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1. Introduction and summary

In the present article, we shall present some multiplicative models for the analysis
of R x C contingency tables (that is, contingency tables with R rows and C
columns), and shall apply these models to cross classified data in ways that will
lead to a more complete analysis of these data than has heretofore been possible.
For the R x C contingency table, the usual model of "independence" in the

table (that is, independence between the row classification and column classi-
fication of the table) is a simple example of a murtiplicative model. For short,
I shall call this model (that is, the model of independence between the row
classification and column classification of the table) the I model. The model
of "quasi-independence" in the R x C table, which was introduced and
developed in my earlier work, and which I shall comment upon again later, is
another example of a multiplicative model (see, for example, Goodman [9],
[10], [12], [13], Caussinus [4], Bishop and Fienberg [2]). For short, I shall
call this model the Q model. The various multiplicative models which I shall
present here can be viewed as modifications or generalizations of the.I model
and/or the Q model.
To illustrate the application of these models, we shall analyze a 5 x 5

contingency table (Table I) in which there is a one to one correspondence
between the five classes of the row classification and the five classes of the
column classification, and in which the classes of the row (and column) classi-
fication can be ordered (from high to low). Although some of the particular
models, which we shall consider herein (see Section 2), are particularly well
suited to square contingency tables of this kind (in which there is this one to one
correspondence and in which the classes of the row (and column) classification
can be ordered), we wish to draw the reader's attention to the fact that the
general class of multiplicative models presented in this article (see Sections 3
and 4) also includes a variety of models that can be applied more generally to
rectangular contingency tables (as well as to square tables), where there may or
may not be some kind of correspondence between the classes of the row and
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TABLE I

CROSS CLASSIFICATION OF BRITISH MALF ~SAMPLE AccoRDIN(; To EACH SUBJECT'S STATUS
CATEGORY AND His FATHERS STATIUS CATEGORY. UsiNG FiVE STATUS CATEGORIES

Subject's Status
1 2 3 4

column classifications and where the classes of the row (and/or column) classi-
fications may or may not be ordered.

Although the models presented here are described in different terms from the
models in Haberman's fundamental work [20], it can be shown that the general
theory and methods developed by Haberman are applicable to the various
models considered herein. In most respects, the class of models considered by
Haberman is broader than the class considered here; but by adopting a somewhat
different perspective here and by confining our attention to a more limited class
of models, we shall obtain some new results.
We shall formulate the models for the case where a random sample of n

observations is drawn from the population cross classification table (the case
where the sample size n is fixed), but the methods that we shall present here can
also be applied to the case where a sample of ni. observations is drawn from
the ith row, i = 1, 2, ..-. , R, of the population table (the case where the row

marginals are fixed), or where a sample of n .j observations is drawn from the
jth column, j = 1, 2, C, of the population table (the case where the column
marginals are fixed). The analysis in the case Avhere the row marginals or the
column marginals are fixed is similar, in most respects, to the analysis in the
case where only the sample size n is fixed:, but there are differences in the way
some of the parameters of interest are defined in these cases, and there also are
differences in the way these parameters are estimated. These differences will be
discussed later (see Section 5).
The table that we shall use for illustrative purposes (Table I) presents data on

intergenerational social mobility in Britain, which were collected by Glass and
his coworkers [6]. The data in this table were obtained by a kind of stratified
random sampling, but for our present exposition we view this table as a

contingency table; that is, as if simple random sampling had been used.
Table I was used earlier by Svalastoga [25], Levine [22], Mosteller [24], and
Goodman [14] for purposes of comparison with a comparable 5 x 5 table
(Table II) describing social mobility in Denmark. and it is a condensation of a

7 x 7 British table (Table III) that used a more detailed set of classes (status
categories). Table I was formed from Table III by combining status category 2
wi'th 3 and status category 6 with 7 in Table III, in order to make the status
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TABI,E 11

CROSS CLASSIFICATION OF DANISH MALE SAMPLE ACCORDING TO EACH SUBJECT'S STATUS
CATEGORY AND HiS FATHER'S STATUIS CATEGORY, USING FIVE STATUS CATEGORIES

Subject's Status
1 2 3 4 5

T 18 17 16 4 2

Fahe's 2 24 105 109 .59 21

FtatherS 3 23 84 289 217 95
SttS 4 8 49 175 348 198

5 6 8 69 201 246

TABLE III

CROSS CLASSIFICATION OF BRITISH MALE SAMPLE ACCORDING TO EACH SUBJECT'S STATI'S
CATEGORY AND HIS FATHER'S STATUS CATEGORY, USING SEV-EN STATUS CATEGORIES

Subject's Status
1 2 3 4 5 6 7

1 50 19 26 8 18 6 2
2 16 40 34 18 31 8 3
3 12 35 65 66 123 23 21Father'S 1 11 20 58 110 223 64 32

Status 5 14 36 114 185 714 258 189
6 0 6 19 40 179 143 71
7 0 3 14 32 141 91 106

categories more comparable to the corresponding categories in the Danish
5 x 5 table. For expository purposes, when illustrating the application of the
models and methods presented here, we shall focus our attention on the
analysis of Table I; but for the sake of completeness, we shall present corres-
ponding results for Tables II and III as well, and shall also comment briefly
upon these results (see Sections 6 and 7): which will further enrich our under-
standing of the data.
The main part of this paper will be concerned with the development of models

and methods for the analysis of a given R x C table (or a given set of R or C
multinomial populations). We shall also comment briefly in the final section
(Section 8) on the extension and application of the models and methods pre-
sented to the analysis and comparison of two (or more) R x C cross classi-
fication tables, and to the analysis of multidimensional cross classification tables.

2. Some examples of multiplicative models

For expository purposes, we shall begin by considering first the usual model
of "independence" between the row classification and the column classification
in an R x C cross classification table (the I model), then the model of "quasi-
independence" in the R x C table (the Q model), and then various modifications
or generalizations of these models.
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2.1. The model of independence (the I model). We shall now define the usual
model of "independence" between the row classification and the column classi-
fication in an R x C population cross classification table. This model can be
defined in various ways, and for our present development of the subject we shall
proceed as follows. Let 7ri j denote the probability that an individual in the
R x C population table will fall in cell (i, j) of the table (that is, in the ith row
and jth column), for i = 1, 2, R,1, and j = 1, 2, C. Then the row and
column classifications are defined as "independent" if the probability zi j can
be written as

(2.1.1) ;ri,j =- ,flj for i = 1, 2, ,R; j =1, 2, C,

for a set of positive constants a, and fJi, for i = 1, 2, R, andj =1, 2,, C.
When (2.1.1) is satisfied, ci can be interpreted as the probability that an indi-
vidual will fall in the ith row of the population table (when the ai have been
scaled so that Iicxi = 1), and a similar interpretation can be given to the fl,.
Ifsome of the rows or columns are empty, we consider the table consisting of the
nonempty rows and columns.
For a sample of n individuals, let fi j denote the number of individuals that

fall in cell (i, j) ofthe table, and letfi j denote the maximum likelihood estimate of
the expected number that would fall in cell (i, j) under a given model. Under
the usual model of independence between the row classification and the
column classification of the table, the fi, j can be written as

(2.1.2) f. == n '

where fi' and fjfl denotes the ith row marginal and jth column marginal, respec-
tively, in the table of the fij. From (2.1.2) we see that the fi can be written in
the form

(2.1.3) fi,j = aibj,
where the ai and bi are such that

(2.1.4) Yf, =, fi, , = f #-

Conditions (2.1.4) can be rewritten as

(2.1.5) fP = fiI, = j

where the fill and ff denote the ith row marginal and jth column marginal,
respectively, in the table of the fi j. Thus, the row and column marginals of the
f fit the corresponding observed quantities.

Although the number of the a, and the bj in (2.1.3) is R + C, we can ignore
one of these quantities (say, a,) sincefi, j is unaffected by scaling the ai and the bj
so that a, = 1; that is, by replacing ai and b1 by di = ai/a, and bj = a,bj,
respectively. Similarly, although the number of restrictions described by (2.1.5)
is R + C, we can ignore one of these restrictions (say, the first restriction), since
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if IP = fP for j = 1, 2, *,C, then lij jj = n; and thus, if also gft = if for
i = 2, 3, R, then f = ft. Thus, to calculate the degrees of freedom for
testing the model of independence, we subtract R + C -1 from R x C,
obtaining thereby the usual quantity, namely, (R - 1) (C -1).

2.2. The model of quasi-independence (the Q model). The model (2.1.1) in
the preceding section applies to all R x C cells (i,j) for i = 1, 2, - * *, R,
j = 1, 2, * * *, C. Now we shall consider a subset S of these cells; for example,
the subset consisting of the cells that are not on the main diagonal of the table
(that is, the cells (i,j) with i :6 j). For a given subset S, the row and column
classification is defined as "quasi-independent" (with respect to S) if the
probability 7ri,j can be written as

(2.2.1) ltijj = cfipj for cells (i,j) in S,

for a set of positive constants ai and f,j.
Since we are not concerned here with the cells that are not in S, we can assign

zero probability to those cells. Thus, (2.2.1) can be rewritten as

(2.2.2) 7rij = S.jciflj for i = 1, 2, ,R; j =1, 2, ,C,

where
(2.2.3) I|1 for cells (i,j) in S,

" 0 otherwise.

Letting fi j denote the observed number of individuals that fall in cell (i, j),
the maximum likelihood estimate ji j of the corresponding expected number
(under model (2.2.1)) can be written as

(2.2.4) fi = s, i
where the ai and bi are such that

(2.2.5) Pf = rifI = j
and where now fi and fj are defined as

(2.2.6) f = E j fj - E i
and the fai and ff are defined similarly (with the j in (2.2.6) replaced by the
corresponding fi i). Methods for calculating the fj,j were discussed in, for
example, Goodman [10], [13], and we shall return to them later herein.
To facilitate our understanding of matters that will be discussed later, we

now introduce some new terminology. For each cell (i, j), let Ai j denote the
set of parameters that appear in the formula for ni,j under a given model
(see, for example, (2.2.1)). Thus, for the Q model, Ai, j contains ai and ,B, if cell
(i, j) is in S, and Ai j is empty if (i, j) is not in S. With this terminology, we can
rewrite (2.2.6) as

(2.2.7) pi = E ahf, h fjf = 69',hfg,hx
g, h g, h
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where Ifh= |1 ifiXiAg, h,
IO otherwise,

(2.2.8)
i3gjh = |' if BJe6A9,h,,

, t0 otherwise.
Note that (2.2.7) states that fif is the sum of the f, h for cells (g, h) for which
oai E Ag, h; and thatff is the corresponding sum for cells (g, h) for which f,j E Ag, h.
A similar statement applies to the fi and f/ (with the fg, h in (2.2.7) replaced by
the corresponding fg,h).
To calculate the degrees of freedom for testing the model in this section,

we consider first the case where the set S includes at least one cell from each
row and column of the table, and where S is "inseparable" in the sense that it
cannot be partitioned into two mutually exclusive (and exhaustive) subsets S,
and S2 that have no rows and no columns in common (see, for example,
Goodman [13], Caussinus [4]). Note that S would be separable if the subsets
SI and S2 had no parameters in common; in other words, if the set ofparameters
that are contained in S1 (that is, in Ai j for one or more of the cells (i, j) in S1)
and the set of parameters that are contained in S2 (that is, in Ai j for one or
more of the cells (i, j) in S2) were mutually exclusive. For the case where S is
inseparable, the remarks in the final paragraph of Section 2.1 can be directly
applied; and in the present case, the degrees of freedom are obtained by sub-
tracting R + C - 1 from R x C - V, where V is the number of cells in the
R x C table that are not included in S. Thus, as in the earlier literature on
"quasi-independence," we find that there are (R - 1) (C - 1) - V degrees of
freedom.

In cases where entire rows and/or entire columns are not included in S, the
above formula for the degrees of freedom can still be applied, except that "R"
and "C" in that formula should be taken as the number of rows and columns,
respectively, that contain at least one cell from S, and similarly the quantity
V should be calculated for this (modified) "R" x "C" table. For cases in
which S is separable, the results presented above can be applied separately to
each subset that is itself not separable. A separable set S can always be
partitioned into such subsets.

2.3. The QO model, the QP model, the QN model, and the QPN model. The
results in the preceding section pertain to the case where S is any given subset
of the cells in the R x C table. Consider now the case where the cross classifica-
tion table is square (that is, R = C), where there is a one to one correspondence
between the ith class of the row classification and the ith class of the column
classification for i = 1, 2, - * -, R, and where S is the set of cells that are not
on the main diagonal (that is, the cells (i, j) with i 76 j). Since S consists of the
off diagonal cells, we shall call the model of quasi-independence (with respect
to this set S) the QO model. The remarks in the preceding section can be
applied directly to the QO model. Note, for example, that the number of
degrees of freedom for testing this model will be (R - 1) (R - 1)-R =
R-2- 3R + 1.
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Consider now the case where the classes of the row (and column) classification
in the R x R table can also be ordered from 1 to R, and where S is the set of
cells (i, j) with i > j. For each cell in S, the difference i - j is positive, and so we
shall call this particular model of quasi-independence the QP model. From the
remarks in the preceding section, we see that the number of degrees of freedom
for testing the QP model will be (R - 2)(R - 2) - [(R - 1)((R - 2)/2] =
(R - 2) (R - 3)/2. Note that the degrees of freedom are zero for R = 3; we
shall be concerned here mainly with models for cases where R > 3.

Consider now the case where S is the set of cells (i, j) with i < j. For each cell
in S, the difference i - j is negative, and so we shall call this particular model
of quasi-independence the QN model. As in the preceding paragraph, the
number of degrees of freedom for testing the QN model will be (R- 2) (R - 3)/2.

Consider now the model in which the probability ci,j can be written as

(2.3.1) 7ri,j = {PiPj for i >j,
9lcxflj for i <j.

This model states that both the QP model and the QN model are true, and so
we shall call it the QPN model. Note that this model is not the same as the
QO model, although both models pertain to the cells (i, j) with i ¢ j. The QO
model is a special case of the QPN model in which

x' = Aaci for i = 2, 3, ,R-1,
(2.3.2) jf =A* j for j = 2, 3, RR-1,

and in which

(2.3.3) a -

The QPN model is not, strictly speaking, an example of a model of quasi-
independence as this term was defined in the preceding section. Nevertheless,
the methods developed earlier for the quasi-independence model (see, for
example, Goodman [13]) can be applied to the QPN model, by analyzing
separately the subsets S1 and S2, where SI is the set of cells (i,j) with i > j,
and S2 is the set of cells (i, j) with i < j; and applying the corresponding
models (the QP and QN models) to those sets. Note that, although the sets S,
and S2 do have rows and columns in common, these sets are separable for the
QPN model, since the set of parameters in SI (the ci and Pj) and the set of
parameters in S2 (the oc' and fl,) are mutually exclusive.
The number of degrees of freedom for testing the QPN model is the sum of

the degrees of freedom for testing the QP model in S, and the QN model in S2*
Thus, there are (R - 2) (R - 3) degrees of freedom for testing the QPN model.
Note that the difference between the degrees of freedom for the QO model and the
QPN model is 2R - 5, which corresponds to the sum of the degrees of freedom
associated with testing condition (2.3.2) and condition (2.3.3) (namely, 2(R - 3)
degrees of freedom for (2.3.2) and one degree of freedom for (2.3.3)).
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We now extend the concept of "quasi-independence" to include models of the
kind described by (2.3.1). Let S1, S2, ,SK denote mutually exclusive subsets
of the cells (i, j) in an R x C cross classification table. The model of "quasi-
independence" (with respect to the subsets Sk, for k = 1, 2. K) is defined
by the condition that the probability 7i,j can be written as

(2.3.4) 7ri-j= a(ek)p(k) for cells (i, j) in Sk,

for k = 1, 2, ,K. The sets SI, S2' , SK are separable for the model
defined by (2.3.4), since the set of parameters in Sk (namely, a( k) and fjk)) and
the set of parameters in Sk, (namely, 06ik') and fly')) are mutually exclusive for
k + k'. To analyze this more general model of "quasi-independence," we can
apply the methods developed earlier for the more usual quasi-independence
model, by analyzing separately the sets S1, S2, , SK, applying the corres-
ponding model of quasi-independence to each set.

2.4. The triangles parameter model (the T model). We return again to the
square contingency table (R = C) in which there is a one to one correspondence
between the classes of the row and column classification, and in which the classes
of the row (and column) classification are ordered from 1 to R. Consider now
the special case of the QPN model in which condition (2.3.2) is satisfied (but
condition (2.3.3) may or may not be satisfied). This special case of the QPN
model is equivalent to the model in which the probability 7i,j can be written as

(2.4.1) 7i,j = aipfjTk for cells (i, j) in Sk,

for k = 1, 2, where S, is the set of cells (i, j) with i > j, and S2 is the set of cells
(i, j) with i < j. For cell (i, j) in Sk, under model (2.4.1) the set Ai j contains
oi, f3j. and Tk; and Ai,j is empty if (i,j) is not in S, or S2. The model (2.4.1)
differs from the QO model in that it introduces an additional set of parameters
Tk that pertains differentially to the triangular subsets Sk, for k = 1 and 2, and
so we call this model the triangles parameter model (the T model).
Note that the sets S, and S2 are not separable for the T model defined by

(2.4.1) since the set of parameters in S, (namely, ai, /3j, and [1) and the set of
parameters in S2 (namely, ai, f,j, and T2) are not mutually exclusive-the
parameters oi for i = 2, 3, * *, R- 1 and f3j for j = 2, 3, , R- 1 are
included in both sets. Although the T model is not an example of a quasi-
independence model as defined in Section 2.2 (nor of the more general model
of "quasi-independence" defined by (2.3.4)), the remarks in Section 2.2 can
be directly extended to the T model. By direct extension of (2.2.4) to (2.2.8),
we find that the estimate fi j under the T model can be written as

(2.4.2) fi,j = aibjtk for cells (i,j) in Sk,
for k = 1 and 2, where the ai, bj, and tk are such that

(2.4.3) f f fffj , fkr = fkr.
where the f? and f e are defined by (2.2.7), and fk' is defined by
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(2.4.4) fk E 6,hfg,j,
g,h

where

(2.4.5) bg,kh = I0 if Tk E A. h,(2.4.5) g,h~~9 o otherwise;

and with the f,l, ff, fk, defined similarly (with the f,,h in (2.4.4) replaced by
the corresponding fg, h)-

Although there are two tk in (2.4.2) (namely, t, and t2), we can ignore one of
them (say, t1) sincefi, j is unaffected by scaling the tk (and the ai) so that t= 1;
that is, by replacing tk and ai by tk = tk/tl and di = aitl, respectively. Similarly,
although there are two restrictions described by the third condition of (2.4.3)
for k = 1 and 2, we can ignore one of these restrictions (say, the first restriction)
since if fi" = fia for i = 1, 2, * * *, R, then fi, j = n (where the f are summed
over the off diagonal cells and n is similarly calculated for the f ); and thus, if
f2 = f2, then ff = f'. Since there is one more parameter in the T model than
in the QO model, the number of degrees of freedom for testing the T model
will be R2 - 3R = R(R- 3), for R _ 3.

2.5. The diagonals parameter model (the D model) and related models.
Consider now the model in which the probability 7i,j can be written as

(2.5.1) 7rij = cti fjbk for cells (i, j) in Sk,

where Sk is the set of cells (i, j) with i -j = k, for k = + 1, + 2, * , + (R - 1).
The model (2.5.1) differs from the QO model in that it introduces an additional
set of parameters (the 5k) that pertains differentially to the minor diagonals Sk
for k = +1, +2,---, +(R - 1), and so we call this model the diagonals
parameter model (the D model).
The T model (see (2.4.1)) is a special case of .the D model in which the

following condition is satisfied:

(2.5.2) =

{6* for k=1, 2, R-1,
(2.5.2) =k 1** for k = - 1, 2,-- R--1).

The remarks about the analysis of the T model in the preceding section can be
extended directly to the D model. For example, under the D model, the fJ,i
can be written as

(2.5.3) fi1j = aibjdk for cells (i, j) in Sk,
for k = + 1, +2, + (R -1), where the ai, bj and dk are such that

(2.5.4) filfl ,fli fi fkp = R'a
where the fif and ffl are defined by (2.2.7) and fka is defined similarly to (2.4.4)
and (2.4.5), with 3 replacing T in those formulae. (The corresponding f are
defined similarly.)
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Although there are 2(R - 1) statistics dk in (2.5.3) (namely. dk fork =k 1,
+2, -. + (R - 1)). we can ignore two of them (say, dk for k = + 1) sincefi j is
unaffected by transforming the dk (and the ai and the bj) so that dk = 1 for
k = + 1: that is. by replacing dk by

(2.5.5) dk = dkd. for k = 1, ±2, * + (R - 1),

with

(2.5.6) d= dI

and replacing ai and bj by

(2.5.7) bi = idi b d

respectively. Thus since there are 2(R - 2) more parameters in the D model
than in the QO model, the number of degrees of freedom for testing the D
model will be R2 _ 5R + 5, for R _ 4. There will be zero degrees of freedom
for testing the D model in the case where R = 3.

Consider now the special case of the D model in which the following con-
dition is satisfied:

(2.5.8) bk = bk* for k* = -k, with k = 1, 2, R - 1.

In this case. the parameter bk pertains to the pair of minor diagonals Sk and
Sk* with k* = -k: that is, to the cells (i, j) for which the absolute value Ii-
is equal to k. We shall call this case the DA model. The earlier remarks about
the analysis of the D model can be directly extended to the DA model, where
now bk pertains to the paired minor diagonals, for k = 1, 2, , R - 1. The
DA model has R - 2 more parameters than the QO model for R > 4, and so
the number of degrees of freedom for testing the DA model will be R2 - 4R +
3 = (R - 1)(R - 3),forR _ 4.ForR = 3,theDAmodelisequivalenttothe
QO model, so that in this special case there will be one degree of freedom for
testing the model. Note that the difference between the degrees of freedom for
the DA model and the D model is R - 2 for R > 4, which corresponds to the
degrees of freedom associated with testing condition (2.5.8), for k = 2, 3,
R-I (with bk = 1, for k = ± 1).

Consider now the special case of the D model in which the following con-
dition is satisfied:

(2.5.9) bk = 1, for k = -1. -2, , -(- 1).

In this case, the parameter bk pertains only to the minor diagonals Sk for which
k is positive; that is, to the cells (i, j) for which i - j = k is positive. We shall
call this case the DP model. The condition (2.5.9) is actually equivalent to the
following condition, which might appear (at first sight) to be more general;
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namely,

(2.5.10) bk = bk for k = -1, -2, *, -(R - 1),

for some positive constant 6. Conditions (2.5.9) and (2.5.10) are equivalent
because the ni,j of (2.5.1) is unaffected by replacing bk, oi, and fj by

6k I_(2.5.11) =k bk' ai = Jibv #j = a-1

respectively. When the parameters are transformed so that 6k = 1 for k = + 1,
the condition (2.5.10) is replaced by the following condition:

(2.5.12) bk = (6,)k+ 1 for k = -1, -2, , -(R - 1),

for a positive constant 6'.
The earlier remarks about the analysis of the D model can also be directly

extended to the DP model, where now bk pertains to the minor diagonals Sk
for which k is positive for k = 1, 2, *, R - 1. The DP model has R - Imore
parameters than the QO model (namely, the bk for k = 2, 3, * * *, R - 1; and
6' from (2.5.12)), and so the number of degrees of freedom for testing the DP
model will be R2 - 4R + 2, for R _ 4. There will be zero degrees of freedom
for testing the DP model in the case where R = 3.

Consider now the special case of the D model in which the following condition
is satisfied:

(2.5.13) 6k = 1 for k = 1, 2, R-1.

We shall call this case the DN model. By modifying in an obvious manner the
remarks (pertaining to the DP model) in the preceding two paragraphs, they
can be applied to the DN model.

2.6. The crossings parameter model (the C model). We return again to the
QPN model, and consider the special case where the following condition is
satisfied:

(2.6.1) xi#= aifl for i = 2, 3, * , R - 1.

This special case of the QPN model is equivalent to the model in which the
probability 7i,j can be written as

(2.6.2) 7rij= Cifjy',j for i #j,

where
i-1

fIy. for i >j,
(2.6.3) Yv:i=j for

u=i

The model (2.6.2)-(2.6.3) differs from the QO model in that it introduces an
additional set of parameters, namely, the y., for u = 1, 2, * * , R - 1, that
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pertains differentially (and multiplicatively) to each crossing between adjacent
classes (from class u to u + 1 or from class u + 1 to u). In this model, the
parameter yv pertaining to the crossing from class u to u + 1 is equal to the
parameter pertaining to the crossing from u + 1 to u. We shall call this model
the crossings parameter model (the C model). Note that the symbol C will be
used to refer to this model and also, as earlier, to the number of columns in a
rectangular contingency table; the meaning of the symbol will be clear in
either case.
The remarks in the preceding section about the analysis of the models

considered there can be directly extended to the C model. Under the C model,
the fi,j can be written as

(2.6.4) fi.i= aibj<j,
where

flnC, for i > j,
(2.6.5) cfo i uj

In ,cU for i < j,
u=i

and where the ai, bj, and c. are such that

(2.6.6) fA =f f fy = f1y
where fi and ff are defined by (2.2.7), and fy is defined similarly to (2.4.4) and
(2.4.5) with r replaced by y in those formulae. The corresponding f are defined
similarly.

Although there are (R - 1) statistics cu in (2.6.4) and (2.6.5) (namely, cu,
for u = 1, 2, - * *, R - 1), we can ignore two of them (c1 and CR- l1) since fi, j is
unaffected by setting c1 = cR_1 = 1; that is, by replacing these two c. by
j, = JR-, = 1 and by replacing a1, aR, bl, bR by a, = a1cl, aR = aRcR1,
b1 = b1cl, bR = bRcR-1. Since there are R - 3 more parameters in the C
model than in the QO model, the number of degrees of freedom for testing the
C model is R2 - 4R + 4 = (R - 2)2. Note that the difference between the
degrees of freedom for the C model and the QPN model is R -_ 2, which
corresponds to the degrees of freedom associated with testing condition (2.6.1).
From (2.6.2) and (2.6.3) we see that the factor yv,j associated with a change

from the ith class (with respect to the row classification) to the jth class (with
respect to the column classification) was a product ofthe y. parameters pertaining
to successive one step changes (crossings) from class i to j. Thus, the crossings
parameter model (the C model) could also have been called the "one step
Markov" model. (This terminology is appropriate, in a certain sense, since the
parameter yv pertaining to an individual's one step change from class u to
u + 1 depends only upon the class u and not upon the earlier history of changes
that may have led to the individual's presence in class u. On the other hand,
the terminology is not quite appropriate since the direction of change (from
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class u to u + 1 or from class u to u - 1) does depend upon this earlier history.)
Although the models in Haberman [20] are described there in different terms
from the models presented here, it can be shown that the C model (see (2.6.4)
and (2.6.5)) is equivalent, in most respect, to the "variable distance" model
applied by Haberman. With the present formulation of the C model, some of
the parameters and their estimates will be defined and calculated differently
from the corresponding definitions and calculations that were applied to the
"variable distance" model (see, for example, the related comments at the end of
Section 7).

Let us suppose now that we wished to generalize the C model by replacing
(2.6.3) by i-l

fny* for i > j,
(2.6.7) Yi j = -1

fly**l for i < j.
This model distinguishes (at first sight) between the parameter y: pertaining to the
crossing from the uth row class to the (u + 1 )th column class and the parameter
y"* pertaining to the crossing from the (u + 1)th row class to the uth column
class. Actually, this model is equivalent to the C model (with yv = y*v) since the
sitj defined by (2.6.2) and (2.6.7) are unaffected by replacing the yu and y* by
YU = (Y.Yu )1,2 and by replacing ai and 3,j by ii = oiy 1 and Tj = /jy!- 1, with

(2.6.8) Y~
fI for i =1,

(2.6.8) YZ = l(Y./Y)1'2 for i = 2, 3, * , R - 1.

Note, in particular, that the special case of the model defined by (2.6.2) and
(2.6.7), in which yv* = 1 for u = 1, 2, * , R - 1, is equivalent to the C model
as defined by (2.6.2) and (2.6.3). A similar remark applies for the special case of
the model defined by (2.6.2) and (2.6.7) in which y: = 1 for u = 1, 2, - * *, R - 1.

2.7. The diagonals crossings parameter model (the DC model) and other
combined models. Consider now the model in which the probability 7i,j can
be written as

(2.7.1) sij = CifljY,j6k for cells (i,j) in Sk,

where Sk is defined as in (2.5.1), and y',j is defined as in (2.6.3). The remarks in
Sections 2.5 and 2.6 can be directly extended to apply to this model (the DC
model).
The DC model differs from the D model in that it includes an additional set of

parameters (namely, the yu, for u = 1, 2, - - *, R - 1). We noted earlier that yV
and YR- 1 could be ignored in the C model, and now for the DC model we also
find this to be the case and that, in addition, this model is unaffected by a change
in scale for the yu (with corresponding changes made in the other parameters).
Thus, there are R - 4 more parameters in the DC model than in the D model,
and so the number of degrees of freedom for testing the DC model will be
R2 - 6R + 9 = (R - 3)2.
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The C model can be combined in a similar way with the other models in
Section 2.5. obtaining thereby the DAC model, the DPC model, and the DNC
model. In these cases too the number of degrees of freedom for the models are
obtained by subtracting R - 4 from the number for the corresponding model in
Section 2.5. Thus, for the DAC model, we obtain R2 - 5R + 7 degrees of
freedom; and for the DPC and DNC models, we obtain R2 - 5R + 6 =
(R - 2) (R - 3) degrees of freedom. For R = 3, the DAC model is equivalent
to the DA model and the QO model. In addition, the T model of Section 2.3
can be combined with the DA model, the C model, and the DAC model. The
number of degrees of freedom for these combined models are obtained by
subtracting one from the number for the corresponding (uncombined) model.
Thus, the degrees of freedom for the DAT model, the CT model, and the DACT
model are R2 - 4R + 2, R2 - 4R + 3 = (R - 1)(R - 3), and R2 - 5R +
6 = (R - 2) (R - 3), respectively. The latter two formulas apply for R _ 3,
while the first formula applies for R > 4. For R = 3, the DAT model actually
has zero degrees of freedom, as do the other models (discussed in the present
section and in Section 2.4) that include the triangles parameter Tk.

All of the models considered in the present section and in Sections 2.4 to 2.6
are special cases of the DC model. For models that do not include the crossings
parameters. we have

(2.7.2) Ix=1 for u = 2, 3, R,R-2,

in (2.7.1) (see (2.6.3)). For models that do not include the diagonals parameters,
we have

(2.7.3) bk = 1 for k = + 1, + 2, - (R - 1),

in (2.7.1). For models that include the triangles parameter (but not the parameter
pertaining to the paired minor diagonals), the bk in (2.7.1) will satisfy condition
(2.5.2). Similarly, the bk in (2.7.1) will satisfy condition (2.5.8) for models that
include parameters pertaining to the paired minor diagonals (but not the
triangles parameter), and they will satisfy the following condition for models
that include both the parameters pertaining to the paired minor diagonals and
the triangles parameters:

(2.7.4) bk = Z'bk* for k* = -k. with k = 1, 2, R - 1.

Furthermore, the bk in (2.7.1) will satisfy condition (2.5.9) for models that do not
include parameters pertaining to the "negative" diagonals, and they will satisfy
(2.5.13) for models that do not include parameters pertaining to the "positive"
diagonals.

2.8. The DC Model for the full table (the DCF model) and related models.
The models in Sections 2.3 to 2.7 were concerned with the analysis of the off
diagonal cells. and were extensions of the QO model. Now we shall present
models for the analysis of the full table-models that are extensions of the
I model.
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Consider the model in which the probability 7i1j is given by (2.7.1), except
that now we also apply (2.7.1) to the set S'0 (that is, the cells (i,j) with i - j =0),
as well as to the sets Sk as defined in (2.5.1) for k = + 1, +2, *, (R -1);
and we set yiI = 1 for i = j. This model (the DCF model) differs from the DC
model in that the R cells on the main diagonal are now included in the analysis,
an additional diagonals parameter 60 is included, and two additional crossings
parameters yI and YR- 1 are also included. Although the probability 7i, j for the
DC model is unaffected by ignoring the parameters yi and YR-I (that is, by
setting yi = YR-1 = I and making corresponding changes in OCI, OCR, flu, PR),
this is not so for the DCF model; the rij for the DCF model would be affected
by ignoring yu and YR - 1. Therefore, the number of degrees of freedom for the
DCF model can be obtained by adding R - 3 to the number for the DC model,
thus obtaining R2 - 5R + 6 = (R - 2)(R -3).
The relationship between the DC model and the DCF model, which we noted

in the preceding paragraph, can be extended to other models. To each of the
models introduced in Sections 2.4 to 2.7 for the analysis of the off diagonal cells,
there is a corresponding model defined for the full table. The number of degrees
of freedom for the model for the full table can be obtained by adding R - 3 to
the number for the corresponding model (for the analysis of the off diagonal
cells) if that model includes both diagonals and crossings parameters; by
adding R - 1 to the number for the corresponding model if that model includes
diagonals parameters but not crossings parameters, by adding R - 2 to the
number for the corresponding model if that model includes crossings parameters
but not diagonals parameters. (In the special case where R = 3, the above
calculation is modified slightly if the corresponding model is one of those
models for which the particular formula given earlier herein for the degrees of
freedom does not apply when R = 3.) A similar calculation can be made when
the model also includes the triangles parameter. Alternatively, the degrees of
freedom for the models for the full table could be calculated directly using the
same methods that were applied in Sections 2.4 to 2.7 (but without first
calculating the results for the models for the off diagonal cells and then adding
the appropriate quantities). The number of degrees of freedom for testing each
of the models considered herein is given in Table IV.

3. The general case

We return now to the general R x C table. Let ci j denote the probability
that an observation will fall in cell (i, j), let fi j denote the observed frequency
in cell (i, j) for a sample of n observations, and let fi j denote the maximum
likelihood estimate of the expected frequency under a given model. We shall
now denote the parameters in the model as Al, A2, * * *, AW (with A,,, > 0 for
w = 1, 2, W), and we let A denote the full set of parameters; that is,
A = {Al, A2, * * *, Aw}. For each cell (i,j) in that table, let Ai,j denote a given
subset of A. Consider now the model in which the probability 7i,j can be
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TABLE IV

THE DEGREES OF FREEDOM FOR TESTINGC \ARIOUS MODELS
APPLIED TO THE RECTANGGULAR R X C TABLE AND TO THE

SQUARE R X R TABLE (FOR R _ 3)

*The asterisk indicates that the formula does not apply for R = 3.
For this special case. see comments in article.

**For the case of quasi-independence. see further details in the article.

Model Degrees of Freedom

Independence (R- I) (C- 1)
Quasi-Independence [(R - l)(C- 1) -V]**
QO R2 _3R + 1
QP (or QN) (R -2)(R - 3)/2
QPN (R -2)(R - 3)
T R(R-3)
D (R2 5R + 5)*
DA (R- 1)(R -3)*
DP (or DN) (R2 4R + 2)*
C (R-2)2
DC (R _ 3)2
DAC R2 _5R + 7
DPC (or DNC) (R -2)(R - 3)
DAT (R2 _ 4R + 2)*
CT (R- 1)(R-3)
DACT (R -2)(R - 3)
TF R2 _2R- 1
D)F (R - 2)2
DAF (R - 1)(R -2)
DPF (or DNF) R-2- 3R + I
CF (R - I)(R - 2)
DCF (R - 2)(R - 3)
DACF (R - 2)2
DPCF (or DNCF) (R - I)(R - 3)
DATF R 2- 3R + 1
CTF R(R - 3)
I)ACTF (R- 1)(R - 3)

written as

(3.1) 7i,= HF .

where FIA; denotes a product over the indices w for which A,, E A1 j with the
product defined as zero when A jj is empty.

Let fW and f" be defined by

(3.2) fw =
_ 6f'h fgh, fAA = _ 6ghfg,h,

g,h y,h

where

=3w I if oheriAg,h,0~ otherwise.
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Then for the model (3.1), it is easy to show that fj can be written as

(3.4) fi.i= H 'w
where the 4w are such that

(3.5) fw =fw for u' = 1, 2, , W.

To calculate thefi j defined by (3.4) we can proceed by the following iterative
scaling method. At the initial step we define

(3.6 fiif Ai j is empty,
I otherwise.

Then we set v = w in the following formula, and we use (3.7) to calculate
fi j(v) for a! = 12, .. W:

(3.7) f^ ( {fi j(v - l)fW/[f(v - 1)]A if ,, E Ai,j
i,j(v- 1) otherwise,

where

(3.8) [f(v - 1)]T = E 6Ag'hfg,h(V - 1).
g, h

This is the first cycle of iterations. For the second cycle, we set v = W + w in
(3.7), and we use (3.7) to calculate fi, j(v) considering again w = 1, 2, , W.
For the third cycle, we set v = 2W + w in (3.7), and we proceed as in the
preceding cycle of iterations. The cycles of iterations are continued until the
fi,j(v) satisfy condition (3.5).

The above method is a generalization of a corresponding procedure that was
used earlier to calculate the maximum likelihood estimate fi, j under the quasi-
independence model and under other related models (see, for example, Caussinus
[4], Bishop and Fienberg [2], Goodman [13], [17]). This method (as described
above) does not provide estimates of the parameters A2. To calculate the 4w
in (3.4) we can proceed by any of the following three methods.

(1) After calculating the fi, j by the iterative procedure given above, equation
(3.4) can be solved for the ew. Explicit expressions for the ew as functions of the

fi,j can be obtained for the models of Sections 2.2 to 2.8. See the Appendix
where such expressions are given.

(2) Instead of calculating the fi j by the iterative method (3.6) to (3.8), the ew
in (3.4) can be calculated by a direct extension of the iterative procedure that
was used earlier by Goodman [10], [13] to estimate the parameters in the
quasi-independence model. To do this, we first note from (3.4) and (3.5) that

(3.9) f.,= 4, E -g hw {I
g,h A9,h,w

where Ag,hW is the set consisting of all those A in Ag,, except Aw, and where rIAg,h w
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denotes a product over the indices u for which Lu. e Ag,h,w* We can rewrite (3.5) as

(3.10) f= H{1
g,h Ag,h,w

To start the iterative procedure for calculating 1, we define

(3.11) 4W(0) = 1 for w = 1, 2, '-, W.

For the first cycle of iterations, we use the following formula to calculate
( (v) for v = 1, , W:

fw/,bg,Hn t"(v - 1) if v = w.
(3.12) fw(v) = ~~g, h Ag,h, -

fw4(v - 1) otherwise.

For the second cycle of iterations, we replace the condition that w = v. which
appears on the right side of (3.12), by the condition that w = v - W. and then
apply (3.12) for v = W + 1, W + 2, *, 2W. For the third cycle, we-replace
the condition that w = v by the condition that w = v - 2W, and then apply
(3.12) for v = 2W + 1, 2W + 2, ,3W. and so on.

(3) Instead of calculating the 4w in (3.4) by the methods described under (1)
or (2) above, they can be determined by the following formula, making use of the
terms fw/[f(v - l)]' calculated in the iterative scaling method described by
(3.6) to (3.8):

(3.13) /w4(T) =- {[u ±(3.13) t-O~~= {[f(tlt' + ?r
- 1)]A}

where IIT o denotes the product of the term in braces for t = 0. 1, T;
with Hl 0 denoting the term in braces for t = 0. If the iterative scaling method
is completed when T cycles of iterations have been carried out, then 4w(T) can be
used as the 4w in (3.4).
The following formula describes the relationship between the fw(T) defined

by (3.13) and the tw(v) defined by (3.12):

(3.14) <(T) = Q(v) for v = (T - 1)W + w.

Formula (3.14) can be proved by mathematical induction on T. (For some
related (but different) results on the relationship between the iterative scaling
method described by (3.6) to (3.8) and the iterative method described by (3.11)
and (3.12), see Goodman's article [13] on the model of quasi-independence,
and Haberman's work [20] on more general models.)

It should be noted that, for a particular model, the 4w in (3.4), which we can
calculate by any of the methods described under (1), (2), or (3) above, may still
need to be scaled (transformed) in order to obtain maximum likelihood estimates
of the corresponding scaled (transformed) parameters. (The Aw in (3.1) and the
4w in (3.4) may not be uniquely defined until they have been scaled (transformed)
in a suitable manner.) Thus, for a particular model, if thefi j are unaffected by
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setting. say. 2.,2' ** equal to one (where U < W) and by transforming
eU + 1, eU + 2, Iw accordingly so that the transformed e are uniquely defined,
then these transformed quantities are the maximum likelihood estimates of the
corresponding transformed parameters. (Actually, since (3.1) pertains to the
probabilities 7rij whereas (3.4) pertains to the expected frequencies fi,j. the
particular transformations that are used will determine whether a given trans-
formed f is an estimate of the corresponding transformed A{. or whether it is an
estimate of the corresponding transformed i multiplied by the sample size n.)
For further comments on the transformed estimates, see Sections 4 and 7, and
the Appendix.
When fj,; > 0 for all cells (i, j) for which Ai, j is not empty, then the results

of Haberman [20] can be applied to show that the iterative procedures
described here will converge to quantities that can be used to obtain the
maximum likelihood estimates (that is, the Ji j and the transformed e). For
cases where fi j = 0 for one or more cells (i, j) for which Ai, j is not empty,
the iterative procedures can still be used to obtain the maximum likelihood
estimates, so long as the iterative procedures converge to a solution with
fi,j :E 0 when Ai j is not empty. The modified Newton-Raphson method, which
was applied by Haberman [20] in his numerical example, has a more rapid
convergence rate than do the iterative procedures described here (see Haberman
[20]); but for data analysis in which a number of different models (of the kind
presented here) are applied, the procedures described here have the advantage
of being easier to program for a computer.

Before closing this section, we shall give an example of a multiplicative model
that is not included within the class of models defined by (3.1), and that cannot
be analyzed using the methods presented above. Consider again the QPN
model in the special case where

xei= Aoio, for i = 2, 3. ,R- 1,

(3.15) /3' = q,: for j= 2, 3, ,R- 1.

This special case of the QPN model is equivalent to the special case of the DAT
model in which the additional condition

(3.16) bk = ,

where 6 = 1/4F0, is imposed. Although the DAT model, as defined earlier,
can be analyzed by the methods presented in the present section, different
methods are required for the special case in which condition (3.16) is imposed.
The modified Newton-Raphson method presented in Haberman [20] can be
applied to this special case. (The "fixed distance" model, which was applied in
Haberman [20], is equivalent, in most respects, to the special case of the DA
model in which condition (3.16) is imposed. In the present paragraph (see (3.15))
we have been considering the more general DAT model, rather than the DA
model, in the special case where condition (3.16) is imposed.)
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4. Unrestricted and restricted multiplicative models

The model defined by (3.1) was "intrinsically unrestricted" in the sense that
no restrictions (or conditions) were imposed upon the parameters A, for
w = 1, 2, W, except for the fact that these parameters were such that

(4.1) Ei = 1.
i, j

(Of course, since the parameters A, were used in (3.1) to form the probabilities
ir j for the cells (i,j) where i, j > 0, we also assumed that A, > 0 for w =
1, 2, W.) Formula (3.1) can also be written as

(4.2) Xi, j = [H 2W](I)E
Ai,j

where - denotes the summation of the IA. J Aw over all cells (i,j) in the R x C
table. Expressing the model in the form (4.2), we see that the Aw in (4.2) are
even unrestricted in the sense that the condition (4.1) does not impose any
restrictions upon them.
For the various models introduced in Sections 2.1 to 2.8, we noted that the

rcj were unaffected by scaling (transforming) some of the A parameters in
certain ways. The parameters as described in formulas of the form (3.1) or (4.2)
(see, for example, (2.1.1), (2.2.1), (2.3.1), and so on) were not uniquely defined
until certain kinds of restrictions were imposed upon them (for example, the
restriction that oa = 1 in formula (2.1.1)). For each of the models in Sections
2.1 to 2.8, in order to calculate the degrees of freedom for testing the model, we
described restrictions that could be imposed upon the A parameters that (a)
would uniquely define these parameters, and (b) would not affect the 7i,j. In
some of the earlier sections, these restrictions were imposed upon the corres-
ponding estimates of the A parameters, but they could as well have been
imposed upon the A parameters. Since these particular kinds of restrictions
did not affect the 7i,j, the models obtained when the restrictions were imposed
were equivalent to the unrestricted models. This was the case for each of the
models considered in Sections 2.1 to 2.8.

In addition to introducing restrictions upon the A parameters that did not
affect the 7i,j (in order to calculate the degrees of freedom for testing the model
or to uniquely define the parameters), we also introduced certain kinds of
restrictions upon the parameters that did affect the 7i,j. For example, con-
ditions (2.5.8), (2.5.9), and (2.5.10) were restrictions imposed upon the para-
meters that changed the D model into the DA model, the DP model, and the
DN model, respectively. Despite the fact that these particular restrictions did
affect the 7'i,j, the models obtained when these restrictions were imposed could
also be expressed in the general form (3.1) or (4.2), and so these models were
also equivalent to unrestricted models. On the other hand, we noted at the end of
Section 3, that if condition (3.16) were imposed upon the parameters of the DAT
model (or the DA model, the DAC model, or the DACT model), the model
obtained thereby would not be within the class of models defined by (3.1).
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We shall call a model "intrinsically unrestricted" if it can be expressed in the
general form (3.1) or (4.2). (Thus, the DA model, the DP model and the DN
model are intrinsically unrestricted in this sense, despite conditions (2.5.8),
(2.5.9), (2.5.10); whereas, the modification of the DAT model, which is
obtained when condition (3.16) is imposed, is not unrestricted.) We shall now
describe some of the kinds of restrictions that can be imposed upon a model
of the general form (3.1) which are such that the modified models obtained
thereby would also be intrinsically unrestricted.

Let H denote a given model of the form (3.1). The model H can be
described by the set of parameters A = {2', * * *, Awl, and by the subsets
Ai j that are defined for each cell (i, j) in the table (see Section 3). Let A' be a
given subset of the set A, and let H' denote the modification of model H that
is obtained by imposing the condition

(4.3) A. = I for A. E A'.

Despite the fact that this modification (that is, the model H') is a special case
of model H that satisfied condition (4.3), it is also intrinsically unrestricted.
Model H' can be expressed in the form (3.1) simply by deleting from A and
from each set Aij any A. that are included in A'. (For some examples of the
modification H', note that the QO model and each of the models in Sections
2.4 to 2.7, except the models that include the paired minor diagonals parameters
and/or the triangles parameter (for example, the DA model, the DAT model,
and so forth), can be formed from the DC model by this type of modification.)
Now let A*, A2, * , A* denote mutually exclusive subsets of the parameters

in A; and for each parameter A.w, in A, let S, denote the set of cells (i, j) for
which Aw Ai,j. Consider the modification of model H that is obtained by
imposing the conditions

(4.4) A. = A., for all A. and A., E Ak,
for k = 1, 2, * , K. This modification will be called a H" type of modification
if each A* is such that the sets S. and S., are mutually exclusive for all A. and
A" in A*, for k = 1, 2, * , K (that is, if all A. and A., in A* are "separable").
For some examples of the H" type of modification, note that the QO model can
be formed from the QPN model by this type of modification, and the models
that include the paired minor diagonals parameters or the triangles parameter
can also be formed from the corresponding models that include the diagonals
parameters, by this type of modification. The model obtained by the H" type of
modification is also intrinsically unrestricted. It can be expressed in the form
(3.1) by removing from A and from each Ai j any A that are included in Ak,
and by replacing each ofthese A by a single parameter, say 4k for k = 1, 2, * * , ,K.
The modification described by (2.7.4) might appear (at first sight) to differ

from a H" type of modification, but the change from the DC model to the
DACT (or from the D model to the DAT model), which is described by the
condition (2.7.4), can also be expressed in the following equivalent way. Without
affecting the probabilities ni,j in the DC model (or the D model), the triangles
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parameters could be included in the expression (2.7.1) (or the expression (2.5.1))
for the i, j (as a multiplicative factor of the kind appearing in (2.4.1)); and with
the inclusion of these parameters in the model, the change from the DC model
to the DACT model (or from the D model to the DAT model) can be expressed
by condition (2.5.8) (rather than (2.7.4)), which is obviously a condition of the
H" type. A similar kind of remark can be made about the change from the QPN
model to the T model, the change from the QPN to the C model, and the change
from the QPN model to the CT model.
For a given model H of the form (3.1), we noted in Section 3 that the

estimate fi,j of the expected frequency satisfied condition (3.5). For the
modification H' of H obtained by imposing condition (4.3), the estimate j of
the expected frequency under model H' will satisfy the following modification
of (3.5):

(4.5) f=A if A'.

For the modification H" of H obtained by imposing condition (4.4), the
estimate fij of the expected frequency under model H" will satisfy the following
modification of (3.5):

(fw' f
,

if AW ¢ A' for k = 1, 2. K,
(4.6)

for k= 1, 2. K,
Ak Ak

where XAk denotes summation over the indices u for which Au E A*.
We noted earlier that all of the models in Section 2.4 to 2.7 can be obtained

from the DC model by using modification H' and/or H". We shall now show
how the models of Section 2.8 can be obtained from the DC model by using
these kinds of modifications.
The DC model (as defined by (2.7.1)) was concerned with the analysis of the

off diagonal cells, and so for simplicity we could set ni i = 0 in (2.7.1). On the
other hand, we need not have imposed this restriction on the n;,i. and could
instead have defined the DC model by writing the probability 7ci j as

407f3jYi,j6k for cells (i, j) in S'(k = + 1, +2 ** , + (R - 1)),
(4.7) ;Ci ilx for cells (i, i) in S'O.
The 7ri,j on the right side of (4.7) can be viewed as "intrinsically unrestricted"
A parameters, as can the parameters xi, f3j, yu, and bk. If the condition

(4.8) 7ti,i = xipibo
is imposed upon the 7i i in (4.7 ), the DC model will be changed to the DCF model.
To express condition (4.8) in the form (4.4) (that is, as a modification of the H"
type), we first note that the 7i i in (4.6) can be written as axJ,'ibo (where the
a'i, fl', 60 are intrinsically unrestricted A parameters) without affecting the
probabilities in the DC model (see 4.7): and we then impose the condition
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(4.9) ai = i, /j =f3 for i = 1, 2, R; j = 1, 2, ,R,

to change the DC model to the DCF model.
All of the models in Section 2.8 can be obtained from the DCF model by

using modifications H' and/or H" in the same ways that these modifications
would be used to obtain the corresponding models of Sections 2.4 to 2.7 from
the DC model. Since we noted in the preceding paragraph that the DCF model
can be obtained from the DC model using a modification of the H" type, we
now see that all of the models in Section 2.8 can also be obtained from the DC
model by using the modifications H' and/or H". Furthermore, each of the
models in Section 2.8 can be obtained from the corresponding model in
Sections 2.4 to 2.7 by using a modification of the H"type in the same way that it
was used above to obtain the DCF model from the DC model.
As we noted earlier, the present article is limited to multiplicative models of

the general form (3.1), that is, models that are intrinsically unrestricted. These
include all the models of Sections 2.1 to 2.8 and many others as well, but they
do not include "restricted" models of the kind referred to at the end of Section 3.

5. The ratio index and the relative difference index for the cells on the main
diagonal

Consider again the DC model for the off diagonal cells, and the corresponding
model for the full table (that is, the DCF model). For the DCF model (as defined
in Section 2.8), the probability 7ri j can be written as

(5.1) Ii,j = i fjYi,jibk for cells (i, j) in Sk ,

for k = 0, +1+2, +±(R- 1), with y' j = 1 for i =j. Thus, for both
the DCF model and the DC model, the probability i j can be written as

(5.2) Xi,j = Cifjyi,j6kPi,j for cells (i, j) in Sk,
for k = 0, + 1, +2 *, ± (R - 1), where the , j satisfy condition

(5.3) jui j = 1 for all cells (i, j),

for the DCF model, and condition

(5.4) Pi,j = {X i/(aificO) for i- j

for the DC model. Note that the zi,j defined by (5.2) and (5.4) are equivalent to
the ri j defined by (4.7).

In view of (5.4), the quantity

(5.5) H =7,, i

is of interest. We shall call yj the ratio index for the ith cell on the main diagonal.
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(This index was defined earlier in Goodman [14] for the mo'del of quasi-
independence, and it was called there a "new index of immobility.") For models
that do not include diagonals parameters (or the triangles parameter), we set
60 = 1; for the other models of Section 2.4 to 2.7, the parameter 60 cannot be
estimated from the data without introducing some additional assumptions
(which we shall discuss in Section 7); for the models of Section 2.8, we set
pi = 1 for i = 1, 2, * * *, R, and the parameter 60 (and the other bk) in (5.1) can
be estimated from the data.

In models that include crossings parameters for the analysis ofthe off diagonal
cells (for example, the C model or DC model), we noted earlier (see Sections
2.6 and 2.7) that the probability ri j is unaffected by setting yI = YR-I = 1,
and by making corresponding changes in al, aR, P1I, PR. On the other hand,
instead of setting y1 = YR-I = 1, the si, j would also be unaffected by making
some other assumptions about yI and YR -1 (with corresponding changes made
in xl1, 1RR, PI, PR); and with these assumptions (which we shall discuss in Section
7), the data could be used to estimate yI and YR -1. These assumptions about
y1 and YR -I will affect o 1pl and OCR PR; and they thereby will affect pI and PR.
For the DC model for analyzing the off diagonal cells, the remarks in the

preceding two paragraphs indicate that there is an element of arbitrariness
about pl, PR and 60 (that is, the additional assumptions, to which we referred
in those paragraphs, will affect these quantities). This was not the case for the
DCF model (see Section 2.8). Note that the difference between the degrees of
freedom for the DCF model and the DC model is R - 3, which corresponds
to the degrees of freedom associated with testing the hypothesis

(5.6) Pi = P for i = 2, 3, * - *, R-1,
where it is unspecified. A similar kind of remark can be applied to the difference
between the degrees of freedom for each of the models in Section 2.8 and the
corresponding model from Sections 2.4 to 2.7. For the models in Section 2.8
that do not include crossings parameters, replace (5.6) by the same condition
applied for i = 1, 2, * - *, R (rather than for i = 2, 3, * * *, R-1); and for
models that do not include diagonals parameters (or the triangles parameter),
replace the unspecified quantity 1 in (5.6) by one.

Let us now denote cxi,Bibo by itt i, and let 7t* j = i, j for i 7 j, with the i, j
satisfying condition (4.7) for the DC model. With this notation, the index pi
defined by (5.5) can be written as

(5.7) pi =

Instead of this ratio index, consider now the quantity

(5.8) i

where ;i. Ij=1 i, j, which we shall call the relative difference index for the
ith cell on the main diagonal. This index was defined earlier in Goodman [16]
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for the model of quasi-independence, and it was called there the "index of
persistence."

Let fij and xi, j denote it.j/.i and iQ./ir, respectively, where *,. =
7R1 j. From (4.7) and (5.8) we find that zi j can be written as

59) -ri P( - pi4)fr*j for i ~j,
I+[(1 - *)fj] for i =j.

Because of (5.9), the index y* can be interpreted as the proportion of "stayers"
among those individuals who are in the ith row in the population. This inter-
pretation would apply when p* > 0.
For the case where 14 < 0, we can rewrite (5.9) as

(5.10) ri, 6i,jS(I + vi) for i j,
(5.1) i,i-MI-v1(i,i) for i =j,

where vi = -1. Because of (5.10), the index vi (that is, the index -,1) can
be interpreted (when pi < 0) as the proportion of individuals who have a
"second chance" to move out of the ith row class among those individuals who
are in the ith row in the population. This interpretation can be applied when
fr* > v.. The interpretations presented in the present paragraph, and in the
preceding one, are extensions of the interpretations introduced in Goodman
[16] for the model of quasi-independence.
From (5.7) and (5.8), we see that pi and y1 are related as follows:

pi

i

In addition, the index 14 can be rewritten as

(5.12) Pi = -

Thus, the index 14 measures the difference (xii-r, i) relative to the difference

(1 -.,)
From (5.12) we see that the index p1 can be expressed as a function of i, i and

fr* i (rather than i, i and 7ri i), whereas the corresponding ratio index pi was a

function of 7i i and x, i. (Compare (5.12) with (5.7).) Note that i3j is the con-
ditional probability that an individual will fall in the jth column class of the
population table, given that he is in the ith row class; and ii, - is the corresponding
conditional probability obtained by replacing ni,i by axifibo. The conditional
probabilities ti,j and x, j are particularly relevant when the data to be analyzed
have been obtained from a sample of ni . individuals drawn from the ith row

class for i = 1, 2, * - *, R (that is, when the row marginals are fixed), rather than
from a sample of n individuals drawn from the population cross classification
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table. It is in this context that the index 14 (rather than the index Pi) is
particularly relevant.
When a sample of n individuals is drawn from the population cross classi-

fication table, the index pi may be viewed as one of the parameters of the model,
since the ;j,j can be expressed by (5.2) with the parameter pi,j in (5.2) set equal
to pi for i = j (see (5.4) and (5.5)). This remark can be applied to any of the
models of Sections 2.4 to 2.7: and for the models of Section 2.8 the parameter
pi is set equal to one. Similarly, when a sample of ni. individuals is drawn from
the ith row class for i = 1, 2, * , R, the index 14 may be viewed as one of the
parameters of the model, since the fi,j can be expressed by (5.9).

Note that the index pi is "symmetric" in the sense that it is invariant when the
row classes are interchanged with the column classes. Of course, this will not
be the case for the index 14. In addition to the index p* defined herein for the
case where the row marginals are fixed, there is the relative difference index
that would be defined in a directly analogous way for the case where the column
marginals are fixed.

Applying the general methods of estimation described in Section 3 to the
DC model, we can calculate the estimate

JaLb cd, for i j
(5.13) Ji, ,= for i-j.

of the expected frequency under the model. (Compare (5.13) with (4.7).) Note
that do does not appear in (5.13), and the corresponding 60 did not appear in
(4.7) or (2.7.1). For models that do not include diagonals parameters (or the
triangles parameter), we set do = 1; for models that do include these para-
meters, the value of do will be estimated from the data after we introduce some
additional assumptions (which we shall discuss in Section 7). Denoting aibido
byf, i,and lettingf*,j = fj jfori & j (withf ,jdefined by (5.13)). we ean estimate
the index ui, which was defined by (5.7).

(5.14) M=i
fi.,

Similarly, the index 14. which was defined by (5.8). can be estimated as

(5.15) m* fi

where fi. = Z.1 fij. Formulae that are directly analogous to (5.11) and
(5.12) can be obtained for mi and m*, by replacing pui. 14, vi,i, and f,i in (5.11)
and (5.12) by mi. mn,, fiJilfi.. and fi*/f respectively, where f,*. = f,j. The
estimates mn; and m* can be calculated for the QO model and for each of the
models in Sections 2.4 to 2.7.
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6. The comparison of observed frequencies and expected frequencies under the
various models

The usual chi square goodness of fit statistic for comparing the observed
frequency fg j with the corresponding estimate f j of the expected frequency
under a given model, can be written as

(6.1) Zij)2
fi,j

and the corresponding chi square statistic based upon the likelihood ratio
criterion can be written as

(6.2) 2fi, j log

where the summation in (6.1) and (6.2) is taken over the off diagonal cells for
the QO model and for the models of Sections 2.4 to 2.7, over all the cells in the
table for the model of "independence" and for the models of Section 2.8, and
over the set (or sets) of cells that are to be analyzed for a given model of quasi-
independence of the kind described in Section 2.2 and 2.3. Both the statistic
(6.1) and the statistic (6.2) have an asymptotic chi square distribution under
the given model, with the degrees of freedom equal to the number of parameters
in the model (calculating this number after the parameters have been uniquely
defined). In certain contexts, the statistic (6.2) has some advantages over (6.1)
(see, for example, Bahadur [1], Good [7], Goodman [13], [15], [17], [19],
and Hoeffding [21]). We shall give in Table V the numerical values of both
(6.1) and (6.2), for various models applied to the British 5 x 5 table (Table I),
the Danish 5 x 5 table (Table II), and the British 7 x 7 table (Table III); but,
for the sake of simplicity, when we discuss Table V later in the present section,
we shall confine our attention to the numerical values of the statistic (6.2).

Since the estimate Aj of the expected frequency under each of the models
considered here can be expressed in the general form (3.4), we see that the
statistic (6.2) can also be written as

w
(6.3) 2 fi,jlogfi,j- E fwlogjw],

w=1

where the first summation sign E in (6.3) has the same meaning that it did in
(6.1) and (6.2); namely, the summation over all cells (i,j) for which Ai, j is not
empty. Note that formula (6.3) provides a method for calculating the statistic
(6.2) using the W terms ew for w = 1, 2, W without calculating the fi,,
terms.
Now let H denote a given model of the form (3.1), and let H+ denote the

modified model that is obtained by applying to H a given modification of the
H' and/or H" type (see Section 4). As we noted in Section 4, the model H+ is
also "intrinsically unrestricted." Let [H+ I H] denote the hypothesis that H+
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TABLE V

C,OMPARISON OF THE OBSERV-ED FREQUENCIES AND THE EXPECTED FREQI-ENCIES
tNNDER VARIOUS MODELS APPLIEI) TO THE BRITISH AND I)ANISH 5 x 5 TABLES, AND THE

BRITISH 7 x 7 TABLE

British and Danish 5 x 5 Tables

British Sample Danish Sample
Degrees Goodness Likelihood Goodness Likelihood

of of Fit Ratio of Fit Ratio
Model Freedom Chi Square Chi Square Chi Square Chi Square

Ind 16 1199.4 811.0 754.1 654.2
QO 11 328.7 249.4 270.3 248.7
QP 3 8.5 12.6 6.9 7.4
QN 3 1.3 1.4 2.4 2.5
QPN 6 9.9 14.0 9.4 9.9
T 10 313.1 242.3 269.3 248.5
C 9 11.9 15.4 12.2 12.8
DA 8 15.9 19.1 6.7 6.9
CT 8 10.2 14.1 12.1 12.7
DAT 7 14.4 17.8 6.6 6.8
DP 7 10.3 10.6 6.8 7.0
DN 7 18.6 23.8 10.3 10.9
DAC 7 8.6 11.1 6.4 6.6
DACT 6 7.2 10.0 6.4 6.5
DPC 6 2.2 2.2 6.6 6.9
DNC 6 9.5 13.4 10.0 10.5
D 5 9.0 9.5 4.7 4.8
DC 4 1.5 1.6 4.4 4.5
DCF 6 6.7 6.9 6.3 6.3
I)PCF 8 7.6 7.7 8.2 8.3
DACF 9 13.8 16.7 8.1 8.4
DF 9 52.1 50.4 10.1 10.2
DAF 12 59.5 60.6 12.2 12.4

is true assuming that H is true. Since H+ is a modification of H in which some
given conditions of the type (4.3) and/or (4.4) are imposed, the hypothesis
[H + H] states that the given conditions are true, assuming the H is true. Let
X2(H) and X2(H+) denote the statistic (6.2) withfi j calculated under H and H+,
respectively. The statistics X2(H) and X2(H+) can be used to test the models H
and H+, respectively, and the following statistic can be used to test the
hypothesis [H+ H]:

(6.4) x2(H+IH) = X2(H+) - X2(H)
= 2Zflog[jw] = 2_f log f+

where f and f+ are the estimated expected frequencies under H and H+,
respectively. The final equality in (6.4) holds because the f satisfy (3.5) and
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TABLE V (Continued)

British 7 x 7 Table
Degrees of Goodness of Fit Likelihood Ratio

Model Freedom Chi Square Chi Square

Ind 36 1361.7 897.5
QO 29 523.0 408.4
QP 10 9.4 13.4
QN 10 7.4 7.5
QPN 20 16.7 20.9
T 28 517.8 404.1
C 2.5 20.6 24.6
DA 24 20.1 22.1
CT 24 19.9 24.1
DAT 23 19.5 21.6
DP 23 21.3 22.3
1)N 23 19.3 23.6
DAC 21 15.1 17.1
DACT 20 14.6 16.6
DPC 20 14.6 15.8
DNC 20 13.8 18.0
D 19 13.6 14.6
DC 16 8.4 9.4
DCF 20 25.0 26.3
DPCF 24 38.8 39.7
DACF 25 31.7 33.8
DF 25 54.2 54.8
DAF 30 59.8 61.9

the f + satisfy conditions of the form (4.5) and/or (4.6). The statistic (6.4) is the
chi square statistic based upon the likelihood ratio criterion for testing the
hypothesis [H +I H]. This statistic has an asymptotic chi square distribution
under the hypothesis [H+ H], with the degrees of freedom equal to the
difference between the corresponding number of degrees of freedom for testing
H+ and H, respectively.

Let us now examine the numerical values of x2(H), which are given in
Table V for each of the models in Sections 2.3 to 2.7, and for some of the
models in Section 2.8, applied to Table I. For the DC model, we see that
X2(DC) = 1.6 with 4 degrees of freedom, which indicates that this model fits
the data very well. Comparing the D model with the DC model using the
statistic (6.4), we obtain X2(DI DC) = 7.9 with one degree of freedom, which
indicates that the crossings parameter makes a statistically significant contribu-
tion. In other words, assuming that the DC model is true, a test of the null
hypothesis (2.7.3) would lead to rejection of the hypothesis. Comparing the C
model with the DC model, we obtain X2 (C I DC) = 13.8 with 5 degrees of
freedom, which indicates that the diagonals parameters make a statistically
significant contribution. In other words, assuming that the DC model is true, a
test of the null hypothesis (2.7.2) would lead to the rejection of the hypothesis.
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Comparing the CT model, the DAC model, and the DNC model with
the DC model, we obtain X2(CTIDC) = 12.5, X2(DACIDC) = 9.5, and
x2(DNCIDC) = 11.8, with 4, 3, and 2 degrees of freedom, respectively. Thus,
assuming that the DC model is true, a test of each of the null hypotheses (2.5.2),
(2.5.8), and (2.5.13) would lead to their rejection. A similar result is obtained
comparing the DACT model with the DC model. Comparing the DCF model
and the DPC model with the DC model, we obtain X2(DCF DC) = 5.3 and
X2(DPC DC) = 0.6 each with 2 degrees of freedom. Thus, assuming that the
DC model is true, a test of the null hypothesis (5.6) would lead to rejection ofthe
hypothesis at the 10 per cent level of significance, and a test of the null hypothesis
(2.5.9) would lead to acceptance of that hypothesis. Indeed, the DPC model fits
the data very well.

Having noted that the DPC model fits the data well, we now compare various
models with the DPC model. Comparing the DP and the C models with the
DPC model, we obtain X2(DPI DPC) = 8.4 and x2(CI DPC) = 13.2, with 1 and
3 degrees of freedom, respectively, which indicates that both the crossings
parameters and the parameters pertaining to the "positive" diagonals in the
DPC model make a statistically significant contribution. Comparing the DPCF
model with the DPC model, we obtain X2(DPCFI DPC) = 5.5 with 2 degrees
of freedom. Thus, assuming that the DPC model is true, a test of the null
hypothesis (5.6) would lead to rejection of the hypothesis at the 10 per cent level
of significance.
The preceding comments pertained to the results given in Table V for the

analysis of Table I. The corresponding results, which are given in Table V for
the analysis of Tables II and III, do not lead to conclusions that are as clear
cut as those obtained for Table I. We shall now comment briefly on the results
for Tables II and III without presenting a full analysis of them.
As was the case for Table I, the DC model fits the data very well for Table III;

and it fits the data rather well for Table II, but not as well as for Tables I and III.
Among the models that fit the data well (or rather well), we find the DA model
for Table II and the DAC model for Table III. Comparing the models for the
analysis of the full tables with the corresponding models for the analysis of the
off diagonal cells, we find that a test of the null hypothesis (5.6) would lead to
rejection of the hypothesis for Table III and acceptance of the hypothesis for
Table II. Comparison of the QP and QN models indicates that the QN model
fits the data better than the QP model for Tables II and III (and also for Table I).
For each chi square statistic, the corresponding number of degrees of

freedom can be obtained from Tables IV and V. These tables give the degrees
of freedom of the corresponding asymptotic distribution under the null hypo-
thesis. This is the appropriate number of degrees of freedom to use in testing
the hypothesis if the hypothesis were decided upon before the data were studied.
On the other hand, if a set of hypotheses were tested simultaneously (or if the
particular hypothesis that was tested was contained within a larger set of
hypotheses that were studied), the degrees of freedom could be adjusted in a
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similar way to the adjustment made in calculating simultaneous confidence
intervals and simultaneous tests in the present context (see Goodman [11], [14],
[19]). This adjustment will limit the risks of rejecting hypotheses that are true,
even when the hypotheses are suggested by the data. Of course, the risks of
accepting false hypotheses are also affected if the hypotheses are suggested by
the data.
The various hypotheses and models that we have tested and compared here

could also have been assessed by adapting to the present context some of the
concepts that arise in stepwise regression (for example, some of the concepts
of backward regression and/or forward regression). For a discussion of this
kind of adaptation, and for an example of its application, the reader is referred
to Goodman [18].

7. The estimated parameters and indices

In this section we shall comment briefly upon the estimates of some of the
parameters, and of the ratio and relative difference indices, which are obtained
when some of the models of Section 2 are applied to Tables I, II, and III. These
estimates will be presented in Tables VI to X later in this section.
For the models that included the triangles parameters Tk for k = 1 and 2 (see,

for example, (2.4.1)), we noted earlier that these parameters were not uniquely
defined until one restriction was imposed upon them. This restriction could be
expressed in several different ways; for example, as (a) the condition that
Tr = 1 (as we did in Section 2.4), or as (b) the condition that T2 = 1, or as (c)
the condition

(7.1) TT2= 1

For our present purposes, it is convenient to impose condition (7.1), and to
take T1 as the uniquely defined triangles parameter T. From (7.1), we see that
-r can also be expressed as

(7.2) T=(= )

(In contexts where condition (7.1) is replaced by one of the other conditions
given above, the quantity defined by (7.2) would also be replaced as the
triangles parameter.)

Table VI gives the maximum likelihood estimate t of T obtained under the
four models that include the triangles parameter; namely, the T model, the
CT model, the DAT model, and the DACT model. Note that the estimate t is
less than one for each of the cases considered in Table VI, which indicates
that, aside from the effects of the other parameters in the model, the estimated
triangles parameter will diminish the estimated expected frequencies for the
cells in set S1 (where i - j > 0) relative to the estimated expected frequencies
for the cells in set S2 (where i - j < 0). For each of the three mobility tables
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TABLE VI

THE ESTIMATE OF THE TRIANGLES PARAMETER UNDER VARIOUS MODELS
APPLIED TO THE BRITISH AND DANISH SAMPLES

Models
T CT DAT DACT

British 5 x 5 Table 0.855 0.935 0.935 0.937
Danish 5 x 5 Table 0.970 0.981 0.980 0.983
British 7 x 7 Table 0.904 0.966 0.966 0.968

(Tables I, II, and III), this would indicate that the estimated X parameter has
the direct effect of introducing "downward mobility" (as expressed in the fact
that (T2/r1 )112 is estimated as being larger than one), over and above the indirect
effects (with respect to upward or downward mobility) that are due to the other
parameters. The effect of t appears to be more pronounced for the T model
(particularly for Table I), and it becomes less pronounced as more parameters
(for example, the crossings parameters and/or the parameters pertaining to
the paired minor diagonals) are included in the model. To test whether X = 1
in, say, the DACT model applied to Tables I, II, and III, we compare the DAC
model with the DACT model using the results given in Table V, and we find
that the T parameter does not have a statistically significant effect when the
other parameters are included in the model.
With respect to the diagonals parameters (Table VII), we note that dk

decreases as IkI increases in all cases, except for d4 for Table II under the DPC,
D, and DC models. This would indicate that aside from the effects of the other
parameters in the model, generally speaking the estimated diagonals para-
meters diminish the estimated expected frequencies in a progressively more
pronounced way for cells that are on minor diagonals that are further away
from the main diagonal. In other words, the estimates dk have the direct effect
of introducing "status inertia" in the mobility table. With respect to Table II,
it is worth noting (see Table V) that the modifications of the DA model and the
DAC model that are obtained by distinguishing diagonals parameters on the
"positive" diagonals from those on the "negative" diagonals (for example, the
D model, the DC model, and the DPC model) did not improve the fit markedly.
Note also that the difference in Table VII between dk and the corresponding
d-k is, generally speaking, smaller for Table II than for the other tables. When
comparing the DA model with the DAC model (or the D model with the DC
model), we find that the effect of dk is somewhat more pronounced in the former
model than in the latter one (which included the crossings parameters as well).
To facilitate the comparison of models in Table VII, condition (2.5.12) was used,
rather than the equivalent (2.5.9), in the DPC model; and condition (7.3)
below was used in the DAC, DPC, and DC models.
With respect to the crossings parameters (Table VIII), for models that

include both the y. and bk parameters, we noted earlier that the y., for u =
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TABLE VII

THE ESTIMATE OF THE DIAGONALS PARAMETERS UNDER VARIOrIS MODELS
APPLIED TO THE BRITISH AND DANISH SAMPLES

Models
T)A D)AC D)PC 1) D)C

British
5 x 5
Tahle dk = d_k dk = d-k dk d dk d dk d

k = I 1.00 1.0( 1.00 1.00 1.00 1.00 1.00 1.00
k = 2 0.59 0.64 0.74 0.54 0.68 0.52 0.73 0.56
k = 3 0.26 0.32 0.39 0.29 0.32 0.22 0.39 0.28
k = 4 0.08 0.13 0.(0 0.16 0.00 (.11 0.00 0.17

Danish
5 x 5
Table
k = I 1.0 1.(0 1.00 1.(0 1.00 1.00 1.00 1.00
k = 2 0.48 0.51 0.52 0.45 0.49 0.47 0.52 0.50
k = 3 0.15 0.16 0.14 0.20 0.13 0.16 0.14 0.17
k = 4 0.11 0.12 0.17 (.09 0.15 0.06 0.17 0.06

British
7 x 7
Table
k = 1 1.00 1.00 1.(0 1.00 1.00 1.00 1.00 1.00
k = 2 0.65 0.70 0.69 0.61 0.64 0.65 0.69 0.70
k = 3 0.34 0.40 0.51 0.38 0.41 0.28 0.49 0.34
k = 4 0.20 0.26 0.30 0.23 0.21 0.18 0.28 0.25
k = 5 0.08 0.11 0.08 0.14 0.05 0.09 0.08 0.13
k = 6 0.03 0.04 0.00 0.09 0.00 0.04 0.00 0.06

TABLE VIII

THE ESTIMATE OF THE CROSSINGS PARAMETERS UNDER VARIOUS MODELS
APPLIED TO THE BRITISH AND DANISH SAMPLES

Models
C DAC DPC DC

British 5 x 5 Table
C2 0.40 0.46 0.45 0.46
C3 0.60 0.64 0.63 0.64

Danish 5 x 5 Table
C2 0.46 0.51 0.48 0.51
C3 0.43 0.47 0.46 0.48

British 7 x 7 Table
C2 0.54 0.60 0.5*5 0.60
C3 0.52 0.58 0.53 0.58
C4 0.60 0.67 0.61 0.66
C5 0.64 0.70 0.65 0.70



682 SIXTH BERKELEY SYMPOSIUM: GOODMAN

2. 3, R - 2, were not uniquely defined until one restriction was imposed
upon them-a restriction that has the effect of fixing the scale of the y, This
restriction could be expressed in several different ways; for example, as (a) the
condition that

(7.3) max yk = I for 2 < k _ R - 2,
k

which is equivalent to replacing the y. by y = y./y*. where y* = maXk Yk for
2 . k < R - 2; or (b) the condition that

(7.4) =1=

which will also have the effect of fixing the scale of the y. For models that included
the bk parameters, we noted earlier that the restriction that 6, = b-i = 1
would uniquely, define the bk: this restriction together with condition (7.4)
would uniquely define the bk and yv for u = 2. 3. . . R - 2. in models that
included both sets of parameters. In order to facilitate comparison between
the crossings parameters for the C model (for which the y. for u =
2, 3,- R - 2. are uniquely defined without imposing any restrictions upon
them) and the corresponding parameters in models that also include the bk
parameters, the restriction (7.4) was used in calculating the results presented
in Table VIII. To make the cu in Table VIII consistent with the corresponding
dk in Table VII for a model that includes both sets of parameters (for example,
the DAC, the DPC, and the DC models), it is only necessary to divide each of the
cU in Table VIII by maxk Ck for 2 . k . R - 2, for the given model (see
condition (7.3)). The estimates c. in Table VIII have the direct effect of
introducing "status barriers" in the mobility tables. Comparing the results
in Table VIII for the 5 x 5 tables (that is. Tables I and II), we note that the
effect of c2 is more pronounced than that of C3 for Table I, and the reverse is
true for Table II. For Table III, the effect of c. becomes more pronounced as
u decreases. except for u = 2. From Table VIII we see that the relative
difference between the c is less for Table II than for Table I. From Table V we
also take note of the fact that the modification of the various models (for
example, the DA, the DP, the D models) that is obtained by including the
crossing parameters (thus obtaining the DAC, the DPC, and the DC models)
did not improve the fit markedly for Table II, but it did for Table I. Finally, we
note that the corresponding cu in Table VIII are very similar for the DAC model
and the DC model.
With respect to the ratio index and the relative difference index (Tables IX

and X), we first note that the numerical values obtained for the QO model
(which did not fit the mobility tables well) are grossly misleading. For models
that fit the data well, the numerical values obtained for these indices can differ
greatly from the values obtained with models that do not fit the data. Note also
that the corresponding values for the DA model and the D model are very
similar, and so are the corresponding values of the DAC and the DC models.
With the introduction of the additional parameters (for example, the bk and/or
the y.) into the QO model, the effect of the mi diminishes (see Table IX).
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TABLE IX

THE ESTIMATE OF THE RATIO INDEX FOR THE CELLS ON THE MAIN DIAGONAL
OF THE R x R CROSS CLASSIFICATION TABLE, UNDER VARIOUS MODELS APPLIED TO THE

BRITISH AND DANISH SAMPLES

Models

QO DA DAC DPC D DC

British 5 x 5 Table
Ml 34.5 3.8 4.6 4.5 3.8 4.5
M2 4.0 0.9 0.6 0.6 0.9 0.6
M3 1.7 1.0 1.0 1.0 1.0 1.0
M4 I1.( 0.7 0.8 0.7 0.8 0.8
ms 2.9 0.9 1.1 1.1 0.9 1.1

Danish 5 x 5 Table
Ml 13.8 1.1 1.2 1.2 1.1 1.2
M2 4.8 0.9 1.0 1.0 0.9 1.0
m3 1.8 0.8 0.8 0.8 0.8 0.8
m4 1.2 0.7 0.7 0.7 0.7 0.7
m5 3.4 0.7 0.8 0.7 0.7 0.8

British 7 x 7 Table
ml 35.0 2.4 2.6 2.4 2.4 2.6
m2 8.6 1.5 1.3 1.2 1.5 1.3
M3 2.2 0.7 0.6 0.5 0.7 0.6
M4 1.7 1.0 1.0 1.0 1.0 1.0
M5 1.2 0.8 0.8 0.7 0.8 0.8
m6 2.3 1.3 1.4 1.3 1.3 1.4
M7 2.9 0.7 0.8 0.7 0.7 0.8

TABLE X

THE ESTIMATE OF THE RELATIVE DIFFERENCE INDEX FOR THE CELLS ON THE

MAIN DIAGONAL OF THE R x R CROSS CLASSIFICATION TABLE
UNDER VARIOUS MODELS APPLIED TO THE BRITISH AND DANISH SAMPLES

Models
QO DA DAC DPC D DC

British 5 x 5 Table
m; 0.38 0.29 0.30 0.30 0.29 0.30
M.2 0.26 -0.05 -0.23 -0.24 -0.04 -0.22
in 0.09 -0.01 0.00 0.00 -0.01 0.00

-0.01 -0.17 -0.16 -0.16 -0.16 -0.14
m5 0.32 -0.04 0.05 0.04 -0.04 0.05

Danish 5 x 5 Table
M, 0.29 0.02 0.06 0.04 0.02 0.06
m*2 0.26 -0.02 0.01 -0.01 -0.02 0.01
m3 0.18 -0.09 -0.09 -0.13 -0.09 -0.09
i4 0.08 -0.16 -0.16 -0.19 -0.16 -0.16
m5 0.33 -0.22 -0.15 -0.20 -0.21 -0.14

British 7 x 7 Table
m; 0.38 0.23 0.24 0.23 0.23 0.24
M.2 0.24 0.09 0.06 0.05 0.09 0.06
M.3 0.10 -0.07 -0.11 -0.17 -0.07 -0.12

rn4 0.09 0.01 0.01 -0.01 0.00 0.01
m5 0.08 -0.14 -0.12 -0.20 -0.14 -0.12
m6 0.17 0.06 0.08 0.08 0.06 0.08

Ml 0.18 -0.14 -0.06 -0.09 -0.14 -0.06
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To test hypotheses about the pi, we return to our earlier discussion of (5.6).
As we noted there, for a given model that does not include crossings parameters
(but does include diagonals parameters or the triangles parameter), the hypo-
thesis that the relative differences among the pi are nil for i = 1, 2, * * *, R,
can be tested by comparing the corresponding model for the analysis of the full
table with the model for the analysis of the off diagonal cells (for example,
comparing the DF model.with the D model, or the DAF model with the DA
model). Also, for a given model that does include crossings parameters (and
also diagonals parameters and/or the triangles parameter), the hypothesis that
the relative differences among the pi are nil for i = 2, 3, * * *, R - 2, excluding
i = 1 and i = R, can be tested by a similar kind of comparison (for example,
the comparison of the DCF model with the DC model, or the DPCF model
with the DPC model, or the DACF model with the DAC model). Examination
of the corresponding relative magnitudes in Table IX shed further light on the
results obtained by comparing the corresponding chi squares given in Table V.
Recall, for example, that the comparison of the DCF model with the DC model
indicated that the relative differences among the pi were statistically significant
for Table III; they were not as statistically significant for Table I (but they were
significant at the 10 percent level); and they were not statistically significant
for Table II.
We remarked in Section 5 that, in calculating the mi and m, for models that

include diagonals parameters and/or the triangles parameter, we must first
make some assumptions about 60. For the calculations in Tables IX and X, we
have assumed that

(7.5) '0 =
_

where 6" is defined as

(7.6) bk = (k6_k)112-
Denoting 60 by 5's, condition (7.5) states that "/16+" 1 is constant, for k = 0
and 1. Although there is an element of arbitrariness in this way of defining 60,
there are good reasons for using (7.5) here. (An alternative procedure would
be to set 60 = 1, which would yield the same result as obtained with (7.5) in
cases where the model does not include diagonals parameters (and/or the
triangles parameter), and also in cases where the model includes both the
crossings parameters and diagonals parameters (and/or the triangles parameter)
when the parameters are uniquely defined by condition (7.4) together with the
condition that c1 = 6-1 = 1. In addition, for models that include both yv and
6k (and/or rk), the mi for i = 2, 3, * * *, R - 1, would be the same when 60 = 1
as the corresponding quantities obtained when the parameters are uniquely
defined by condition (7.3) together with the condition that 6, = 6-1 = 1.)
Since we set 61 = 6-1 = 1 in all models that include diagonals parameters,
condition (7.5) can be simplified to
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(7.7) 60 =
1

In order to calculate m1 and mR (and also m* and m*) in Tables IX and X,
we have set y, = YR-I = y*, where y* = maxkYk for 2 . k _ R -2. This
procedure provides a way of calculating m1 and mR (and also rn and m*) that
is conservative in the sense that, while it acknowledges the possible existence
of the crossings parameters yi and YR - 1, it estimates their effects as being equal
to the least pronounced estimated effects among the y. for u = 2, 3, -, R - 2.
(In his analysis of the "variable distance" model, Haberman [20] made the
assumption that ,Ml = PR = I (that is, that log u1 = log PR = 0), and under
this assumption he then estimated parameters corresponding to yi and YR-I
(namely, log y1 and log YR- 1 ) In contrast to this, in the present article the y1
and PR (and also the p* and p*u) are estimated from the data as indicated in
the first sentence of this paragraph. Also, in contrast to the earlier analysis of
the "variable distance" model, the parameters It for i = 1, 2, * R, intro-
duced here provide an additional index of interest (see Section 5).)

8. Extensions and applications to the analysis of two (or more) cross classification
tables, and to the analysis of multidimensional tables

The results presented in Sections 3 and 4 for the general case of the R x C
table can be directly extended to the analysis of two R x C tables (that is, to
the analysis of the R x C x 2 table), to the analysis of G such R x C tables
(that is, to the analysis of the R x C x G table), and more generally to the
analysis of multidimensional contingency tables. Indeed, the results presented
in those sections can be applied directly to the multidimensional table simply
by replacing each reference to the cells (i,j) of the R x C table throughout
those sections by a corresponding reference to the cells of the multidimensional
table.

I shall give here only a few examples (although there are many) of the possible
extensions of the particular models introduced earlier to the analysis of three
way tables (or to the analysis of contingency tables of higher dimensions).
Suppose we applied, say, the DC model to G different R x R tables and found
that the model fit the data for each of these tables. For the gth table, g =
1, 2, *.* ,the parameters og), 5g), bkg), Yg)u could be estimated by the methods
described earlier, and we could consider various hypotheses of the following
kind:

(8.1) bkg= bk for g = 1, 2, , G,
(8.2) U =YU for g = 1, 2, G,

(8.3) 6kg) = 3k and YU = YU for g = 1, 2, G.

Each of these hypotheses can be expressed as an "intrinsically unrestricted"
model for the R x C x G table, since the restrictions (8.1), (8.2), and (8.3)
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are of the H" type (as defined in Section 4). Thus, the method presented earlier
could also be used to analyze the model H" obtained by modifying the DC
model for each of the G tables by imposing conditions of the kind described
above (that is, (8.1) to (8.3)).

Let Hg denote a given model (for example, the DC model) that will be applied
to the gth R x R table for g = 1, 2, * * *, G, and let H denote the hypothesis
(model) that states that the Hg are true for g = 1, 2, - - -, G. Let H" denote the
model obtained by modifying H by imposing a given condition (for example, a
condition of the kind described under (8.1) to (8.3)) that still permits H" to be
expressed as an "intrinsically unrestricted" model for the R x C x G table.
Let X2(Hg), X2(H), and X2(H") denote the chi square statistic based upon the
likelihood ratio criterion for testing Hg, H, and H", respectively. Each of these
statistics can be calculated by the methods presented earlier applied to the G
different R x R tables (for calculating X2(Hg)) and to the R x R x G table
(for calculating X2(H) and X2(H")). Note that

G

(8.4) X2(H) = E X2(Hg).g=1

Letting [H" H] denote the hypothesis that H" is true assuming that H is true,
we see that [H" H] states that the given condition, which was used to modify
H to form H", is true assuming that H is true. The following statistic is the chi
square statistic based upon the likelihood ratio criterion for testing [H" H]:

(8.5) X2(H"IH) = X2(H") - X2(H) - l

2 Eflog f,2= 2flog[,,
where f and f" denote the estimated expected frequencies in the R x C x G
table under H and H", respectively. Note that thef pertaining to the gth R x R
table can be calculated separately for each of the G tables, but the/" need to be
calculated from the R x R x G table (ifH" is a hypothesis of the kind described
by (8.1) to (8.3)).
The statistic (8.5) has an asymptotic chi square distribution under the

hypothesis [H" H], with the degrees of freedom equal to the difference between
the corresponding number of degrees of freedom for testing H" and H, respec-
tively. The degrees of freedom of X2(H" H) can also be calculated from the
number of restrictions on the parameters (calculating this number after the
parameters have been uniquely defined). Thus, for example, for testing hypo-
theses (8.1), 8.2), and (8.3), the corresponding number of degrees of freedom
will be G -1 multiplied by 2(R - 2) - 1 = 2R - 5, (R- 3) - 1 = R - 4,
and 2(R -2) + (R- 4) = 3R - 8, for hypotheses (8.1), (8.2), and (8.3),
respectively.
We shall now comment briefly on the relationship between hypotheses of the

kind considered above for the three way table (or for tables of higher dimension)
and the usual hypothesis Ho of zero three factor interaction in the three way
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table (or the corresponding kind of hypotheses for the table of higher dimension)
(see, for example, Goodman [15], [17]). The usual hypothesis Ho in the three
way R x C x G table states that the probability irj _, can be written as

(8.6) Mg,= i
for .i = 1, 2, ,R, j=1, 2, * C(, g = 1, 2, ,G.

For the R x R x G table, consider now the hypothesis H that states that the
DCF model holds true for the gth R x R table, g = 1 2. - - . G, and let H"
denote the modification ofH obtained by imposing condition (8.3) on model H.
The model H" can be expressed as

(8.7) t jgg = ) Yi, jbk for cells (i, j, g) for which (i, j) is in Sk,
for k = 0, +1, +2 , ±(R - 1); and with y' j defined by (2.6.3), with
y'ij = 1 for i = j. To test the hypotheses Ho. H. and H" in the R x R x G
table, the corresponding number of degrees of freedom will be (R- 1 )2(G - 1),
G(R - 2)(R - 3), and G(R - 1)2 - (3R - 5), respectively. Since there are
(R- 2)(R - 3) degrees of freedom for testing the DCF model (see Table IV),
the corresponding number of degrees of freedom for the H model will be
G(R - 2) (R - 3). Note also that the degrees of freedom for the H" model can
be calculated by subtracting from GR2 the number of estimated parameters
under the model (namely, G(2R- 1) + (3R- 5)) or by adding (G - 1)
(3R- 5) to G(R - 2)(R - 3), since condition (8.3) actually imposes (G - 1)
(3R- 5) restrictions upon the parameters of H. The hypothesis [H" H] states
that condition (8.3) is true, assuming that H is true; and the hypothesis [H" Ho]
states that the following condition is true, assuming that Ho is true:

(8.8) Oi, i = Y;, ibk for (i, j)in Sk,

for k = 0 ± 1, ±2 *, + (R - 1), where the parameters in (8.8) are defined
by the expressions (8.6) and (8.7). To test the hypotheses [H" I H] and [H" HO],
the corresponding number of degrees of freedom will be (G - 1) (3R - 5) and

(8.9) (R- 1)2-(3R-5) = R2 - 5R + 6 = (R-2)(R-3),

respectively.
Note that the same number of degrees of freedom are obtained for the

hypothesis [H" Ho] as for the DCF model in the R x R table. The hypothesis
[H" HO] states that the parameters Ojj in (8.6) will satisfy condition (8.8); and
the DCF model states that the probabilities 7i,j can be written as

(8.10) 7i,j = cifljoi,j,
where the O j are of the form

(8.11) Os,,j = Yi,jbk for cells (i,j) in Sk,
for k = 0, ±1, ±2, , ±(R - 1). Similarly, each of the hypotheses con-
sidered in Sections 2.1 to 2.8 states that the probabilities 7ri j can be written as
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(8.10) where the Oi,j are subject to certain specified conditions. For example,
the DC model states that the O ,j are of the form

(8.12) O
- Sjbk for cells (i, j) in Sk for k = + 1, + 2, + (R - 1),

(pi for cells (i, i) in S's,
where pi is an "intrinsically unrestricted" parameter.
For the usual hypothesis Ho of zero three factor interaction in the R x C x G

table (see (8.6)), the probabilities 7i j, can be rewritten as

(8.13) 7i,j,, = Xi,gf3j,g0i,j*

In the present section, we have considered hypotheses about the form of the
Oi,j in the R x R x G table. It should also be noted that the general methods
presented in Sections 3 and 4 can be directly applied to any given hypothesis
about the form of the xi, , fj, ., and/or Oi,j in the R x C x G table, as long as
the corresponding model is "intrinsically unrestricted" in the three way table.
The methods presented here can be directly applied not only to models for

the three way table that are formed by imposing conditions on the parameters
in (8.13), but also more generally to any hypothesis about the probabilities 7ri, j, g
in the three way table (or in a table of higher dimension), as long as the
corresponding model is intrinsically unrestricted. As an example of such
models (that is, intrinsically unrestricted models) that are not formed by
imposing conditions on the parameters in (8.13), see Goodman [13], [14]
where the hypothesis of zero three factor interaction is extended to the case
where a given subset of the cells in the three way table are deleted. These models
for the three way table can be further extended in the same ways as we have here
extended the model of quasi-independence in the two way table. For example,
in the same way that the T model was formed by introducing the triangles
parameters into the QO model, we could also introduce the three dimensional
analogues of the triangles parameters (considering now parameters pertaining
to certain triangles and tetrahedra in the three way table) into the models for
the three way table considered in Goodman [13] (that is, into models of zero
three factor interaction applied to a given subset of the cells of the table). In
the same way that the triangles parameters are introduced in order to describe
a particular kind of two factor interaction (between the row and column classi-
fications) in the two way table, the three dimensional analogues of the triangles
parameters can be introduced in order to describe a particular kind of three
factor interaction in the three way table. For three way tables that do not
conform to the usual hypothesis Ho of zero three factor interaction, we can
now provide a wide variety of multiplicative models (that is, the three dimen-
sional analogues of the models in Sections 2.2 to 2.8) that can be used to analyze
the data. In addition, for three way tables that do conform to the usual
hypothesis Ho, we noted earlier in the present section that the general methods
presented here can be used to test given hypotheses about the form of the
parameters in the Ho model (that is, hypotheses about the form of the two
factor interactions in the three way table).
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The preceding remarks can be directly extended to the multidimensional
contingency table. We noted earlier that the usual hypothesis Ho of zero three
factor interaction in the three way table could be expressed as an intrinsically
unrestricted multiplicative model, and similarly each of the hierarchical hypo-
theses described in Goodman [17] for the multidimensional table can also be
expressed as an intrinsically unrestricted multiplicative model. The various
extensions and modifications of Ho, which we described earlier in the present
section for the analysis of the three way table, can also be directly extended in
order to provide further extensions and modifications of the hierarchical hypo-
theses that were considered in the earlier literature on multidimensional con-
tingency tables. Since these extensions and modifications are directly analogous
to those already presented in the present article, we need not discuss this further
here.

Before closing this section, we return for a moment to the models of
Sections 2.3 to 2.8. Note that (2.3.4) can be viewed as a model for an R x C x K
table (R rows, C columns, K layers) that describes conditional quasi-
independence between the row and column classifications, given the kth layer
classification, k = 1, 2, - * *, K, when certain cells (i,j, k) have been deleted,
namely, the cells (i, j, k) for which the (i, j) is not in Sk (see, for example,
Goodman [13], [17]). In particular, (2.3.1) is a model that describes conditional
quasi-independence in the R x R x 2 table, where one layer pertains to positive
(i - j) and the other layer pertains to negative (i - j). Similarly, (2.4.1) is a
model for quasi-mutual independence in the R x R x 2 table (that is, a model
of "complete independence" among the three variables in the three way table
when certain cells have been deleted); and (2.5.1) is a model of quasi-mutual
independence in an R x R x [2(R- 1)] table. The other models in Sections
2.3 to 2.8 can also be viewed as models in three way or multi-way tables.

APPENDIX

EXPLICIT FORMULAE FOR THE ESTIMATES OF THE PARAMETERS IN THE MODELS

For any given model of the kind described in Sections 2.2 to 2.8, we shall now
show how the maximum likelihood estimates of the parameters in the model
can be expressed explicitly as functions of the estimates fi j of the expected
frequencies under the model. Other ways to calculate the maximum likelihood
estimates of the parameters were described in Section 3. The results, which we
shall now present, will provide (a) further insight into the meaning of the para-
meters (expressed explicitly as functions of the probabilities ii j), and (b) a
method for calculating the maximum likelihood estimates of the parameters
(after the estimates fi,j have been calculated as described in Section 3) which
some readers may find easier to apply than the other methods that were
described in Section 3 for estimating the parameters.
For simplicity, let us first consider the QO model (see Section 2.3). For this

model, the maximum likelihood estimatef i can be written as follows (see (2.2.4)):
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(A.1) fi,j = aibj for i 7E j.
As we noted earlier (see Sections 2.1 to 2.3), the fi j in (A.1) will be unchanged
if a1 is set equal to one (and the other ai and bj in (A. 1) are changed accordingly).
With a, = 1, we see from (A.1) that the bi can be written as

(A.2) b. j for j=2, 3, ,R,
Ifl,21A/f3,, for j = 1.

Similarly, having calculated b1 from (A.2), we obtain the following formula for
the ai

(A.3) a={fl/b for i = 1,i 11, for i , , R

If we are interested in the ai after they have been scaled so that 1i ai = 1,
then ai of (A.3) can be replaced by di = aj/1'= 1 ah. The di are the maximum
likelihood estimates of the scaled parameters di = Oti/l',= 1 Oh, which can be
interpreted (for the QO model) as the hypothetical proportion of individuals
in the ith row class in the hypothetical population in which none of cells on
the main diagonal needs to be deleted, and there is independence between the
row and column classifications in the table (see Goodman [13], [14]). A similar
comment applies to bj and to the corresponding bj and ,j. For the QO model,
we find that

(A.4) PJ =i7,f for i = 1, 2, R, j = 1, 2, R,

where f* = x, -/7I. is the hypothetical conditional probability defined in
Section 5. Thus, by applying the mover-stayer interpretation described by (5.9)
to the QO model, we see from (A.4) that f,j can be interpreted as the hypothetical
probability that a "mover" will be in the jth column class (see, for example,
Goodman [16]). By interchanging the row and column classifications, and then
applying the mover-stayer interpretation described by (5.9), we see that the di
can be interpreted in a similar way to the above interpretation of the ,j.
(Analogous kinds of interpretations of the f,j and di can be obtained when
(5.10) is applicable, rather than (5.9).)

Consider now the QP and QN models (see Section 2.3). For each of these
models, the parameters can be estimated by formulae similar to (A.2) and (A.3),
based upon the fact that the bj are proportional to the fR, j for j = 1, 2,
R - 1, and the ai are proportional to the fi, 1 for i = 2, 3, * , R, for the QP
model, and upon the fact that the bj are proportional to the flj for j =
2, 3, * - *, R and the ai are proportional to the fi,R for i = 1, 2, * * *, R - 1,
for the QN model. More generally, for any model of quasi-independence for an
inseparable set of cells (or for the inseparable subsets of a separable set of cells),
the parameters can also be estimated by formulae similar to (A.2) and (A.3).
Now consider the DC model (see Section 2.7). For this model, the maximum

likelihood estimate fi, j can be written as follows (see (2.7.1)):
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(A.5) = aibjcjdk for cells (i,j) in Sk,

fork = +1, +2, +±(R- 1), where
i-i

Jl CU for i > j,
(A.6) C= ;-

n Cu for i < j.
u=i

We shall let vi, wi, yi, and zi denote the quantities

(A.7) v = + - for i = 2, 3, , R - 2,
(fi,i-lfi+l,i+2)

(A.8) Wi = (fi,1f2,i+1) for i = 3,4, - - 1,
(f2,l i+I)

(A.9) = [H(l j] [(^ )] for i = 2, 3, RR-1,
j=l f+1,i f1,i+1

| (fRIAfI-1,12 ) for i = 1,
(A.10) Z_ (fR - 1,1 fR, 2)

(A.1O) - (fl,Rf2,R-1) for i = -1.
(fl , R-1 f2 , R )

(For simplicity, we shall first assume that fi,j > 0 for i # j.) From (A.5) to
(A.10), we find that

(A.l1) vi = td 2 for i = 2, 3, ,R-2,

(A.12) wi ( ) for i = 3, 4, ,R-1,

(A.13) Yi (= d)( d) for i = 2, 3, ,R-1,

dR-,dR-3 for i = 1,

(A.14) Zi = dR-2
d - (R-1)d_.(R3) for i = -1,

d (R - 2)

where d' is defined by

(A.15) d' = did__
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As we noted earlier (see Section 7), the c. in (A.5) and (A.6) can be defined
uniquely for u = 2, 3, * * *, R - 2, either by introducing a restriction to be
imposed directly upon them (for example, that the maximum c. be set equal to
one) or by introducing an additional restriction to be imposed upon the dk (for
example, that d' = 1, in addition to the restriction that d1 = d = 1). The
former kind of restriction would be appropriate when the DC model is viewed
as an extension of the D model, and the latter kind of restriction would be
appropriate when the DC model is viewed as an extension of the C model. If
the maximum c. is equal to one for u = 2, 3, * *, R - 2, then from (A.ll) we
obtain the following formula for the c",

(A.16) c, =(V) for u = 2, 3,*** R-2,

where

(A.17) v* = max vi for 2 < i < R-2.

If instead of the above restriction on the maximum cu, we set d' = 1 (in
addition to setting d1 = d-, = 1), we see from (A.11) that cu would be
calculated by a modified form of (A.16) in which v* is replaced by one. Since
the fi. in (A.5) are unaffected if d1 and d_ are set equal to one (and the ai, bj,
and other dk are changed accordingly), we see from (A.12) that the d' can be
calculated by

(A.18) d= Wi+ for i = 2, 3, ,R-2,
HcI2
j=2

where the cj are calculated from (A.16). From (A.13) and (A.15), we see that
the di can be calculated as

(A.19) d (dy )1/2 for i = 2, 3,, R -2,
(d)/yi) /2 for i = -2, -3, ,-(R - 2),

where d' is calculated from (A.18). From (A.14) we obtain the following
formulae for dR -.1 and d-(R. 1):

(A.20) di = zdR-2/dR-3 for i = R - 1,
z-ld-(R 2)/d- (R - 3) for i = -(R - 1).

We next consider

(A.21) -= for cells (i, j) in Sk,'j dkCj,J
for k = +1, +2,***, +(R - 1), where the dk are calculated from (A.19) and
(A.20) and the cj are calculated from (A.6), with cu calculated from (A.16).
From (A.5) and (A.21), we see that
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(A.22) ii = aibj for i ¢ j.

Since the fgij are of the same form as described by (A. 1), the ai and bi can be
calculated from (A.2) and (A.3) by replacing fij by fi'j in these formulae.
Thus, by applying the methods described in the present and preceding para-
graphs, all of the parameters in the DC model can be estimated.

In the preceding discussion of the DC model, we assumed that fi j > 0 for
i ¢ j. In cases where this assumption is not true, the above methods require
some modification. For example, iffR, 1 = 0 (as is the case for Tables I and III),
then fR, 1 = 0 and dR - 1 = 0 when the DC model is applied to these tables, and
g will be undefined. In this case, the fi'j that are well defined will have the same

form as (A.22), and the methods described earlier for estimating the para-
meters in the model of quasi-independence can be applied to this set off ,'.
The methods described in this section can be applied, either directly or

indirectly, to estimate the parameters in any of the models of Sections 2.2 to
2.8. For example, with the DPC model, by a direct application of the above
formulae, we would obtain, among other things, the estimate dk of the 6k that
satisfy (2.5.12). By an indirect application, we would first set dk = 1 for k =
-1, -2, -(R - 1), in accordance with condition (2.5.9), and then from
(A.l1), (A.12), and (A.15), we would obtain

(A.23) d, = 2'
Y2 C2

with c2 calculated from (A.16). (For the DPC model, if the dk are set at one for
k = -1, -2, * -,(R - 1), then d1 will not be set at one.) To calculate dk
for k = 2, 3, R, R-1, for this model, we then obtain, from (A.12) and
(A.15),

(A,24) di d1d!, for i = 2,3,- ,R -2,

with d1 and d' calculated from (A.23) and (A.18), respectively. The value of
dR -.1 can be calculated from (A.20), using the di, for i = R - 2 and R - 3,
calculated from (A.24).

In cases where the given model includes the triangles parameter (for example,
in the DACT model), the parameter T can be expressed as

(A.25) T =
6-k

for k = 1, 2, ,R-1,

where T = zT, for T' defined by (2.7.4). From (A.13) and (A.25) we would
obtain the following formula for the maximum likelihood estimate t of T:

(A.26) t=

If the model includes both the triangles parameter and the parameters pertaining
to the paired minor diagonals, then after introducing the -r parameter explicitly



694 SIXTH BERKELEY SYMPOSIUM: GOODMAN

into the model, the model will be unaffected by setting 6k = 6-k for k =
1, 2, * - *, R - 1. With the parameter T estimated by (A.26), we can estimate
bk = 6-k by
(A.27) dk = fk for k = 2, 3, ,R-2,

where d4 is calculated from (A.18). We can set d1 = = 1 in this model,
and dR .l can be calculated from (A.20), using di for i = R - 2 and R - 3
calculated from (A.27).
For the QO model or for any of the models described in Sections 2.4 to 2.7,

the ratio index pi and the relative difference index j4, which we defined in
Section 5, can be estimated by the corresponding quantities mi and m, (see
(5.14) and (5.15)), with the ai and bj calculated as described in the present
section, and with do as described in Section 7. For the models described in
Section 2.8, we set pi = 1, and therefore

(A.28) fi,i = aibido for i = 1, 2, -*, R.

With the fi j calculated by the iterative scaling method (for all cells (i, j) in
the R x R table under the models of Section 2.8), we can calculate do from

(A.29) d_

with the ai and bi calculated as described earlier in the present section.
For any given model of the kind described in Section 2.8 (for example, the

DCF model), an alternative method for calculating do can be based upon the
fact that

(A.30) d 2 = d' d ui,
where

(A.31) (fU.fi+ ,j+ ) for i = 1,2,--,R-1,
(fi, +1fi+1,i

with the ci calculated as earlier for i = 2, 3, * , R -2. Formula (A.30) can
be used to calculate do (applying the formula for any given value of i=
2,3, R - 2), and then c1 and CR.1 can be calculated by rewriting (A.30)

(A.32) ci = ( do

Now for all cells (i, j) in the table, we can consider

(A.33) - for cells (i,j) in Sk,dkCij
for k = 0, +1, +2, - , +(R - 1). (Compare (A.33) with (A.21).) The fij
will be of the form

(A.34) fi = aibj for all cells (i, j)
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(see (A.22)), and so the ai and bj can be calculated here by the same methods
used to estimate the parameters in the usual model of independence between
the row and column classifications. For the models of Section 2.8, the method
just described provides an alternative to the method described following (A.22)
for calculating ai and bj. It should also be noted, as we did earlier, that in cases
where the assumption that fi j > 0 is not met for all cells in the table (under
a given model of Section 2.8), the above methods require modifications of the
kind which we described in the paragraph following (A.22).
The results of the present section can be applied to any of the models in Section

2.2 to 2.8 whenever the maximum likelihood estimate fi i exists. For comments
concerning the existence of the fij, see Section 3 herein and Haberman [20].

0 0 0 0 0
For helpful comments, the author is indebted to R. Fay, S. Fienberg,

S. Haberman, and T. Pullum.
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