associated with F we mean a linearly independent set of n
points, which we call fl, * * *, f, in a Euclidean space of high enough dimension
and closed line segments, denoted [fi, fj], joining those pointsfi andfj for which
the functionfifj is not identically zero. The 1-complex is topologized as a subset
of the Euclidean space. Clearly the choice of Euclidean space and linearly inde-
pendent points is unimportant, so we will not specify these further. It will be
convenient at times to denote the point fi also by [fi, fi]. The symbol (fi, fj) will
denote the line segment [fi, fj] with the end points deleted. Any two segments
in a 1-complex do not meet, or else meet in a single point which is an end
point of each. Frequently we refer to the points f as vertices. Now we pick once
and for all a sequence {FF, of finite partitions of unity, and a sequence {7nj} of
mappings satisfying the requirements of Lemma 2.2. Let X,, denote the
1-complex associated with Fn. We shall use n,,: F,, +1 FnF to define a mapping
also called r,, from X,,I+ to X. as follows: for a vertex f in X,,,+ we set

7n(f) = (7g,(f)) and we map a line segment [fi,fj] in X,,,+ linearly onto the
line segment [in(fi), Xn(fj)] in X,. We call attention to the following fact whose
proof is immediate from the properties of {F.} and {r,,}.
LEMMA 2.3. Each X,, is connected; si,,: X,,,+ -1X,, is onto. For each segment

(or point) [f, g] c X., 7i'-1 ([f, g]) is a connected 1 -complex contained in X,,.+1
Let J = [a, b] be a closed interval on the line and let Y be a 1-complex

associated with functions fl, *** , fn. A mapping Tp: J -+ Y is called piecewise
linear if there is a finite subset V of J with a and b in V such that for each
v E V, q(v) is a vertex of Y and p is linear on each interval between adjacent
members of V. Now suppose that Y is connected. Then one proves easily that
given two vertices fi and fj of Y there is a piecewise linear mapping of J onto Y
such that p(a) = fi and (p(b) = fj. In fact one sees without difficulty that if Y is
connected and fi and fj are vertices, then a piecewise linear q: J -+ Y exists with
the following properties:

(a) ,p is onto Y, cp(a) = fi, p(b) = fj;
(b) for each vertex or segment [fr, fJ] of Y, -1([fp fs]) is a union of non-

degenerate closed intervals in J;
(c) p([a, a']) = fi, p([b', b]) =fj

where a' = a + 3(b - a), b' = b - (b - a) (property (c) is needed only for a
slight, technical reason and might better be ignored).
Now to avoid trivialities assume that Y consists of more than a single point.

Any piecewise linear <p with properties (a), (b), (c) breaks up J in a natural way
into nondegenerate nonoverlapping closed intervals Jl, * * *, J, and II, - * -, I,-1
such that p maps each J onto a vertex in Y and each Ik linearly onto a non-
degenerate segment in Y. We assume the numbering has been done so that (with
an obvious notation) J1 _ Il . J2 < ... _ I,_- < J,. If we break each of
J2, * * *, J,_ into a left half Ji, 1, and a right half Ji, 2, then J is broken up into
units J1l1J2,1, J2,2I2J3.1, 1J3,2I3J4,1, * **, Jr-, 2I,r_Jr, and in each unit p is
constant on the J and linear and nonconstant on the I. Given any p satisfying
(b) and any decomposition of J into nondegenerate intervals JI < Il _ J2 1 _
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J22_ I2 _ J3,1 <_ * such that T is constant on the J and nonconstant linear
on the I, we shall refer to the setup as apiecewise linear mapping with a specification
of units and we shall refer to the triples Ji, 2i'i+ 1, 1 as units. The specific decom-
position we just gave is not the only one possible; for example, we could have
broken up the intermediate J into unequal parts. However any p satisfying
(a), (b), (c) together with the specific decomposition we gave will be denoted by
(pV Y, fi, fil
Now we return to the partitions F. and associated 1-complexes Xn and define

a sequence {np} of piecewise linear mappings ofI onto X. with certain additional
properties. We are going to assume that for each n and f E Fn, ir- 1 (f ) consists of
more than one function. This involves no loss of generality for we may replace
each element g E Fn + 1 by two elements, each being the function g. Define 'po by
To(x) = 1 for all x E I (of course 1 denotes the single point of X0). Suppose
(Pn: I Xn has been defined so that Tpn satisfies property (b) with J = I and
Y = Xn, and that we have specified a decomposition JI < II < J2,1 <
J2 2-**, of [0, 1] into units. Let J denote any interval of type J or I in the
decomposition and recall that by Lemma 2.a, 7rn- 1 [Tn(J)] is a connected
1-complex contained in X,,+,. To define Pn+l pick any points f1 and f, E
ir-1["(Jl)] and define Tn+1 on J1 to be any [J1 71[n(J)],fl1,f2]. Then
pick any g E n 1[(Pn(J2, 1)] and define 9n+ 1 on I1 to be any p[Il, 7EIiPn(Jn)]n
f2, g]. Note that f2 and g are indeed both in rn- 1 [(Pn(Il)] so this makes sense.
We continue in this manner until (pn +1 is defined on all of I. We take the units
for Pn +I to be those arising from the decomposition of the segments making up
the units for pn . It is clear that each unit for (Pn is a finite union of units for "n+ ,
and qn+I satisfies (b) with J = I and Y = Xn+i and

(d) if [f, g] is a vertex or segment in Xn and J is one of the intervals making
up Spn 1 ([f, g]) then'p+1 (J) = 7n ([f, g])-
Thus we have defined inductively a sequence {(n} of piecewise linear maps.

This sequence will be held fixed from now on. Consider the units specified for (pn
and let sn denote the length of the longest one. From (c) it follows easily that
En 0 as n -p oo.

Now we shall use {'Pn} to define a continuous function T from I onto X. Given
n and z E Xn set

r{f> °}> ___ if z is a vertex f,
(2.2) X,,(Z) ={f > 0}u {g > 0} if z E (f, g).

Each Xn(Z) is a closed subset of X having diameter no greater than 2/n. For
a E I define (Dn(a) = Xn(Tn(a)). Using property (d) the reader will verify without
difficulty that (Dn +1(a) c (Dn"(a). We define Tp by Tp(a) = fln{n(n(a)}. It is simple
to check that 'p is a continuous function from I onto X. Note for later use that if
K is a closed subset of X then {a: qn(a) c K} is a closed subset of I. In addition
suppose 0 is an open subset ofX and {K"} is an increasing sequence of compact
subsets of 0 such that every compact subset of 0 is contained in one of the K".
Then the sequence {a: (Dn (a) c K"} increases to T-1(0).



38 SIXTH BERKELEY SYMPOSIUM: BLUMENTHAL AND CORSON

Finally we are ready to define the mapping cp required for Theorem 2.2. Given
a measure y E P(X) define a measure il, E P(X") as follows: Ui. puts mass I f2dju
at each vertex f e X, and on each open segment (f, g), u,u is linear Lebesgue
measure of mass I 2fgdu. It follows immediately from the definition of
r,, : X," 1 -+ X,, that for each n, we have r,,,u,+I1 = ju.. Clearly the support of ptn
is all of X,, if the support of Ju is all of X. In addition it is important to note that if
It varies continuously in P(X) then i,, (A) varies continuously for every Borel sub-
set A of X.. We shall suppose from now on that p E PO(X).
We are going to define a sequence {,n} of measures in PO(I) such that (p9u =

jin and having additional properties. For each vertex f E X,, let U I put linear
Lebesgue measure of mass it on the set T 1({f}) (recall this set is a union
of nondegenerate intervals) and for each open segment (f, g) contained in X1,
let u1 put linear Lebesgue measure of mass 1((f, g)) on the set '1((fp g)).
Suppose yn has been defined and has the following properties (which do indeed
hold in case n = 1): (i) pT,?p = pg, (ii) for each closed interval J appearing in any
unit for qPn; si' restricted to J is a nonzero multiple of Lebesgue measure on J;
and (iii) for each J as in (b) p4(J) varies continuously with tu. We shall describe
how to construct sn+I so that (i), (ii), and (iii) hold at the (n + l)st stage.
As described in the construction of (p we have I broken up into units

I, _ ... < I, and each Ii is made up of three nondegenerate closed intervals
Ii, _ Ii, 2 _ Ii 3 such that (pn is constant on Ii, 1 and Ii 3 and pn iS linear and
nonconstant on Ii, 2. Let us fix an i, and denote Ii by J and Ii, 1, Ii, 2, Ii, 3 by
J1 J2, J3- Suppose that Tpn(Jl) = f and qPn(J3) = g. Let 01 be the measure that
puts, for each vertex f' E 2tn-1({f}) linear Lebesgue measure of mass
gn ({f })/p,({f}) on rn9 ({f'}), and puts, for each (f',f") C 7Ir-'({f}), linear
Lebesgue measure of mass n +l ((f ' f" ))/gn({f}) on J r-) (p ((f', f")). Define 03
similarly using g in place of f. Define 02 to be the measure that puts, for each
interval (f ', g') c - '((f, g)), linear Lebesgue measure of mass U,+,((f' g'))/
pUn((f, g)) on the set Jon TP ((f', g')). Finally, recalling that J = Ii, put

(2.3) = MU(I1)01 + P (J2)02 + 4U (J3)03,

and set

(2.4) n = Ip1 + * **+ ,,r
It is a slightly tedious but straightforward matter to verify that ,f + 1 satisfies

properties (i) through (iii). In addition we have the important fact that ifJ is one
ofthe units for 9n, then fn I 1(J) = y' (J). Now the construction of cp is practically
complete-if J is a unit for (p then Mm(J) = pf(J) for m > n. (Recall a unit for
en is a union of units for pn +1). Since the units for 4¾ approach 0 in length as
n -+ oo, it follows that as n -+ o, u' approaches a measure which we define to
be ipp. From (ii) it follows that the support of Cou is all of I, and from (iii) it follows
that Op varies continuously with p. The last thing we must check is that
g(Cop) = j. Call Cp' = v. Since v and p are both probability measures it is enough
to check the v(p - 1 (O)) < p(0) for every open subset 0 of X. Let Kn consist of
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those points in X distant from X - 0 by at least 1/n, and let Un = {a: D"(a) c K.}.
IfA is a compact subset of -l(O) then A c U, for all large n. Since " converges
to v it follows that

(2.5) v(p -'1(0)) _ lim inf IA'(U.).
But from the definition of 4D>(a) it follows that

(2.6) lAn(U.) < Jf 2dy + 2 E ffiffdii,
i i<j

where the sum involves only functions f in F,, such that f vanishes outside 0.
Consequently M'(U,,) _ u(0), so the proof is complete.

3. Comment on the hypotheses

Assuming that X is compact metric, the condition that X be connected and
locally connected is in fact necessary for the conclusion of Theorem 2.1 as the
following slightly stronger statement shows.
THEOREM 3.1. If for every continuous mapping T: I -. PO(X) there is a

p E P(C(I, X)) such that tp = T(t) for all t E I, then X is connected and locally
connected.
PROOF. It is immediate that X must be arewise connected. Indeed if xl and

x2 are points of X, and for 0 _ t < 1 we set

(3.1) T(t) = 3{(1 - t)ex1 + tex2} + kO,
where ex, denotes unit mass at the point x and 0 is any measure in PO (X), then
T is a continuous mapping of I into PO(X). If p is a measure on C(I, X) with
ty = T(t), then the two sets {f:f(0) = xl} and {f:f(l) = X2} each have it
measure no less than 3. Thus their intersection is nonempty and so there is a
curve in X joining xl and x2.

As to the local connectedness, it is an exercise in general topology to show
that a space X is locally connected if it has the following property: given any
point x E X and neighborhood U of x there is a neighborhood V of x such that
for each point y E V there is a continuous function f: I -. U with f(O) = x and
f(l) = y. Consequently if X is not locally connected there is a point x E X, a
neighborhood U ofx and a sequence {x,,} of points approaching x such that any
continuous function from an interval [a, b] to X having x and some x,, in its range
must also take on values outside of U. In particular if

(3.2) A,, = {fe C(I, X): f(O) = x,fQ() = xn}

then nfl 1 U' k A,, is the empty set. To define T(t) pick a measure 0 E PO(X),
define T(O) to be 3EX + '6 and

(3.3) T(t) = 4n(n - 1) {( l - t) E. + (t ) 4+ 46
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if I/n _ t _ 1/(n - 1). Then T maps I continuously into PO(X). If / is any
probability measure on C(I, X) then M(U,'=k A.) - 0 ask - oo. But if p is such
that tyi = T(t) for all t, then ji(Ak) > 2 for all k. Thus there can be no such t and
the proof is complete.
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