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1. Introduction and summary

A variation of the "k means" method of cluster analysis is described which is
designed to take into account and profit from the possibility that the separate
clusters resemble samples from multivariate normal distributions with substanti-
ally different covariance structures. This is preceded by a brief description of a
standard version ofthe method. Indications are given when metric considerations
can play an important role and a suitably modified version of the standard
method is presented.
While the new method has not yet been applied it is anticipated that its most

useful applications will be to situations where the clusters tend to be concentrated
in nonparallel hyperplanes of the space of observations. The dimensionality of
this space should not be very large. The method should require substantial sample
sizes to make the implicit estimates of the covariance matrices useful.
One may expect metric considerations also to be useful in modifying other

cluster analysis techniques.

2. The standard k means method

In this section we describe the k means method in the spirit of MacQueen [2].
Suppose that p represents the probability distribution of a random variable
(r.v.) Z in an r dimensional Euclidean space and lY- z| represents the distance
between points y and z of this space. Let S = (S , S2, * *, Sk) be a decomposition
of the space into k pairwise disjoint measurable subsets (classes) and let x =
(x1, x2, * * ,Xk) represent k reference points in the space. Then

k

(2.1) R(x, S) = E Jfs IZ-x_I2 dp(z)

is a measure of the corresponding within class variance. From one point of view
of the notion of cluster it would be expected that if the probability measure p
corresponds to k natural clusters, these clusters would relate in a simple way to
an (x, S) which minimizes R.

For given S, R(x, S) can be minimized by selecting the reference points to be
the centers of gravity, that is, x = u(S) = (ui (S), u2(S), * , uk(S)), where
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(2.2) ui(S) = z dp(z)/p(Si), i = 1,2, * * k

assuming p(Si) > 0. i = I?2, *, k. Then we have the measure

(2.3) V(S) = R[u(S), 8] =
f

Z Ui (S) 2 dp(z).

Alternatively, for given reference points x, we can minimize R with respect to S
by selecting a decomposition S = T(x) = (T1(x), ** , Tk(x)) which assigns to T
those points which are closest to xi, that is,

(2.4) if z E Ti(x) then I|z - xi min Iz - xj.

This gives us the within class variance
k

(2.5) W(x) = R[x, T(x)] = IZ x2 dp(Z).

Thus V(S) and W(x) are similar but somewhat different measures of within
class variance. They do coincide in the case where T(x) = S and u(S) = x. Then
u[T(x)] = x and the reference points x are said to be unbiased.
The above described minimization properties imply that

(2.6) V(S) = R[u(S), S] _ W[u(S)]

and

(2.7) W(x) = R[x, T(x)] > V[T(x)].

Hence, given an arbitrary x, the iteration x1 = x,S' = T(x'), *, x" = [S"- II
Sn = T(x'), * , yields the decreasing sequence

(2.8) W(x1) > V(S') _ W(x2) _ V(S2) _

and hopefully converges to a pair (x, S) with a low within class variance and
unbiased x. MacQueen attributes consideration of this procedure to Forgy [1]
and Jennrich.
The k means method to be described may be motivated by considerations

such as given above and by the aim of reducing computational labor and inform-
ation storage requirements. Suppose that in place of the probability distribution
p one is given a sample of independent observations on the r.v. Z. Described
informally, the k means method is an iterative method of generating a sequence
of reference points x" = (x'i, x', * , x") where xl consists of the first k distinct
observations Z1, Z2, Zk on Z. Afterwards each new observation is assigned
to the closest reference point which is then modified to be the average of all
observations assigned to it.
More precisely let x1 = (Z1, Z2, *-- Zk) and w1 = (1, 1, 1). If we

observe Z after x" and w" = (w', w,.. , w') are formed, let

(2.9) x7+1 =x, w7+1 = w7 if Z 0 Ti(x )
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and

(2.10) wi
-

+ wi wi if Z E Ti(x").
The weight Wi is the number of observations whose mean is represented by the
ith reference point xZ. We shall loosely refer to Ti(x') as the ith cluster at the nth
stage.
Compared with many other techniques of cluster analysis, the iterative pro-

cedure of the k means method seems to be rather economical in storage and
computational requirements. At the nth stage one needs to store x", w', and the
latest observation Z. The computation consists mainly of evaluating the k
distances |Z -x , i = 1, 2, , k. A sound comparison of computational
efficiency would require some insight into the number of iterations required with
this technique. Many alternative approaches seem to require the computation
and storage of mn2 distances to study a sample ofm points. When m is large this
may be excessive. However it is possible that sampling techniques may be applied
to reduce these requirements.
MacQueen [3] has proved two theorems listed below which indicate that the

W(x') of the k means method converge to W(x) for an unbiased x and that the x'
converges to u(S(x')) in a weak sense. These theorems are proved under the
assumptions: (i) p is absolutely continuous with respect to Lebesgue measure,
and (ii) p(R) = 1 for a closed and bounded convex set R and p(A) > 0 for every
open set A c R.
THEOREM 1. The sequence of random variables W(x'), W(x2)* , converges

a.s. and W, = limn,oo W(x') = V(T(x)) a.s. for some unbiased x = (xl, x2,
* , Xk) for which xi # xj if i =/ j.
THEOREM 2. Let u' = ui(x') andp = p(Ti(x')); then as m -05

m k

(2.11) m E y P Un- -|0 a.s.
n=1 i=1

MacQueen presents examples which show that the k means method cannot be
counted on to provide minimum within class variance.

The k means method can be modified to increase or decrease the number of
clusters under suitable conditions. Typically if a new point Z is too far from each
of the reference points it can be made the first reference point of a (k + 1)st
cluster (refinement). If two reference points are too close to each other one can
combine their clusters by replacing the two reference points by a suitable weighted
average (coarsening). The criteria for too far and too close can be set in advance
by two parameters R for refinement and C for coarsening.

3. Distance considerations

The preceding section was based on the implicit assumption that Euclidean
distance is the appropriate measure of distance. However it is known that in
dealing with a random variable Z with a multivariate normal distribution with
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mean p and nonsingular covariance matrix A, the Mahalanobis distance measure

(3.1) d(x,y) = (x - y)'A-1(x - y)

is highly meaningful. The "ability" to test the hypothesis H1: p = p, versus the
alternative H2: p = P2 is an increasing function of d(py, I2). It is known that
d(Z, IA) has the x2 (chi square) distribution with r degrees of freedom (d.f.) and
that d(Z, x) has the noncentral x2 distribution with r d.f. and noncentrality para-
meter d(x, p).

It has been suggested that the Euclidean metric (x - y)'(x - y) be replaced
by the Mahalanobis metric in measuring the distance used in various cluster
analysis techniques. A glance at Figure 1 indicates that this suggestion could lead
to undesirable results.

0 s2 0
1 5~~~~~~~3

FIGURE 1

Figure 1 represents the diagram of three clusters in two dimensional space.
Each cluster is described by a set of points lying in a thin ellipsoid and resembles
a sample from a multivariate normal distribution. The three ellipsoids are
similar with long vertical axes indicating that horizontal distances are important
in determining the cluster to which a point belongs. On the other hand, the
Mahalanobis distance using the covariance matrix for the overall set of points
would tend to give most emphasis to the relatively unimportant vertical distances.
The use of this metric might serve to persuade one to assign the point marked y
to S2 rather than to S1.

It has been suggested that the above undesirable attribute be discounted by
using Mahalanobis distance with a covariance matrix corresponding to within
cluster variance rather than overall variance. That is, one should use

(3.2) d*(x, y) = (x - y)'A-I(x -y),
where Aw is the within cluster covariance matrix

k

(3.3) Av = E I (x - xi)(x -xi)
i = 1 xeSi

with the S = (SI, S2, Sk) representing a decomposition of the sample into k
pairwise disjoint sets (clusters) whose averages are the xi.

Elaborations of this proposal have been treated by Friedman and Rubin [2]
who consider the characteristic values and vectors ofAw with respect to the over-
all covariance matrix,

(3.4) A,T = (x- (x-
x



CLUSTER ANALYSIS 625

The potential disadvantage of using Aw becomes manifest in Figure 2 where two
sharply defined clusters with almost singular covariance matrices combine to
yield an Aw which is a multiple of the identity and corresponds to a multiple of
the Euclidean metric. It is clear that for cluster 1 vertical distance is most import-
ant whereas for cluster 2 horizontal distance is crucial. To decide whether an
arbitrary point belongs to S, or S2, it seems most advisable to compare the
appropriate metric in each case. Thus the point labeled y is more naturally
associated with S1 though it is closer to the center of S2.

s2

y

FIGURE 2

It is indicated in Figure 3 that two clusters could conceivably intersect with
the result that each cluster effectively divides the other into two disconnected
pieces. While this represents an undesirable, if uncommon situation the lack of
connection hardly seems as serious a problem as the presence of the common
part where points are difficult to classify into one cluster or the other. This more
serious problem of difficulty in classification occurs often in less pathological
appearing examples.

FIGURE 3

To overcome the difficulties rising from the above approaches we propose to
introduce a modification of the k means method where each cluster determines
its own metric, the Mahalanobis distance for that cluster. The possibility of using
these metrics seems to have been previously considered only by Rohlf [4] and
in connection with an hierarchical approach.

4. The modified procedure

Suppose that at the nth stage we have k clusters represented by reference points
x= (x'1, x,2 Xk). weights w

1
= (w2,wk.Wk) and covariances A' =
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(Al, An, , An'). Corresponding to the reference points x and covariances A,
we have a measurable decomposition of the r dimensional Euclidean space into
T(x, A) = (Tl(x, A), T2(x, A), * - *, Tk(x, A)), where z e Ti(x, A) only if

(4.1) (z - xi)'Ar (z - xi) _ (z - xj)A7'(z- xj), 1 _ j _ k.

If a new observation Z is selected at random, we let x7+ = x4, w7+1 = wi, and
Ai+1 = A7 if Z ¢ Ti(xn, An). If Z e Ti(x", An) we let

(4.2) .+ +

and, setting Bf = w7nA7, we let

(4.3) B7f+1 = B7 + w
i

(Z - XZ)(Z - Z)',
B I13 0w+ I L

l+l = Bin + w n+I(Z - xn+l)(Z - xz+ly).
The motivation for this formula derives from the following algebra. Given m
observations Yi, Y2, , Yi with mean urn let

m
(4.4) B= mAm = (Y1/ - Um) (Y. - Ur)'.
Then

(4.5) B*+, = Bm + Ym+lYm+l + mumun - (m + l)um+1u;n+i,
where

(4.6) (m + 1)Um+1 = mum + Ym

It is easily seen that
m

(4-7) BM1* -B* =m (Ym+l - Um)(Ym+ - Um)+1 m m±U+ 7I,~m+
- m+I (Ym+i - Um+i)(Ym+i - Um+i)'-m

Thus, except for a scale factor, the covariance matrix Am changes by the addition
of a matrix of rank 1. This has a desirable aspect, for if C is nonsingular and

(4.8) D = C + hh',
then

(4.9) D = C-' _ (C'1h)(h'C-1)
1 + h'C-lh

Therefore the A7 can be inverted recursively.
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Thus far we have an algorithm for applying the modified method once initial
values x1, w1, A' are obtained. Some suggestion is necessary for initiating the
iterative procedure. It is possible to take the first k observations as the com-
ponents of x1. To avoid singularity it is desirable to start with the Ai as positive
definite symmetric matrices. These can be arbitrary, say the identity matrix.
Alternatively some prior insights or previous information could lead to alter-
native suggestions. The value ofw1 could be (1, 1, * - *, 1)' or may also be assigned
in a more or less arbitrary fashion. One can avoid unnecessarily rapid early
fluctuations in A" by starting w1 with large components. Alternatively by selecting
the Bt to be relatively "large" in magnitude one can reduce the early fluctuations
in A'. An advantage of large Bt with small w1 over large w' is that the initial
reference points are not given undue weight.

5. Comments

5.1 Economic variations. The computational cost per iteration of the pro-
posed modification is greater than that for the Euclidean metric version by an
amount necessary to compute the revised A and the k distances. This extra cost
is of the order of magnitude of kr2 where r is the dimensionality of the space.
If r is large the extra cost may necessitate the use of some short cuts.
One possibility that may be worth exploring is to decompose Ai into principal

components. Then one can confine attention to a smaller dimensional space
which is spanned by characteristic vectors corresponding to a few of the largest
characteristic values from each of the Ai. Thus using three vectors from each of
five groups yields a 15 dimensional space which leads to a considerable savings if
r is say 50. To use this technique effectively one would have to carry out a sub-
stantial number of iterations with a given subspace before recomputing the
principal components.
A variation of this approach is to separate the characteristic roots of Ai into

two groups and to approximate distances. To illustrate suppose AI has charac-
teristic roots Al _ A2 ._ * 2*,, > A,,, +1 ... _ A, and corresponding vectors
u1, U2, * *, Ur,. Then an arbitrary vector z may be decomposed so that z = I ziui
where the zi are the projections ofz on ui and the distance zA z = , 1zA . This
may be approximated (from below) by

r r ri r rl\

(5.1) Z 'z +2+-1 1 E Zi= E A-Zi + I EZ- Zf.
i=l =l+ = i=l i=l

Thus all that are required are the lengths of the projections of z on the first r,
characteristic vectors and the Euclidean length of z. With this variation it is also
desirable to use the Ai and ui for several iterations before recomputing.
One could elaborate on this variation by dividing the Ai into several groups.

It is questionable that this would help much.
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It should be remarked that as the dimensionality of the space increases, the
sample size necessary to obtain reliable results tends to increase. At this point it
would be difficult to anticipate the extent.

5.2. Singular covariances. If some of the clusters lie in proper linear sub-
spaces of the Euclidean space, particularly if they lie in different subspaces, the
ability to distinguish the clusters should be very great. In practice this desirable
situation means that we deal with covariance matrices which are singular or
almost so. Initiating the iteration with nonsingular matrices Ai leads, through
equation (4.3) to a sequence of matrices which are nonsingular. However, in the
above described situation, these matrices should tend to be successively closer
to singular matrices. While no enormous difficulty is anticipated in the inversion
through equation (4.9) one should be prepared to recognize the phenomenon as
it develops, since its presence points to potentially important properties of the
data.

5.3. Relevance of modified approach. The situation in which the procedures
described seem most relevant is when the population consists of a set of clusters
each ofwhich resembles the ellipsoidal form of a multivariate normal distribution
and the covariance structures of these clusters are substantially different and
preferably confined to different linear subspaces. Clusters which tend to curve,
particularly those cases where some points of one cluster tend to be closer to
points of another cluster than to other points of the same cluster (see Figure 4),
should not yield much information to our modified approach.

FIGURE 4

5.4. Coarsening and refining. Assuming multivariate normal distributions
one would expect that (Z -xZ)'A '(Z - Z) would have the chi square distribution
if z is in the ith cluster. Thus large or small values of this statistic could be used
for coarsening and refining the clusters where the discrimination between large
and small should relate in part with the percentiles of the chi square distribution.
Such a procedure is recommended here with reservations since nonnormal be-
havior will alter the distribution of (Z - Z)'Ai(Z - x') and it seems to be more
conservative to keep track of the empirical distribution of means and variances
of substantial numbers of recent values of these distances to see what is unusually
large or small.

5.5. What is a cluster? The k means method is an approach to cluster analysis
based mainly on the "metric" concept of a cluster as a set of points which are
closer to one another than to other points. Another general approach which
requires more calculation, if one does not use sampling creatively, is to regard a
cluster as a set of points eaeh of which has a nearby neighbor of the cluster.
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Although in most illustrative examples in two dimensional space the informal
application of both approaches yields the same common sense idea of cluster;
this is not necessarily the case. It is important to prove some theorems which will
establish properties of this distribution p which will imply that both approaches
yield the same results. Otherwise one must wonder whether one computationally
convenient method will yield unrecognizable clusters from another point of view.
Part of the weakness of the highly nontrivial MacQueen conclusions derives in
part from requiring too general a domain of applicability. It may be easier to get
stronger results for those distributions p for which various approaches coincide.
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