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1. Introduction; motivating examples

1.1. Example 1. Rates of mortality. Standard methods for the investigation
of human mortality will produce statistics such as those given in extract in
Table I. The mortality rate at age x is interpreted as a measure of the mortality
risk for women born in the year 1968 minus x, and the corresponding number
"exposed to risk" in Column 2 is used as a measure of the accuracy of this rate.
(This will be made clearer later on.) Unless the population is substantially larger
than the one producing these data. the diagram of the sequence of rates, plotted
against age, will have a rather rugged appearance. Figure 1, based on the same
data as Table I, shows the typical form of such diagrams. There seems to be a
universal conviction, however, that "real mortality" would be portrayed by a
smooth curve, and that any irregularities of curves of observed mortality rates
are due to accidental circumstances. The observed rates are then regarded as
"raw" or primary estimates of the underlying "real" rates, and graduation is
employed to get a smoother curve.
A number of techniques have been developed to graduate age specific

mortality rates, as can be seen from any text on the subject. (See, for instance,
[55]; [59], pp. 145-197; [83], pp. 216-237, 243-244, and 251-252.) Most of
these methods have been developed by intuitive arguments, at least initially, but
investigations of statistical properties of some of them have also appeared [1];
[2]; [43]; [44]; [46]; [61]; [69]; [71]; [76]; [83], p. 252. One class of such
methods consists in fitting a parametric function to the observed rates. We
shall call this the class of analytic graduation methods.

Quite a number of functions have been suggested for analytic graduation of
mortality rates [45], pp. 236-238; [67], pp. 453-454; [79], pp. 79-85; [83],
pp. 56-60 and 243-244. By far the most commonly used for the adult ages is
the Gompertz-Makeham formula

(1.1) g.(a, f, c) = L+ PCx for P > 0, c > 1, a > -Pcxmin,
where x represents age attained. We have fitted this function to our data in
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Figure 1 by minimum X2. Other common methods are least squares and some
moments methods. We shall describe each of these in turn.
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FIGURE 1

Age specific mortality rates per 1000.
Females, Oslo, 1968.
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TABLE I

AGE SPECIFIC MORTALITY

FEMALES, MtTNICIPALITY OF OSLO, NORWAY, 1968

Column 2 shows arithmetic mean of the number of persons at a given age as of January 1, 1968,
and the corresponding number as of December 31, 1968.

Column 3 shows age at death taken as 1968 minus year of birth.
Column 4 shows ratio between entries in columns 3 and 2. multiplied by 1000.

Source: Central Bureau of Statistics of Norway.

Mortality rate
Age Exposed to risk Deaths per thousand

1 2 3 4

40 2798 1 0.357
41 2924.5 3 1.025
42 3156 6 1.901
43 3272.5 6 1.833
44 3465.5 6 1.731

45 3639 11 3.022
46 3770 5 1.326
47 4057 10 2.464
48 3886.5 10 2.573
49 3650.5 10 2.739

80 1204.5 111 92.154
81 1064 81 76.127
82 930 118 126.881
83 835 90 107.784
84 709.5 101 142.353

85 615.5 74 120.227
86 502 97 193.227
87 408 68 166.666
88 341 66 193.548
89 378 53 140.211

90 218.5 43 196.796

1.2 Example 2. Rates of fertility. A standard investigation of age specific
human fertility would produce a table quite similar to Table I, except of course
that column 3 would contain numbers of births (or usually numbers of liveborn
children) by age of mother. A corresponding diagram would look something
like the one in Figure 2, and graduation would again give a smoother curve.
A fertility curve of this sort closely resembles certain density functions, and

one category of functions proposed for the analytic graduation of fertility curves
consists of densities from the Pearson family [13]; [27]; [45], pp. 140-169;
[53]; [56]; [73]; [77]; [80]; [81]; in particular Pearson type 1, 111, IV, VI, and
the normal density, multiplied by a constant.
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Another category of graduating functions consists of polynomials in x [11],
[27], such as

(1.2) b, (a, b, c, d) = (x -ao + 1)(, X)2(a + bx + CX2 + dx3),
where x stands for age of mother at childbearing, and where [at, ,#> is the fertile
period for females. It is customary to take 3= 15 and , = 45 or0 = 50, but in
certain cases a and # occur as parameters which are estimated [13]; [54]; [77].

The Hadwiger function,

(1. 3) hb(R, T, H,d) = ( 1) exp - H2b + 2-x3),(1.3)h~(R,T,H,T)= R( -L d) x{ x12 d + T d-2}

with R > 0, T > 0, H > 0, d < a, is a third type of graduating formula [27];
[28]; [31]; [45], pp. 149-169; [80]; [81]. (We follow Yntema's notation.)
Other functions have also been suggested [12], [48], [49], [50], [54], [72].

Naturally, the same type of functions will be used for the graduation of other
vital rates whose diagrams have the same general form as fertility rates, such as

marriage rates [22], pp. 99-101, and [49].
1.3. The above age specific rates of mortality and fertility are examples of

the kind of vital rates which occur in fields such as actuarial science, biostatistics,
and demography. In the present paper we shall make a contribution to the
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statistical theory of curve fitting as applied to such rates in general. We shall
suggest a probabilistic model within which the rates appear as estimators for
certain parameters called forces of transition, and shall show how the analytic
graduation can be interpreted as a procedure used to further estimate a set of
"more basic" parameters, namely those of the graduating function.
The model will be introduced in Section 2. In Sections 3 and 4, we describe

how the rates appear within the model, and Sections 5 to 9 are devoted to the
study of analytic graduation methods. We shall be concerned mainly with the
asymptotic statistical properties (as the population size N increases) of the
estimators. Most of our results are straightforward consequences of general
asymptotic theory, and we shall often use standard theorems from that field,
like those of Chapters 4 and 5 in [10] and Theorem 4.2.5 in [3], without explicit
reference. We shall quote references whenever we use a deeper result.

Since we use standard theorems, it is not surprising that we can prove theorems
which correspond to previous standard results. Thus (speaking informally here)
we shall see that none of the general estimation procedures we study will be
better than one of the maximum likelihood type, and that a (modified) minimum
x2 procedure is equally good, while moment methods will usually give less
favorable results.
We feel that there may be a need for some explanation why procedures of the

type which we shall describe are preferred to certain others. Rather than
breaking up our presentation of the techniques involved by giving parts of this
explanation as we go along, we have preferred to include it all in Section 10.

Apart from what is contained in Sections 1.1 and 1.2 above, no numerical
examples will be given in this paper. Numerical investigations are planned and
will be reported at a later date.

2. A Markov process model

2.1. The general model. To describe the phenomena at hand we shall use a
Markov process model. Let yt be the sample function value at time t of a time
inhomogeneous Markov process with a denumerable state space I and a con-
tinuous time parameter restricted to some finite time interval [0, 4>. Let the
transition probabilities be

(2.1) Pi,J(s, t) = P{y cE JIys = i

for 0 < s < t < C, and i E I and J c I, and assume that Pi, I (s, t) _ I and
lim Pi, j(s, t) bi j (a Kronecker delta) as t.Is. We introduce the forces of
transition,

(2.2) Pi,j(s) = lim Pij(s, t)/(t - s) for i j,t4s
and the forces of decrement,

(2.3) pi(s) = lim {1 - Pii(s, t)}/(t -s),
t4s
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for 0 . s < 4, and assume that all pi and pi,j are finite and integrable over
[0, 4>. We also assume that

(2.4) H= E i,j for eaeh i E I.
jel -i

We shall call a state i absorbing if pi = 0.
The problem which leads us to study analytic graduation consists in finding

a method for estimating one or more of the p,u j ( ) from data of the type which
one encounters within the fields of application mentioned at the beginning of
Section 1.3.

2.2. Examples. We shall give some examples to show how models in the
applications appear as particular cases of the general model in Section 2.1 above.

(i) Our simplest example will be a model with only two states, called "alive"
(state 1) and "dead" (state 2). State 2 is absorbing, and there is only one nonzero
force of transition and of decrement, namely,

(2.5) '( ) = Pl( ) = /11,2(.)-
called the force of mortality. The rates of Section 1.1 will be seen to appear
within this model. The time parameter is represented by a person's age.

(ii) The age specific fertility rates of Section 1.2 can be interpreted within a
model with a double infinity of states. A woman will be said to be in state (k. 1)
at age x if she is alive then and her parity is k, that is, she has had k births,
k = 0, 1, 2, . She will be said to be in state (k, 2) at age x if she has died
within age x and her parity at death was k. All states of the form (k. 2) are
absorbing. We select two suitable functions, u(*) and (p(-), and set

(2.6) L(k, 1),(k,2)( ) = /( ),

and

(2.7) l(k, l),(k+ 1) ( ) =p( )

for k = 0, 1, -, while all other p,u j = 0. The function p will be called the
force of mortality, and (p will be called the force of fertility. Again the time
parameter is represented by the woman's age. This model, which we have
studied in some detail previously [36], is not particularly "realistic", but it is
probably the simplest one in which the rates of Section 1.2 can be meaningfully
discussed. More realistic fertility models of this type have appeared elsewhere
[37], [38].

(iii) To describe marriage formation and dissolution, we suggest a model with
five states, called "never married" (state 1). "married" (state 2). "widowed"
(state 3), "divorced" (state 4), and "dead" (state 5). State 5 is absorbing. The
following forces correspond to impossible direct transitions, and are therefore
identically equal to zero: pi 1 for i > 1, ,34, Y4,3, p5,j forj < 5. The model
applies to one sex only, while the other sex appears only implicitly, as a kind of
shadow factor. We have also looked at marriage models elsewhere [41].



ANALYTIC GRADUATION 575

Other models of this type have been studied by, for instance, Du Pasquier
[21]; Sverdrup [70]; Simonsen [66]; Chiang [15], Chapters 4, 5, and 7; and
Hoem [35]. Compare also [25] and [64].

In each of these models, a state i E I corresponds to some vital status, that is,
a marital status, a social status, a birth parity, and so on. A transition similarly
corresponds to a vital event, such as a death, a birth, a marriage, a divorce, and
so on. An individual sample path will be visualized intuitively as a person (or
sometimes a group of persons, such as a household or a family) moving through
some of the statuses of the system specified. The sample paths will be taken as
stochastically independent.

2.3. Seniority. In demographic models one often wishes to distinguish
between an age parameter (which may be actual age obtained, duration of
marriage, interval since last previous birth, or the like), calendar time, and
observational time. It is the age parameter which corresponds to the time para-
meter in the Markov process of Section 2.1. In a general model it may be useful
to have a separate name for this (unspecified) age parameter, covering all inter-
pretations which it may have in the applications. Following Henry [33] who
calls it anciennete, we shall use the name seniority for it.

2.4. Some basic assumptions about the forces of transition. In what follows,
we shall disregard the forces of transition which are identically equal to zero
because they correspond to impossible direct transitions by the definition of the
model. Even if the state space I can be (countably) infinite, there are many cases
where only a finite number of the nonzero forces of transition are distinct.
[Compare Example 2.2, (ii).] We shall assume everywhere that there exist A
nonnegative real functions, Al, *, sA,such that each pi,j, not identically zero,
equals some 2a, and such that for each Aa there exists a ,j = Aa. By (2.4), we
may then write

A

(2.8) pi= E C.(i),A for each i E I,

where

(2.9) ca(i) = Z 1.
{jel- i:i,j = Aa}

Each ca(i) < oo because all pi < xe. Equation (2.8) shows that for any given
i e I, exactly 1aca(i) of the pi,j can be positive, that is, a finite number of the
p,uj only, while the rest are identically equal to zero.

Let us also assume everywhere that

(2.10) sup {jui(s): 0 . s < ,ieI} < oo.

This assumption is not necessary for what follows, and it can be relaxed [39];
[40], Section 5, but one will expect it to hold in practice and it will simplify our
exposition. It follows from (2.10) [40], Section 3.1, that there only exists a finite
number of distinct vectors c(i) = (c1 (i), , cA(i)). Let us call these (cb, 1*
cb A) for b = 1, 2, * , B, and let
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(2.11) Yb Z Cb,a2Aa for b = 1, 2, * B.

Then each nonzero pi equals some Yb and for each Yb there is a pi which equals it.
There is, thus, only a finite number of distinct forces of decrement as well. (This
need not be the case if (2.10) does not hold.) For each i E I, let b(i) be defined
by pi = Yb(i). Then, by (2.9),

(2.12) Cb(i),a E 1.
{jel -i:Li,.j = A,

Let
C1,1, * * X Cl,A

(2.13) c . :1)

CB,1, ''X CB, A

We shall finally assume everywhere that the rank of c is B. The extension to
rank c < B is easy [40], Section 3.1, but it leads to slightly more complicated
formulas.

3. The primary or "raw" estimates

3.1. Approximation of the ;a. by step functions. As a first step in our descrip-
tion of the kind of estimation methods which have produced the rates of
Sections 1.1 and 1.2, we shall approximate the Aa by step functions. The
seniority interval [0, C> is paritioned into D subintervals, [CO, C1>, [C1, C2>
* * * X [D- 1, CD> with CO = 0 and CD = C. Let Id(-) be the indicator function of
the interval [Cd- 1 , Cd> and let

D

(3.1) ;Aa (*) E 'Za,dId(O).
Here each ;a, d is a constant chosen in such a way that it can represent the values
of A. in [Cd-1, Cd>. If Aa is assumed to be a nice and smooth function, with
certain known monotonicity properties, say, then A' will inherit these properties,
modified of course, by the fact that the latter is a step function.

In what follows, we shall assume that the A' give an adequate representation of
the Aa, and our calculations will be made as if we actually had Aa = A' for a =
1, 2, , A.

3.2. More about the Cd- In this presentation, we use the same partitioning
{Cd: d = 0, 1, * - *, D} for all Aa. In certain situations one would rather use
different partitionings for different 'ia. The results of this paper will continue
to hold for such cases with only quite obvious modifications [37].
The approach sketched in Section 3.1 is closely related to histogram methods

for the estimation of a probability density or a generalized failure rate [6], [74],
[75]. Although the lengths of the histogram intervals are often made to converge
to zero as the number of observations increase, this is not the case for the.
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seniority subintervals above. The (d will typically be selected according to con-
ventional rules established with different considerations in mind than statistical
convergence properties. When 4 is of the size order of several decades, as is
often the case, the seniority interval [0, C> will usually be partitioned into one
year or five year intervals, possibly with a longer "tail" interval at the upper end.
There is a tendency to use shorter subintervals in a large population than in a
small one, at least if the data are reliable, but an interval length shorter than one
year is commonly used only in certain standardized contexts, such as in
investigations of infant mortality, where C equals one year of age [8], p. 211;
[30], Tables 38 to 42; [67], p. 84. There seems to be no tendency toward
letting such interval lengths decrease to zero.

3.3. On the observational plan. There are a number of observational plans
(or ascertainment methods) in use in the fields of application we have in mind,
and one could construct others from ideas used in life testing. (See, for example,
[20], [32], [65], [82].

In the present paper we shall only consider observational plans where a
group of people are followed continuously over some time interval [0, T>. The
data collection will consist of noting what happens to each person while under
observation, that is, which states of I he visits and just when vital events occur
to him.

It is characteristic for the types of populations which occur in practice that
some people enter them and others leave during the study period. They may
also be heterogeneous with respect to seniority, in the sense that those who
come under observation (whether they are in the population from the outset or
enter later on) may have different seniorities at time T. We want to cover such
possibilities. Let, therefore, N be the number of individuals ever observed. Let
us say that person number k enters the population at some time tk E [0, T> with
seniority Xk and a status corresponding to state rk, and that he stays there at
least until time tk + Zk E [0, T], when observation is discontinued. We shall
take the entrance time tk, the initial seniority Xk, the initial state rk, and the
exposure time Zk to be preassigned, that is, not random. (Other possibilities are
discussed in [40].) Any period spent in an absorbing state, for instance after
the death of the individual, is included in the period of exposure [tk, tk + Zk>,
although of course no actual observation is made after a path has entered such
a state.
We shall also take N to be nonrandom.
3.4. Estimation of the a, d. We get an estimator for La' by plugging

estimators ia,d for the a,d into the right side of (3.1). (This is how the rugged
curves in Figures 1 and 2 have arisen.) Standard estimators used for this purpose
are occurrence/exposure rates, like those in Sections 1.1 and 1.2 [62], [63].
We shall see how these arise.
Some of the - ,d may be known to be zero because they correspond to vital

events which are impossible during [Cd- 1, d>, such as births after menopause.
We will take the other Aa, d to be strictly positive. Let



578 SIXTH BERKELEY SYMPOSIUM: HOEM

(3.2) = {(a,d): ,,d > }-

We can regard {Ia,d: (a, d) E SI as a point in the space

(3.3) A, = X {Xa,d > 0}.
(a, d)eJg

The situation in hand will usually restrict the possible points we actually can
have to a proper subset A of AO. We shall take A to be open.
Now let Mk(a, d) be the number of transitions observed for path number k

during the seniority interval [Cd - 1, Cd>, direct from any state i to any state j
where ij, j = Aa. Let Uk(i, d) be the total time spent in state i during [Cd -1I, d>
by this path, and let

(3.4) Vk(b, d) = E Uk(i, d).
{iel: Ai = Yb}

Then Vk(b, d) is the total time spent in any state i where pui = yb by path k during
the interval mentioned. Finally, let

B

Lk(a, d) = E Cb, aVk(b, d)
(3.5) b=1

5= Cb(i),aUk(1, d),
ielI

and let us use the notation X = Sk Xk, where Xk is any quantity depending on
k. Since the forces of transition are represented by step functions, we can then
use the same method as in [37], Section 4.8 to write the likelihood in the form

f D B

(3.6) H M(a, d) eXp Yb,d ( d)
(a,d)eS9 d=1 b=1J

r a, d) exp Aa-E a, d L(a, d)
(a, d) _T (a, d)c-9

where Yb,d =al Cb,aAa,d. (Compare (2.11).) Thus we are dealing with a

Darmois-Koopman class of probability distributions, and one may show [40],
Section 3.1, that {M(a, d), V(b, d): a = 1, 2, * A; b = 1, 2, ,B; d =
1, 2, D} is minimal sufficient for the Aa,d. An unrestricted maximization of
the likelihood function would give the estimators

(3.7) ia,d = M(a, d)/L(a, d),

which are the occurrence/exposure rates we mentioned. (We arbitrarily set
ia,d = O if L(a, d) = 0.) The point {lakd: (a, d) E C} need not lie in A, nor
even in Ao if some ia,d = 0- However, under certain conditions, spelt out in
Theorem 1 below, the probability that the point lies in A increases to 1 as
N-+ oo.
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3.5. Asymptotic properties of the )a,d. For each (a. d) E C, the variables
L1 (a, d), ... , LN(a, d) will not generally be identically distributed unless all
(Xk, Zk, rk) are equal. Similarly for M,(a. d), ... . MN(a. d). Nevertheless, one
can prove the following consistency theorem [40], Section 4.2:
THEOREM 1. Assume that P{L(a, d) > 0} --+1 as N -~ o, and that a finite

positive limit

(3.8) La,d = lim EL(a, d)/N

exists. Then La,d converges to 2a d in probability as N --+ oc.
To arrive at a theorem concerning the asymptotic distribution of 2a,d as

N - aoo, we make an additional set of assumptions, which establish a grouping
of the (Xk, Zk, rk) at a finite set of strategic values. More precisely we make

ASSUMPTION 1. There exists a finite set of possible initial seniorities,
Y1, YH , a finite set of possible exposure times, w1 wj, and a finite set of
possible initial states, s8, SQ, such that each (Xk, Zk, rk) must equal some
(Yh,wj, Sq). We let

(3.9) Xh, j, q {k: (xk. Zk, rk) = (Yk Wj. Sq)}

and let Sh, j, q(N) be the number of elements in th, j, q We assume that

(3.10) ah,j,q = lim Sh j,q(N)/N
exists for each (h, j, q).

If h, j, q(a. d) = ELk(a, d) for k c fh,j,q, we get under Assumption 1 that the
La d of (3.8) satisfy

(3.11) La, d = E h,j,qEh,j,q(a, d).
h, j, q

We may then prove ([40], Section 4.2; compare [47]) Theorem 2.
THEOREM 2. Under Assumption 1, the variables NI(i.a,d - A,d) for which

P{L(a, d) > 0} --+1 as N -+ a, are asymptotically independent and normally
distributed with means 0 and asymptotic variances

(3.12) 2d = as. var N'12 (a,d - a,d) = a.dLa,d.

We note that under the assumptions of Theorem 2,

(3.13) a,d = NAa,d/L(a, d)

is a consistent estimator for aa,d. Thus we see a justification of the use of the
number exposed to risk [which is L(a, d) here] as an intuitive measure of the
accuracy of the corresponding rate of transition 2a as mentioned in Section
1.1 for a special case.
We also note that we do not need to know the value of N in order to

estimate the Aa d and the asymptotic variance a., d/N of the a, d.
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4. Non-observation of part of the state space

4.1. A problem. In Section 3 we assumed that one could observe what
state a sample path visited at any time. This need not be the case in practice.
Let us give two examples.

(i) Demographic studies will often be concerned with people living in a
restricted area, such as a country or part of a country, and there will be some
in and out migration. Say that a study of marriages is carried out, perhaps
based on a model like the one in Section 2.2 (iii). If a person initially lives in
the study area, then leaves and stays away for a while, and subsequently returns
while the study is still being conducted, it rarely happens that his changes of
marital status (if any) while outside the study area are traced. In many cases
one will know his marital status on departure from the study area, as well as
his status as he returns, but nothing more.

(ii) Similar problems occur in studies of the mortality of insured lives. A
person may cancel his insurance policy and be uninsured for a while, then take
out a new policy, which may be cancelled again after a while, and so on. The
insurer will keep track of deaths among the persons covered by his policies,
but will not usually know what happens to the uninsured.
The question is how one should take account of phenomena like these in the

estimation procedures.
4.2. Formalization of the two examples.
(i) To describe the example in (i) above in terms of a probabilistic model, let

II = {1, 2, 3, 4, 5} be the state space of the example in 2.2 (iii), let I2 = {1, 2},
and let I = I, x I2. An individual with marital status j will be said to be in state
(j, 1) if he lives in the study area, and in state (j, 2) if he lives outside it. A
migration out of the study area will correspond to a transition from a state
(jil, 1) to a state (i2, 2). A migration into the study area will correspond to a
transition from a state (i2, 2) to a state (jl, 1). In most cases, j1 = j2. In any
case, we shall take j, to be observable. Whatever moves the sample path
otherwise makes while in the subspace {(j. 2): j E I, } will not be observed.

(ii) To formalize the second example above, let us use four states, called "alive
and insured" (state 1), "alive and uninsured" (state 2), "dead while insured"
(state 3), and "dead while uninsured" (state 4). Which transitions are possible
and which are not follows directly from the state names. Except for transitions
from state 2 to state 4, all transitions (and the dates on which they occur) are
recorded. (This is essentially the model studied by Du Pasquier [21], Fix and
Neyman [25], and Sverdrup [70], except that they took all transitions as
recorded. Recording problems different from the present one have been studied
by Hoyland [42], Kruopis [47], and others.)

Let us take all forces of transition to be constants. This will suffice for our
purposes, which are those of illustration. Generalization to other cases is
simple. We shall take the forces of mortality of the insured and the uninsured
to be equal, and let It = U1,U3 = k12,4. Let v = / 1,2, P = /2,1, a = I/ + V,
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= p + p. Sample path number k is followed over the period [0, Zk], and
we say that k E X- if this sample path is in state 2 or 4 at time Zk, that is, if
person number k is uninsured then. All N paths start in state 1, and they make
a total number of Mi,j jumps from state i to state j, for (i,j) E {(1, 2), (1, 3),
(2, 1)}. Let W denote the total time spent in state 2 by the paths k 0 X', and
let V be the total time spent in state 1 by all paths taken together. For k E X,
let Zk - Uk be the time of the last jump recorded from state 1 to state 2 for
path k, that is, the time to last observed cancellation. Then the corresponding
likelihood can be written as
(4.1) e f-WVMI,2pM2,1pM1,3#IK H (i + pe Bk),

keY(

where K is the number of elements in S. The maximum likelihood estimator of
v turns out to be

(4.2) =M1,21,
which is what (3.7) would have given. (Ml,2 is the number of cancellations
observed.) Closed, explicit expressions for the maximum likelihood estimators
of p and p do not exist in this case. We can still get an estimator of i, however,
by letting

(4.3) a = M1,3/V.
(M1, 3 is the number of insured deaths.) The properties of v and A2 will appear
by specialization of the results in Section 4.3 below.

4.3. The general case. Consider now the general model with the assumptions
made in Sections 2 and 3.1. Let the state space I be partitioned into two disjoint
subsets, H and J, and assume that all transitions between states in H can be
recorded, while no transitions between states in J are recorded. Any transition
from a state in H to one in J is recorded, as are all jumps from J to H. For both
kinds of jumps, one also records the state to which the jump is made.
We redefine the quantities M(a, d) and L(a, d), initially introduced in

Section 3.4, as follows.
Let d be the set of the a for which there exists a pi,j, with i E H, such that

Piij = A.. For each a E d and each d E {1, 2, * **, D} let M(a, d) now be the
total number of transitions observed during the seniority interval [d -1 Cd>
for all paths taken together, direct from any state i E H to any state j E I - i
such that pi, j = A.. Furthermore, let

(4.4) L(a, d) = E Cb(i) aU(i, d),
ieH

with Cb(i), a given by (2.12) and U(i, d) defined as in Section 3.4. For a E X, let A., d
be given by (3.7) with the new definitions of M(a, d) and L(a, d). Then Theorems
1 and 2 hold verbatim for the a E X, even though the Aa, d need not be maximum
likelihood estimators, as demonstrated in the example in (ii) above. If there
does not exist any pi, j, with i E J, such that p, j = ,a for any a E X, the A. d will
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be maximum likelihood estimators, in the sense that they maximize the likelihood
under free variation of the a, d in A0.

If the statej cannot be recorded when there is a jump from a state i E H to a
state j E J, the results above continue to hold, provided we again redefine the
quantities involved in a natural way. In the definition of M(a, d), we must only
include jumps from i to j where both i and j ¢ i belong to H, and where
p1, j - A.. The set &1 is similarly reduced. This time we also redefine cb, a by letting

(4.5) Cb(i),a = E 1 for is H,ads.
{jeH - i: jui, j =A.)

Using (4.5), we define L(a, d) for a E sl by (4.4).

5. Conventions and notation relating to analytic graduation

5.1. Analytic graduation. Although an original ). is assumed to be a nice and
smooth function, the estimators k d now in use, such as those in (3.7), will
typically produce a a# which is considered too irregular, except in large popula-
tions. (Compare the account on page 561 in [18].) Analytic graduation then
consists in selecting some nice, parametric function ga(v, Oa) and some repre-
sentative seniority (d from each interval [Cd-1, Cd>, and in getting an estimator
Oa for Oa by fitting the values {ga(4d, Oa): d = 1, 2, * * *, D} to {a,d: d =
1, 2, - * *, D} by a suitable method. The function ga (', O), usually regarded as
a function of a continuous seniority variable x, represents the final estimator for
the function Aa()-)
Most methods for constructing an estimator Oa are based on analogies with

estimation methods used in other contexts [1], [59], [83]. We shall study least
squares and minimum x2 methods in Section 6 [7], [12], [16], [27], [28], [48],
[49], [50], [61]. (See also [60].) In Section 7, we shall discuss moment
methods [11]; [13]; [28]; [45], pp. 140-169; [53]; [56]; [73]; [77]; [80];
[81]; and in Section 8 we shall introduce a technique of the maximum likelihood
type. Some authors have also used methods involving the minimization of sums
of absolute deviations [17], [28].

5.2. Further assumptions and conventions. We shall be working with a single,
fixed value of a, and shall therefore suppress this subscript except where it may
cause confusion.

In what follows, we shall disregard the fact that some of the id may be known
to equal zero. The case where some Ad actually do equal zero needs only trivial
notational modifications.

Let

(5.1) gd(O) = 9(4d, 0),
(5.2) g(0) = (91 (0), , 9D(0))'-
(The prime denotes a transpose.)
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ASSUMPTION 2. We assume that 0 varies in an open subset 0 of the G-
dimensional Euclidean space RG, where G < D. Let g be a one to one, bicontinuous,
continuously differentiable mapping of E into

D

(53) AO= X {Xd>O}-
d = 1

gi (0),-,e g I(0)

(5.4) J(0)
aDefieg (), aG g1(0)

and assume that J(O) has rank Gfor each cE 0.
We denote the true value of 0 by 00, and let

(5.5) Jo = J(00), AO = g(00), and Lo = lim EO,L(d)/N.

[Compare (3.8).] We also let

(5.6) d,2 - id/LO and E = diag (U2,0, 2.,)
[compare (3.12)], with the convention that we write M = diag (mn1. , irnS)
if M is a diagonal S x S matrix with the m, as diagonal elements.

Let us denote it by a right superscript N if we want to stress that a quantity
depends on N.

In Sections 3 and 4 we brought out some estimators A(N) = (D1).... .
of the common occurrence/exposure type for the parameter A = (A1, AD)',
and we stated some theorems concerning their asymptotic properties. In much of
what follows, it is precisely these properties which are of interest, and not the
form of the estimators themselves. In Sections 6 and 7, therefore, we shall take
A(N) to be any estimator for A, not necessarily the one given by (3.7), and we

shall continuously make

ASSUMPTION 3.

(5.7) N AA 2Qo (eS)

where X(0, LO) is the multinormal distribution with mean 0 and a positive definite
covariance matrix Lo. which need not be the same as Y°.

6. Analytic graduation through minimization of a quadratic form

6.1. The graduation method. Let M be a positive definite, symmetric D x D
matrix whose elements mi,j may (but need not) be random variables. Let

(6.1) Q(0) = N(A- g(0))'Nl( - g(0)).
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Assume that there exists a 0, say 0, which minimizes Q(0). We shall then take 0 to
be our estimator for 0.
A whole class of graduation methods is generated by the various choices of

the matrix M. Thus if we take M = I, the identity matrix, we get
D

(6.2) Q(0) = N E (id - gd(0))2,

and 0 becomes a least squares estimator. An analogy with the modified minimum
x2 method results from setting
(6.3) M = diag (1/6lv**, 1/D2),
where the 162 are given by (3.13). We then get

D

(6.4) Q(0) = E {M(d) - L(d)gd(0)}2/M(d).
d= 1

If, in particular, g(0) is a linear function of 0, say

(6.5) g(°) = J00 + go

where JO is a known D x G matrix of rank G, and go is a known D x 1 vector,
we get

(6.6) = (J' MJo) - 0 M(A - go).
A particular case of (6.5) is given in (1.2).

6.2. Asymptotic theory. Let {M(N))} be a sequence of positive definite,
symmetric, possibly random, D x D matrices. For simplicity we assume that
the M(N) are not functions of 0. (This can be modified. Compare, for example,
[14], Theorem 5.) Let #N) be a value of 0. if any, which minimizes Q(0) with
M = M(N) and I = 1(N). We can then prove the following theorem by the
methods of general asymptotic statistical theory. (See [51]. All the hard parts
of the proof can be handled by the argument in [9].)
THEOREM 3. Make Assumptions 2 and 3, and assume also that

(6.7) plim M(N) = MO,

where MO is positive definite. With a probability increasing to 1 as N oo, there
then exists a value (N) E 0 which minimizes Q(0), and

(6.8) N~~~~1/2(O(N) - 00) XA'(O, y)(6.8) N1(@^-° X0)

where

(6.9) E = (JoMO Jo) 1 JoMoLoMO Jo (JoMOJo

is positive definite.

COROLLARY. N I {g(0(N)) - A°} f > X(O, J' ZJo)
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REMARK 1. If Mo = Lo , as is the case when we use (3.7) and (6.3), we get
E equal to

(6.10) Eo = (J'0E0 1;o) 1.

REMARK 2. Since G < D, J'0JO is singular.
REMARK 3. If we regard (N) as a mapping from RD to RG (that is, a function

of i), we obviously have

(6.11) #N)(g(e)) = 0 for OeO ,

for any positive definite M(N).
6.3. The choice of {M(N)}. Since different sequences {M(N)} give rise to

estimators {O(N)} which may have different asymptotic covariance matrices,
one will want to know how to select a {M(N)} so as to get a E which is as
favorable as possible. Given two such matrices, E1 and 2, where 2 - iS
positive semidefinite, we shall regard El as the more favorable, since each of the
variances on its diagonal will be no greater than the corresponding variance on
the diagonal of L2. At the same time, J'El1J0 will be preferred to J'02J0
(compare the corollary to Theorem 3), since also J'0 (L2 - L ) J0 will be positive
semidefinite. The following theorem tells us that an {M(N)} with Mo = N-1
will be optimal in this sense.
THEOREM 4. Let L and Lo0 be given by (6.9) and (6.10), respectively, Then
- Lo,0 is positive semidefinite under the assumptions of Theorem 3.
PROOF. (i) Let A be any D x G matrix of rank 0 < D. Then A(A'A)-1A'

is idempotent, so all its characteristic roots equal 0 or 1. Thus I - A (A'A)-A'
has only 0 and 1 as characteristic roots, and this matrix, tnerelore, is positive
semidefinite.

(ii) Let us then prove that o - Jo(J'E- 1 JO)-J'0 is positive semidefinite.
Let B be a nonsingular matrix such that B'EoB = I. Let v be an arbitrary D x 1
vector, and let w = B- v. Then

(6.12) v'{0- JO(J'E'1J0)-J'0}v = w'{I - B'Jo(J'BB'Jo)-'J'oB}w
= w'{I - A(A'A)-'A'}w,

with A = B'Jo. Our assertion then follows from step (i) above.
(iii) Finally, let v be as above, and let

(6.13) w = MOJo(J' MOJO)- Iv
Then J'0w = v and so

(6.14) v'{E - E}v = w{o- Joo,oJ'o}w 0

by step (ii) above. Thus - Lo, 0 is positive semidefinite. Q.E.D.
6.4. The choice of {A(N) }. In Sections 6.1 to 6.3 above, we have focused on a

single estimator {;(N)}. Assume now that two such sequences are proposed, say
{i )} and {I2N)}, both satisfying the assumptions of Theorem 3, with asymptotic
covariance matrices 1/N and E2/N, respectively. Say that L2 - E is positive
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semidefinite. Intuitively one would expect {0N)} to have a more favorable
asymptotic covariance matrix than {O(N) }, when {@(N)}, for i = 1, 2, is produced
from {i(N)} by the method of Section 6.1 with a choice of M(N) which is optimal
according to Theorem 4. This turns out to be correct.
THEOREM 5. If F. and L2 are positive definite and 2 -El is positive semi-

definite, then LO, 2 - 1 is positive semidefinite, where

(6.15) L i = (J'0L,- JO)-1
for i = 1, 2. Here JO is any D x G matrix of rank G < D.

PROOF. If A and B are positive definite D x D matrices with positive semi-
definite A - B, then B' - A-1 will also be positive semidefinite [26], page 55,
Theorem 2.5. From this the theorem easily follows. Q.E.D.

7. Moment methods

7.1. The graduation method. A moment method estimator C(N) of 0 is defined
as a solution of the system of equations

D

(7.1) Xd{ dN) - gd())} = 0 for r = 0, 1, G* *, G - 1,

if it exists. Let

11

(7.2) M=< 2'2. 2.

G-1 <G-1 ..., G-l

Then (7.1) can be rewritten as

(7.3) M{2(N) _ g(#(N))} = 0.

We shall extend this definition, and shall call #N) a generalized moment method
estimator for 0 if it is a solution of (7.3), where M here can be any G x D matrix,
that is, M need not be given by (7.2).
To give an example of an estimator generated by (7.3) but not satisfying (7.1),

we shall consider the King-Hardy method of estimating the three parameters,
a, fi, and c, of the Gompertz-Makeham function in (1.1). Say that we can take
[0, C> to be the age interval [xo, xo + 3h> for some integer h, and that C. =

xo + x for x = 0, 1, * * *, 3h, so that we have one year age intervals. Then the
King-Hardy estimators are the solution (&, ,, c) of the equations

xo+kh-1

(7.4) (ai+ PO) = Hk for k = 1, 2, 3,
x=xo+(k-l)h
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where
xo+kh-1

k= E Ax.
x=xo+(k-1)h

We get [59], p. 167,

(7.5) c^= (H3-H2)/(H2-H1),

and similar formulas for d and ,. Ifwe let mx be a 1 x h vector where all elements
equal x, and let

(in1 mO mO'
(7.6) M= | m0 m1 mO,

mO mO ml
then (7.3) reduces to (7.4) in the case where

(7.7) g~Qx(a, f, c) = X + PC(xo+x)

In applications to analytic graduation, the matrix M is usually nonrandom
and not a function of N or 0. For simplicity we shall only study this case, but
generalization to possibly random M, possibly depending on N and 0, can be
made by standard methods [24], [78].

If, in particular, g(0) is given by (6.5), we get

(7.8) t(N) = (Mjo)l1M((N) go),

provided MJo is nonsingular.
7.2. Asymptotic theory.
THEOREM 6. Make Assumptions 2 and 3, and assume also that MJ(6) is non-

singular for any 0 E e. There then exists a neighborhood Q of g(9) and a one to
one mapping #N) from RD to RG, continuous in Q, such that

(7.9) #(N)(g(0)) = 0

for 0 E 0 and (7.3) holds for all J(N) E Ql. Furthermore,
(7.10) N112 (O(N) - 00) .X/(0, E),
where

(7.11) E = (mi0) I MEO{(Mjo)- M}.

E- Lo, is positive semidefinite. (LO,O is given in (6.10).
PROOF. By Theorem 1 in [24], p. 1054, we need only prove the final assertion

above. Let v be an arbitrary G x 1 vector, and let w = (J'0M') -1v. Then

(7.12) v {-L, 0}v = (Mw)'{o - JoLo,o' } (Mw) _ 0

by step (ii) of the proof of Theorem 4. Q.E.D.



588 SIXTH BERKELEY SYMPOSIUM: HOEM

REMARK 4. By the final assertion of the theorem, the generalized moment
method can never give a more favorable asymptotic covariance matrix for the
estimatior of 0 than the corresponding "optimal" estimator found in Section 6.
REMARK 5. Since i(N) is N'12-consistent for A',

(7.13) P{P(N) EQ} 1 as N -cx.

REMARK 6. The analogues of Theorem 5 and the corollary to Theorem 3
hold in the present situation.
When the generalized moment method is applied to a particular case, it is

frequently modified to suit the characteristics of the situation in hand. We shall
give examples of this in Sections 7.3 and 7.4.

7.3. Modifications, Example 1: Gompertz-Makeham graduation. In mortality
studies using the Gompertz-Makeham formula (1.1), one will frequently find
that c is estimated by (7.5), but that estimators for a and ,B are subsequently
found by some other method, for instance by minimizing

xo+3h-1
(7.14) E (2x - - f3C^X)2

x=xo

[83], p. 225. Let us consider a slightly more general case, and let us estimate a
and ,B by minimizing

(7.15) Q(a, ,B) = N(1(N) - -e_ I3.(N))yM(N)(I(N) - ae (N))

Here {M(N) } is a sequence of matrices of the kind studied in Section 6, e is a
3h x 1 vector where all elements equal 1, and

(7.16) J(N) = (ecO Co+l1 . . .o1 cxo+3h-1)

Assuming that M(N) is positive definite, and letting

(7.17) K(N) = (e, (ff))

we get the estimators

(7.18) (:) = (K(N) M(N) K(N))-1 K(N), M(N)i(N).

Now let mx be defined as below (7.5), let oc, fio, and co be the true values of the
parameters, let

*O = (Cxo°0 * * *, cXO'+ 3h-1l>, Ko = (e, * ),
(7.19) 7y = (co - 1)/{hfiocxo+hl(co, - 1)2},
and

(7.20) - ((K'0MoKo-1KoMo)

We then get
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THEOREM 7. Let p lim M(N) = MO, where MO is positive definite, and make
Assumption 3. Then

(7.21) N12 {(,AX, )' - ( a0, Po, co)' I jPo-) } /10 , sE<W)-

Stevens [68], Patterson [57], Lipton and McGilchrist [52], and others in
their references have studied the estimation of the Gompertz-Makeham para-
meters in a regression model. Stevens [68] found that King-Hardy's method
may be very inefficient there. The estimators developed for the regression model
can also be used for purposes of analytic graduation, and it would be interesting
to see an investigation of their merits in that context.

7.4. Modifications, Example 2: Hadwiger graduation. Consider now the
problem of graduating a set {4x: x = a, a + 1, - * *, B- 1) of female fertility
rates calculated for single year age groups by fitting the Hadwiger function
(1.3) to the rates. If we regard h. as a function of a continuous x, and define

(7.22) 14(R, T, H, d) = X xkh.(R, T, H, d) dx,

then

(7.23) R(R, T, H, d) = R, R(R, T, H, d) = R(T + d),

and the formulas for R' for k _ 2 can be found from the fact that the
corresponding cumulants for d = 0 are

(7.24) Kk = (1)(3)--- (2k - 3)2k-lH2k-2/T3k-4 for k _ 2.

(Compare [45], pp. 150, 151, 160.) No such nice formulas are known for the
discrete case, that is, for

p-l
(7.25) Rk(R, T, H, d) = E x'h.(R, T, H, d),

x=M

where only integer values of x are used in the summation. Rather than
attempting cumbersome calculations with the Rk, and acting on the analogy
between the Rk and the Rk, Yntema [28], [81] has suggested an estimation
procedure which amounts to the following: regard hx as a function of a
continuous x. Let U = T + d.

Then

(7.26) hu(R, T, H, d) = RH

and the mode of the function is

(7.27) M = d + 3T{(1 + 16H4/9)/2 - 1}/(4H2).
One easily sees that M < U. Solve (7.27) with respect to H, introduce the
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result into (7.26), let

(7.28) a-= 43I(Thu/R)2, b = (M -d)T,
and get

(7.29) b = {(1 + a2)1/2 - 1}/a.
For the range of values in which a will usually lie, the right side here is

approximately equal to 1 -a- 1. Solving b 1-I 1 with respect to T after
substituting U - T for d, we get

(7.30) T ; R2/{47r(U - M)h2}.
Now introduce the estimators as follows: Let

(7.31) R= , , U = i x,A/fR.
x=a x=a

(Compare (7.23).) If [y] denotes the integer value of y, let

(7.32) V = [U + 2], h = ;v, M = min {x: ;X _ for all y}
Finally, let

(7.33) T = f2/{4(U- M)h2}, d = 7 -T,
[compare (7.30)], and let

(7.34) 4= hT 7t/R = 4R/{ irh(U-M)}
(Compare (7.26).) Then H = (R, T, d) is an estimator for 0 = (R, T, H, d).
To study its asymptotic properties, we let 0' = (R', T', H°, d0) be the true
value of 0, and introduce

Ro = Ro(00), UO = R,(00)/RO, VO [UO + 2],
ho= hvo(00),

Mo = min{x{cao,c + 1, *,- - 1}: hx(00) _ h'(0°)
for all ye {a, a + , -

To = R2/{4g(Uo- Mo)h2}, do = UO-To
Ho = hOT0 70Ro.

Let e be a (,B-a) x 1 vector where all elements equal 1, let

(7.36) = R i(a- To, a + 1 - To *, ,B- 1 -TO)',
and let

(7.37) 0 = (e, eTO/RO, eToh,,17/RR, tfr).
We then have

THEOREM 8. Under A-ssumption 3,
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(7.38) N1R2{(R, T, X,d)'-(RO, HO, TO, dO)'} X(0, 'EO 4)b

REMARK 7. Note that 0'100 is singular.
REMARK 8. Note also that (RO, TO, HO, do) is not the true value of the

parameters here. No one seems to have looked into the difference (R°, To, Ho, do)
minus (RO, TO, HO, do) in any detail.

8. A maximum likelihood method

In Sections 6 and 7, the estimators for 0 appear as functions of the "raw"
estimator i for A. If one may really assume that la = ga(Oa) for a = 1, 2, *, A,
different approaches may be at least as efficient, however. One obvious possi-
bility is to enter the g.(O.) into the likelihood function and maximize with respect
to the Oa. In the situation of Section 3.4, this will amount to maximizing
.a.a(Oa), where

(8.1) ia(0a) = M(a,d) log ga,d(Oa) - E L(a,d)ga,d(0a).
d d

For simplicity, we shall assume that 01, 02, *.. , OA are functionally inde-
pendent, so that we can maximize the likelihood function (if at all) by maximizing
each 4a separately.

In the situation of Section 4.3, the log likelihood function is of a different
form, but we shall still construct an estimator 0: for 0a by maximizing 1/.
The following theorem holds.
THEOREM 9. Fix a E {1, 2, * A} and let the M(a, d) and L(a, d) be given

as in Section 3.4 or 4.3. Assume that P{L(a, d) > 0} -* 1 as N -+ oc for all d
where (a, d) e W. Make Assumptions 1 and 2.

With a probability increasing to 1 as N -. oo, there will then exist a value
E (a which maximizes S7(O.), and

(8.2) N~~~~1/2(0f N) 00) K./(O, Lo,o)(8.2) N (a oa) > ° 0,,

where L0, 0 is given by (6.10), provided there exist constants ka and ka such that

(8.3) ka > ga,d(Oa) > ka > 0 for all 0a e- Oa-

PROOF. (i) Preliminaries. Suppress the subscript a and fix the true value
00. Let

(8.4) d= {d = E*oL(d), Ld = lim d)/N,

and note that [40], (10),

(8.5) EooM(d) = 2dted-
Let

(8.6) f(1) = E M(d) log Ad L(d))d,
d d
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so that

(8.7) N0O) = (0)
and let

(8.8) Q(A) = EoQ(iA) = E ed{Ad log Ad -d
d

and

(8.9) ?1(0) = Q(g(0)) = E0oo(O).
Finally, let

(8.10) A(A) = Q(A ) - Q(A) = Etd{Ad (log Ad - log Ad) - (A -d)
d

For large enough N, each ed will be positive. For such N, we will have A(A) > 0
for all A :& AO, and A(A) will strictly increase as each IAd - AO increases. For
every £ > 0 there then exists a 6, (8) such that if A(g(0)) _ e then lg(0) -
g(0°)|I < 6 (s), and by the bicontinuity of g there further exists a 3(£) such that
°0 - 001 < 6(). Conversely there exists a 6o(s) such that A(g(0)) . 65(c) if
O-00I<_. Let

(8.11) SE = {0e30: 0- 001 £

and choose E. Choose £' > 0, and let £" be so small that £" 60(), and
6(28") _ s', and

(8.12) 0 < 28" < i1(00) - inf{11(O):0-0},

and let

(8.13) EE" = {0 30: A(g(0)) _ 2c£}.
(ii) Existence of 0*. Let

(8.14) y = sup E {1log gd(0)j + gd(0)}.
d

By (8.3), 7 < CX. Let ATP be the event that

(8.15) IN-'M(d) - Adoedl < s"/7, IN-1L(d) - edl < s"/y.
Then Po.(AE)l, 1. Assume that (8.15) holds. Then

(8.16) 14(0) - q(0)I <8" for all Oe).

If 0 E - O.,,, we therefore get

(8.17) 1(0) < ,i(0) + 8" < 11(00) - 8" < 0(00),
so in maximizing .(0) we need not take such 0 into account. Since OE" is
closed and q1(-) is continuous, there exists a maximizing value 0* E G.-

(iii) Consistency of 0*. By the definition of E0,," we have A(g(0*)) _ 28".
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Thus 10* - 001 . 6(2c") _ C', and the consistency of 0* follows.
The theorem now follows from some general results due to LeCam [51].

Q.E.D.
REMARK 9. Note that Eo,o is the most favorable asymptotic covariance

matrix we can get by the procedures in Section 6 when I is given by (3.7). In this
sense, therefore, the method of the present section is at least as good as any of
the other general methods we have studied.

9. The choice of a graduating function

9.1. In previous sections, it was presupposed that the applicability of a
particular graduating function g(0) had been established, and the problem was
to estimate 0. In many practical cases, the situation will be different. Instead of a
single function g, there is often a finite family F = {g(s, 0): s = 1, 2, * * *, S}
of candidates for a graduating function, and one is required to choose one of
these on the basis of the data. In the case of human fertility rates, for instance,
it is seldom given which function to use, and one may have to select one from
among the Pearson family, the Hadwiger function, and the Brass polynomial
(1.4), say.
We shall assume that all functions g(8, 0) have the same parameter space 0.

This need not be the case originally, but it can be achieved by the introduction
of dummy parameters if necessary.

9.2. To describe what it means to choose a function from the class F "on
the basis of the data," we shall assume that there is a member g(s0, *) of .F
which is the "true" graduating function. The choice of a member of F then
amounts to estimating so as an extra parameter. A number of estimation
procedures are in use (compare, for example, [45], Section 6.5), but their
statistical properties do not seem to have been much investigated, except that
one may know something about their consistency as N -+ oc. We list some of
these procedures.

(i) For choosing among the members of the Pearson family, there exist
standard methods [22], [58], [34], [13] based on the first four empirical
moments. Keyfitz, [45], p. 160, suggests that this type of criterion can also be
used when the Hadwiger function (1.3) is included in .F along with the Pearson
type functions.

(ii) In connection with the methods of Section 6, an obvious procedure is
to set

(9.1) Q5(0) = N(I - g(s, 0))'M(I - g(s, 0)),
let @) be a value of 0 which minimizes Q5(0) for s = 1, 2, * , S, and define s
as the value of s that subsequently minimizes QS(6(s)) [27], [73], [80], [81].

(iii) A similar criterion can be used in connection with the method of
Section 8. Let

(9.2) ?(s, 0) = E{M(d) loggd(8, -L(d)gd(S, 0)
d
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let 9*(s) maximize this quantity, and let s be the value of s that subsequently
maximizes 0(s, @*(S)).

(iv) Yntefha [28], [81] has suggested calculating
D

(9.3) s= iad - gd(S, O(s))I
d= 1

and

(9.4) As = max {Vld - gd(s, O(s))I: d = 1, 2, DI,
and taking s as the s-value that minimizes AS or A,. Here @(s) is any suitable
estimator for 0 based on g(s, 0).

9.3. We shall take a look at the consistency properties of s as defined in
Sections 9.2 (ii) and (iii) above.
By a proper specification of F and E we should be able to get

g(s', 0) n g(s", 0) to be empty whenever s' ¢ s". (Otherwise, part of the values
g(s", 0) would be redundant). To prove consistency, however, we need the
stronger assumption that

(9.5) Ig(s', 0) - g(s', 0)I > 0 for s' + s",

where IA - = inf{Ia - b|: aEA, b eB} denotes the Euclidean distance
between two subsets A and B of RD-

If (9.5) holds, if A is consistent for AO, and if plim M = MO as N -c
with MO positive definite, then s is consistent in Section 9.2 (ii) above.

Similarly, by step (i) in the proof of Theorem 9, s is consistent in Section 9.2
(iii) above when (9.5) holds.

9.4. Let {@(S)} be some estimator which we would use for 0 if it were known
that so = s, and assume that

(9.6) Po,oI{Nl/2((so) - 00)EB} - (D(B)as N - c,

where (F is a limiting probability measure and B is any (F-continuous measurable
set. Let s be a consistent estimator for so. Then it is easy to show that

(9.7) Ps., oo {N' 2(() - 0)EB} - ((B) asN -

for the same B. Of course, P) is our estimator for 0 and (9.7) tells us that its
limiting distribution is the one we would get if so were known. Similarly,
g(s, 0(1)) will be our estimator for AO, and its asymptotic properties follow
directly from (9.7).

10. IConcluding remarks

10.1. In the models described in Sections 2.1 and 2.2 above, the seniority
parameter is continuous. If it is known (or if one assumes) that one of the
forces of transition can be represented by a nice and smooth parametric function,
say
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(10.1) i(x) = g(x; 0),

and if one is faced with the problem of estimating A, using analytic graduation is
not necessarily the most obvious line of attack. In fact, it seems more natural to
try to construct an estimator 6 for 0 directly, without going the way via the A',
as described in Section 3. Grenander [29], pp. 76-91, has shown how this
might be done for the force of mortality in the example in 2.2 (i) when the
Gompertz-Makeham formula (1.1) (with continuous x) applies. A similar
investigation could be carried out for other forces of transition, like the forces
of fertility of the example in 2.2 (ii).

If one does not know enough about the function A(-) to specify a parametric
g(*, 0) which can represent it, one may turn to nonparametric methods, such as
those developed within reliability theory [5], [6]. The force of mortality in
Section 2.2 (i) appears there under the name of failure rate or hazard rate, and
quite a lot of energy has gone into finding suitable methods of estimating this
function.

Although both of these types of approach were initiated by Grenander's
paper [29] on mortality measurement, such techniques do not seem to be much
in use in demography and related fields. One would be curious to know why
this is so. Part of the explanation is, no doubt, that these developments are
largely unknown among people working in those fields of application, but there
are more valid reasons. We shall suggest some of them.

10.2. The following types of argument seem to be among the ones leading
people to base their inferences from the data on the M(a, d) and L(a, d) only,
and sometimes on the a, d only. (Note that least squares and moments method
estimation procedures of 0 only require knowledge of the a. d.)

(i) In Section 3.2 we described how the points {td: d = 1, 2, * , D} parti-
tioning the seniority interval were selected according to conventional rules.
Similarly, it is standard procedure to calculate "occurrence/exposure" rates of
the kind developed in Sections 3.4 and 4.3. The use of standard techniques,
standard tabulations, and so on, facilitates comparison with other investiga-
tions of the same subject matter. This encourages the continued use of
techniques which are already widely known and widely applied even when
other methods may be known to a few people.

(ii) The reliability of the data which demographers have to work with, can
be very weak due to phenomena such as age misreporting, underenumeration,
and so on. Also, one frequently does not know more than approximate dates
(for example, the calendar year only) of occurrences of the events studied. This
calls for the application of rather robust statistical techniques, such as those
which we have described. Even though demographic data may be deficient,
they may still be reliable enough to permit the use of the aggregated values
M(a, d) and L(a, d) or at least the la d-

In many cases, the investigator does not even have access to the original data,
but only to standard tabulations made from them. Such tabulations will often
permit the use of methods described here, and rule out others.
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(iii) A similar argument applies to the reliability of the rnodel8 used. For
example, most current models, including those considered in this paper, leave
seasonal variation over the calendar year out of account. There is plenty of
evidence of the importance of such variation in the occurrence of vital events,
but in many cases this is just a nuisance factor which one wants to eliminate.
Current methods relying on seniority interval lengths of at least a year seem to
effectively do so.

(iv) Even in cases where the data are reliable and sufficiently detailed (and
the present author believes that not nearly enough attention has been given to
such cases), the information extracted by a statistical procedure should be
geared to the needs of the user. It seems that a standard table of rates, like
Table I, and certain other tables derived from it, contains just about as much
information as can be handled in a substantive study. In fact, the prevalence of
summary indices derived from such tables, and the extent to which argumenta-
tion is carried out in terms of such indices, suggests that the standard tables
contain even too much information. The use of analytic graduation can be seen
as another piece of evidence in the same direction, since it enables one to
substitute the formula of a function and a (small) set of parameter values for a
whole table. (This argument does not rule out the parametric procedure
suggested at the beginning of Section 10.1.)

(v) Each of the estimators s listed in Section 9.2 is a function of the data via
A only. This reflects the fact that an investigator faced with the problem of
selecting a graduating function from a class F of candidates is likely to calculate
i, plot the corresponding diagram, and use this to decide which member to
choose from F. In fact, this is the way in which certain graduating functions
historically have been pinpointed as more suitable than others.
Once s has been determined, however, the investigator should not necessarily

continue to use i in the estimation of 0, but should feel free to choose among all
available procedures as far as the quality of his data permits.

10.3. It is probably appropriate to underline once more (compare Section
1.1) that there exist many types of graduation methods in addition to analytic
graduation techniques. Most of them were first developed for use in mortality
studies, and in that context they are apparently applied at least as often as
analytic methods are. Many of them must have been intended for use in other
connections as well, for example in fertility studies. With the exception of
graphic methods, however, their application to other types of vital rates than
mortality rates seems much less popular. (Compare [54], p. 53.)

0 0 0 0 0
I wish to express my great indebtedness to L. LeCam and P. J. Bickel for

many helpful discussions on the large sample theory used in this paper, and to
M. L. Eaton, who has read the paper in manuscript and has given valuable
comments. I am also grateful to W. Simonsen and L. Boza who independently
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