ESTIMATION FOR A REGRESSION MODEL WITH AN UNKNOWN COVARIANCE MATRIX

LEON JAY GLESER THE JOHNS HOPKINS UNIVERSITY and INGRAM OLKIN STANFORD UNIVERSITY

1. Summary and introduction

A linear regression model is considered under which the residual error vector is assumed to have a multivariate normal distribution with unknown covariance matrix Σ . To estimate Σ , it is assumed that the regression design can be given independent replications. This problem has been considered by Rao, who obtains a point estimator and suggests two classes of confidence regions for the vector β of regression parameters. In the present paper, we find the maximum likelihood estimators of β and of Σ , and derive their distributions. One of Rao's two classes of confidence regions for β had previously been inapplicable due to the lack of tables for upper tail values of the distribution of the pivotal quantity. These tables are now provided, and the performances of the two classes of confidence regions are compared in terms of their expected volumes.

In the classical linear regression model, the vector of observations $y = (y_1, y_2, \dots, y_p)$ has the form

(1.1)
$$y = \beta X + \varepsilon,$$

where $\beta: 1 \times q$ is an unknown vector of regression parameters, X is a known $q \times p$ matrix of rank $q \leq p$, and ε has a p variate normal distribution with mean vector zero and covariance matrix $\Sigma = \sigma^2 I$. Since the simple structure of the covariance matrix may not be valid for some problems, extensions of the results of the classical model to models where Σ has a more general structure have been considered. Such attempts can be classified in the following hierarchy of complexity:

- (i) Σ an arbitrary known matrix,
- (ii) Σ known up to a scale factor σ^2 ,

This work was supported in part by the National Science Foundation Grant GP-6681 at Stanford University.

- (iii) Σ unknown but with some special structure,
- (iv) Σ completely unknown and arbitrary.

The maximum likelihood estimators (MLE) for cases (i) and (ii) are well known (see Anderson [1]). In both of these cases, the MLE $\hat{\beta}(\Sigma)$ of β has the form $\hat{\beta}(\Sigma) = y\Sigma^{-1}X'(X\Sigma^{-1}X')^{-1}$ with covariance matrix $(X\Sigma^{-1}X')^{-1}$ yielding the minimum concentration ellipse among all linear unbiased estimators of β . (Note that in case (ii), $\hat{\beta}(\Sigma)$ is independent of the unknown scale factor σ^2 .) Watson [22], [23] and Watson and Hannan [24] have investigated the errors involved when the assumptions made concerning Σ in cases (i) and (ii) are violated.

As an example of a model of the type considered in case (iii), assume that Σ has the intraclass correlation structure. This class of linear regression models has been considered by Halperin [10], by Geisser and Greenhouse [5], [6], and by other authors. Alternative possible special models for Σ include the models of autocorrelation, circular symmetry, and compound symmetry. In each of these special cases, as well as in cases (i) and (ii), inference concerning the parameters of the regression model is possible even when only one replication of the random vector y is available.

If, however, we are in complete ignorance of Σ , it is clear that more than one observation must be taken on y in order to estimate both β and Σ . In some problems, one may actually have independent replications of the y's: for example, (a) where each y vector represents a score vector on an examination and the replications are individuals from a particular homogeneous group, or (b) in the analysis of growth curves (see Rao [19], Pothoff and Roy [15], Gleser and Olkin [8], [9]). The replications on y enable us to simultaneously estimate β and Σ .

Versions of case (iv) have been considered by many authors. Cochran and Bliss [2] discuss a variant of this model in connection with the comparison of discriminant functions from two populations. Rao [16], [17], [18] considers the problem of testing the hypothesis that the vector β of regression parameters obeys certain linear constraints, derives the likelihood ratio test statistic for this problem, and obtains its null and nonnull distributions. Further distributional results for the likelihood ratio statistic are given by Narain [13], Olkin and Shrikhande [14], and Kabe [11].

Rao [16], [18], [20], [21] also considers the problem of estimating β . He obtains a certain "least squares" estimator for β which is, in fact, the MLE of β (Gleser and Olkin [7]). They find the MLE of β and Σ , give representations for their densities, and compare the covariance matrices of the MLE of β and the BLUE of β when Σ is known. The comparison shows that for even moderate sample sizes, there is little difference in the accuracies of the two estimators. (Similar results are also given by Rao [21] and Williams [25].) The above results, together with a new and very useful representation for the density of the MLE of β , appear in Section 2 and Appendix A.

Rao ([16]-[21]) has proposed two classes of confidence regions for (linear combinations of) the elements of the vector β —one class based on a statistic

542

closely related to Mahalanobis's distance, the other on the likelihood ratio test statistic for testing that β obeys certain linear restraints. These two procedures are described in Section 3. Distributional difficulties with the former class of confidence regions have up to now severely limited its applicability, and have prevented comparisons with the class of regions based on the likelihood ratio statistic. In Appendix B of this paper, we provide the necessary tables for the application of this confidence procedure in certain cases, and indicate how these tables may be used (and extended) in more general contexts. The availability of these tables permits comparison of the two classes of confidence regions; these comparisons appear in Section 4. An illustrative example is given in Section 5.

2. The regression model: estimators of β and Σ

Let $y^{(1)}, \dots, y^{(N)}$ be N independent random p dimensional row vectors, each having a multivariate normal distribution with mean vector $\mathscr{E}(y^{(j)}) = \beta X$ and covariance matrix Σ , where X is a known $q \times p$ matrix of rank $q \leq p$, where β is a $1 \times q$ vector of unknown regression parameters, and where Σ is an unknown positive definite matrix.

We may immediately reduce the data to the sufficient statistic (\bar{y}, S) , where $\bar{y} = N^{-1} \sum_{j=1}^{N} y^{(j)}$ is the sample mean vector and $S = \sum_{i=1}^{N} (y^{(i)} - \bar{y})' (y^{(i)} - \bar{y})$ is the sample cross product matrix. Thus, \bar{y} and S are independently distributed, \bar{y} has a multivariate normal distribution with mean vector βX and covariance matrix $N^{-1} \Sigma$, (denoted $\bar{y} \sim N(\beta X, N^{-1} \Sigma)$), and S has the Wishart distribution with $n \equiv N - 1$ degrees of freedom and expectation $\mathscr{E}(S) = n\Sigma$, (denoted $S \sim W(\Sigma; p, n)$), S being $p \times p$. The joint density of \bar{y} and S is given by

$$p(\bar{y}, S) = c |\Sigma|^{-N/2} |S|^{(n-p-1)/2} \exp \{-\frac{1}{2} \operatorname{tr} \Sigma^{-1} [S + N(\bar{y} - \beta X)'(\bar{y} - \beta X)]\},$$

where

(2.2)
$$c^{-1} = \left[2^{N} \pi^{(p+1)/2} N^{-1}\right]^{p/2} \prod_{i=1}^{p} \Gamma\left[\frac{1}{2}(n-i+1)\right].$$

To obtain the MLE of β and Σ , first maximize $p(\bar{y}, S)$ with respect to Σ ; this yields

(2.3)
$$N\hat{\Sigma}(\beta) = S + N(\bar{y} - \beta X)'(\bar{y} - \beta X)$$

(see, for example, Anderson [1], p. 46). Inserting $\hat{\Sigma}(\beta)$ for Σ in the joint density yields a constant multiple of

$$|S + N(\bar{y} - \beta X)'(\bar{y} - \beta X)|^{-N/2} = |S|^{-N/2} [1 + N(\bar{y} - \beta X)S^{-1}(\bar{y} - \beta X)']^{-N/2},$$

from which, maximizing with respect to β , we obtain the MLE of β to be

(2.5)
$$\hat{\beta} = \bar{y}S^{-1}X'(XS^{-1}X')^{-1}.$$

The MLE of Σ is then $\hat{\Sigma} \equiv \hat{\Sigma}(\hat{\beta})$.

The distribution of $\hat{\beta}$ is obtained in Appendix A. There, it is shown that the following result holds.

THEOREM 2.1. The probability density of $\hat{\beta}$ is

(2.6)
$$p(\hat{\beta}) = \sum_{j=0}^{\infty} c_j \frac{|NX\Sigma^{-1}X'|^{1/2} [Q(\hat{\beta})]^j \exp\left\{-\frac{1}{2}Q(\hat{\beta})\right\}}{(2\pi)^{q/2} 2^j [\Gamma(\frac{1}{2}q+j)/\Gamma(\frac{1}{2}q)]} \equiv \sum_{j=0}^{\infty} c_j h_j(\hat{\beta})$$

where $Q(\hat{\beta}) = N(\hat{\beta} - \beta)X\Sigma^{-1}X'(\hat{\beta} - \beta)'$,

(2.7)
$$c_j = \frac{c_0}{j!} \frac{\Gamma(\frac{1}{2}(p-q)+j)}{\Gamma(\frac{1}{2}(p-q))} \frac{\Gamma(\frac{1}{2}q+j)}{\Gamma(\frac{1}{2}q)} \frac{\Gamma(\frac{1}{2}(n+q+1))}{\Gamma(\frac{1}{2}(n-p+q)+j)},$$

the components of $\hat{\beta}$ range from $-\infty$ to ∞ , and

(2.8)
$$c_0 = \frac{\Gamma(\frac{1}{2}(n+2q-p+1))\Gamma(\frac{1}{2}(n+1))}{\Gamma(\frac{1}{2}(n+q+1))\Gamma(\frac{1}{2}(n-p+q+1))}$$

Note that $c_j \ge 0$ for all j. It can be shown that $\sum_{j=0}^{\infty} c_j = 1$ and that each $h_j(\hat{\beta}), j = 0, 1, \cdots$, is a q variate density. (Indeed, $h_0(\hat{\beta})$ is the density of a q variate normal distribution having mean vector β and covariance matrix $(NX\Sigma^{-1}X')^{-1}$.) Thus, (2.6) is a mixture of the densities $h_j(\hat{\beta})$. Using standard results concerning mixtures of densities, we can conclude that for any measurable set R in q dimensional space,

(2.9)
$$c_0 P\{u \in R\} \leq P\{\hat{\beta} \in R\} \leq c_0 P\{u \in R\} + (1 - c_0),$$

where $u \sim N(\beta, (NX\Sigma^{-1}X')^{-1})$. From the fact that for fixed h.

(2.10)
$$\frac{\Gamma(t+h)}{\Gamma(t)} = t^h [1+o(1)], \qquad t \to \infty,$$

it follows that

(2.11)
$$c_0 = 1 - \frac{q(p-q)}{2N} + O(N^{-2})$$

as $N \to \infty$. From (2.9) and (2.11), we see that $\sqrt{N}(\hat{\beta} - \beta)$ has an asymptotic q variate normal distribution with mean vector zero and covariance matrix $(X\Sigma^{-1}X')^{-1}$, and we also have a measure of the accuracy of the approximation involved in replacing the finite sample distribution of $\hat{\beta}$ with the asymptotic distribution.

Two alternative forms for the density (2.6) of $\hat{\beta}$ in terms of an integral representation and a hypergeometric series may prove helpful (Gleser and Olkin [7]). These are the following:

(2.12)
$$p(\hat{\beta}) = h_0(\hat{\beta}) \int_0^1 \frac{g^{(p-q)/2-1}(1-g)^{(n+2q-p+1)/2-1} \exp\left\{\frac{1}{2}gQ(\hat{\beta})\right\} dg}{B\left(\frac{1}{2}(p-q), \frac{1}{2}(n-p+q+1)\right)}$$

 $\mathbf{544}$

and

$$(2.13) p(\hat{\beta}) = c_0 h_0(\hat{\beta})_1 F_1(\frac{1}{2}(p-q), \frac{1}{2}(n+q+1); \frac{1}{2}Q(\hat{\beta})),$$

where $_{1}F_{1}(a, b; z)$ is the confluent hypergeometric function

(2.14)
$${}_{1}F_{1}(a, b; z) = \sum_{j=0}^{\infty} \frac{\Gamma(a+j)}{\Gamma(a)} \frac{\Gamma(b)}{\Gamma(b+j)} \frac{z^{j}}{j!}$$

From (2.12), a direct computation (involving an interchange of the order of integration between $\hat{\beta}$ and g) yields $\mathscr{E}(\hat{\beta}) = \beta$ (that is, $\hat{\beta}$ is unbiased) and

(2.15)
$$N \operatorname{Cov} (\hat{\beta}) = \frac{n-1}{n-p+q-1} (X\Sigma^{-1}X')^{-1}$$

We have derived the estimators $\hat{\beta}$ and $\hat{\Sigma}$ assuming that Σ is unknown. If Σ is known, then the estimator $\hat{\beta}(\Sigma) = \bar{y}\Sigma^{-1}X'(X\Sigma^{-1}X')^{-1}$ is the Gauss-Markov (BLUE) estimator of β — that is, among all unbiased linear estimators of β , $\hat{\beta}(\Sigma)$ has the smallest ellipsoid of concentration. The covariance matrix of $\hat{\beta}(\Sigma)$ is $(NX\Sigma^{-1}X')^{-1}$; from this fact and (2.15), it follows that for all Σ ,

(2.16)
$$\operatorname{Cov}(\hat{\beta}) = \left(1 + \frac{p-q}{n-p+q-1}\right)\operatorname{Cov}\left[\hat{\beta}(\Sigma)\right].$$

For *n* moderately large with respect to p - q, Cov $(\hat{\beta})$ and Cov $[\hat{\beta}(\Sigma)]$ are nearly equal (more accurately, they are of the same order of magnitude in *N*). We thus have an estimator $\hat{\beta}$ for β which, regardless of the value Σ of the unknown covariance matrix, has for large enough *N* approximately the minimal ellipse of concentration achievable by the BLUE of β given that value of Σ . Comparisons similar to the above have been made in Gleser and Olkin [7], Rao [21], and Williams [25].

It is worth noting that as $N \to \infty$ both $\sqrt{N}(\hat{\beta} - \beta)$ and $\sqrt{N}[\hat{\beta}(\Sigma) - \beta]$ have the limiting distribution $N(0, (X\Sigma^{-1}X')^{-1})$. A measure of the error involved in assuming that $\hat{\beta}$ and $\hat{\beta}(\Sigma)$ have the same distribution in small samples can be obtained from (2.9) and (2.11).

The distribution of $\hat{\Sigma}$ is given in Appendix A.

3. Confidence regions for β

From (2.6), (2.12), or (2.13) it can be seen that the density of $\hat{\beta}$ is constant on ellipsoids that have the form

$$(3.1) Q(\hat{\beta}) = \text{constant},$$

where

(3.2)
$$Q(\hat{\beta}) = N(\hat{\beta} - \beta)(X\Sigma^{-1}X')(\hat{\beta} - \beta)'.$$

The regions of form (3.1) are thus ellipsoids of concentration for the distribution of $\hat{\beta}$. Since $\hat{\beta}$ has approximately a q variate normal distribution with mean vector β and covariance matrix $(NX\Sigma^{-1}X')^{-1}$, this suggests using the ellipsoid $\{\beta: Q(\hat{\beta}) \leq \chi_q^2(\gamma)\}$, where $\chi_q^2(\gamma)$ is the upper tail of a χ_q^2 distribution, as a 100 γ per cent confidence interval for β . Unfortunately, this region cannot be used since Σ is unknown. We can, however, replace Σ by its MLE $\hat{\Sigma}$, and form a confidence region for β based on the pivotal quantity

(3.3)
$$\Delta = N(\hat{\beta} - \beta) (X\hat{\Sigma}^{-1}X')(\hat{\beta} - \beta)'.$$

Since
$$(N\hat{\Sigma})^{-1} = S^{-1} - N(1+r)^{-1}S^{-1}(\bar{y} - \hat{\beta}X)'(\bar{y} - \hat{\beta}X)S^{-1}$$
, where

(3.4)
$$r = N(\bar{y} - \hat{\beta}X)S^{-1}(\bar{y} - \hat{\beta}X)',$$

and since $XS^{-1}(\bar{y} - \hat{\beta}X) = 0$, it follows that $X\hat{\Sigma}^{-1}X' = NXS^{-1}X'$ and

(3.5)
$$\Delta = N^2 (\hat{\beta} - \beta) (XS^{-1}X') (\hat{\beta} - \beta)'.$$

Although the region $\{\beta \colon N^2(\hat{\beta} - \beta)(XS^{-1}X')(\hat{\beta} - \beta) \leq \chi_q^2(\gamma)\}$ has asymptotic confidence γ as $N \to \infty$, it is not an exact 100 γ per cent confidence region for β . Thus for moderate sample sizes it may be of value to determine exact confidence regions for β based on the pivotal quantity Δ defined in (3.5).

The problem of finding the constant $b^{(\gamma)}$ for which the region

(3.6)
$$E_1 = \{\beta \colon N(\hat{\beta} - \beta) (XS^{-1}X')(\hat{\beta} - \beta)' \leq b^{(\gamma)}\}$$

has exact confidence γ is quite difficult since $b^{(\gamma)}$ or equivalently $c^{(\gamma)} = b^{(\gamma)}/(1 + b^{(\gamma)})$ is obtained as the solution of the integral equation

(3.7)
$$\int_0^1 dg \int_0^{c^{(\gamma)}} dh \, \frac{g^{a_1-1}(1-g)^{a_2-1}h^{d_1-1}(1-h)^{d_2-1}(1-gh)^{-(d_1+d_2)}}{B(a_1,a_2-d_1)B(d_1,d_2)} = \gamma,$$

where $a_1 = \frac{1}{2}(p-q)$, $a_2 = \frac{1}{2}(n+2q-p+1)$, $d_1 = \frac{1}{2}q$, and $d_2 = \frac{1}{2}(n-p+1)$. THEOREM 3.1. If $c^{(\gamma)}$ is chosen to satisfy (3.7), then E_1 (with $b^{(\gamma)} = c^{(\gamma)}/(1-c^{(\gamma)})$) is a 100y per cent confidence region for β .

PROOF. From (3.4) and Lemma 2 of Appendix A, $(n - p + 1)\Delta/q(1 + r)$ has, conditional upon r, Snedecor's F distribution with q and n - p + 1 degrees of freedom. Also $(1 + r)^{-1}$ has a Beta distribution with parameters $\frac{1}{2}(n - p + q + 1)$ and $\frac{1}{2}(p - q)$. It follows, therefore, that for $P\{\beta \in E_1\}$ to be equal to γ , we must have

$$(3.8) \quad \gamma = P\{\beta \in E_1\} = P\left\{\frac{(n-p+1)\Delta}{q(1+r)} \le \left(\frac{n-p+1}{q}\right)\frac{b^{(\gamma)}}{1+r}\right\}$$
$$= \int_0^\infty \frac{r^{(p-q)/2-1}\,dr}{B(\frac{1}{2}(p-q),\frac{1}{2}(n+q-p+1))(1+r)^{(n+1)/2}}$$
$$\cdot \int_0^{b^{(\gamma)}/(1+r)} \frac{x^{q/2-1}\,dx}{B(\frac{1}{2}q,\frac{1}{2}(n-p+1))(1+x)^{(n-p+q+1)/2}}.$$

546

By a change of variables to g = r/(1+r), h = (x + xr)/(1 + x + xr), we obtain (3.7). Q.E.D.

Another expression for $P\{\beta \in E_1\}$ has been given by Rao [17] in terms of the hypergeometric function. However, in either form it is difficult to solve for the cutoff point $b^{(\gamma)}$. A computer program has been written utilizing a certain mixture representation for the integral (3.7). This program is described in Appendix B.

Notice that the statistic $r = N(\bar{y} - \hat{\beta}X)S^{-1}(\bar{y} - \hat{\beta}X)'$ is a function of the sufficient statistic (\bar{y}, S) and has a distribution which is functionally independent of the parameters β and Σ under the model (1.1). Thus, r is an ancillary statistic. Indeed, the statistic r can be used to test the goodness of fit of the model (1.1) (see Rao [20]). Following a somewhat standard practice, we might agree to find a confidence region for β which has probability of coverage γ , conditional upon r for each possible value of r. Returning to the distributional fact used in the proof of Theorem 3.1, we see that one such region is

(3.9)
$$E_{2} = \left\{ \beta : \frac{(n-p+1)N(\hat{\beta}-\beta)(XS^{-1}X')(\hat{\beta}-\beta)'}{q(1+r)} \leq F_{q,n-p+1}^{(\gamma)} \right\},$$

where $F_{q,n-p+1}^{(\gamma)}$ is the upper tail of Snedecor's F distribution with q and n-p+1 degrees of freedom. Since E_2 has, conditional upon r, coverage γ for β , it is also a 100 γ per cent unconditional confidence region for β . Because tables of the F distribution are easily available, the region E_2 has been preferred by statisticians. However, in certain circumstances the performance of region E_1 may be superior to that of region E_2 . Without values of $b^{(\gamma)}$, comparisons of these two confidence regions are difficult, if not impossible, to do. Using the tables of $b^{(\gamma)}$, such comparisons can now be made.

Before leaving the present section, however, it is worth noting that the region E_2 is the set of all vectors β_0 in q dimensional space for which the null hypothesis $H: \beta = \beta_0$ is not rejected by the appropriate likelihood ratio test at level $\alpha = 1 - \gamma$. The likelihood ratio test of $H: \beta = \beta_0$ versus general alternatives has rejection region

(3.10)
$$\frac{(n-p+1)N(\hat{\beta}-\beta_0)(XS^{-1}X')(\hat{\beta}-\beta_0)'}{q(1+r)} \ge F_{q,n-p+1}^{(\gamma)}$$

(Rao [21]), so that for given values of \bar{y} and S (and thus of $\hat{\beta}$, S, and r), we accept $H: \beta = \beta_0$ if and only if β_0 is in E_2 .

4. Comparison of the two procedures

Historically, there have been two main sets of criteria for the comparison of confidence regions—those based on concepts of power and those based on volume considerations. Since every confidence region can generate a test for such hypotheses as $H: \beta = \beta_0$, it seems reasonable to apply power considerations in the comparison of confidence regions. However, the difficulty involved in

548 SIXTH BERKELEY SYMPOSIUM: GLESER AND OLKIN

obtaining and analyzing the nonnull distributions of Δ and $\Delta(1 + r)^{-1}$ discourage comparisons based on power concepts (see Rao [18], [21]).

Comparisons of confidence regions through consideration of their volumes also have intuitive appeal, since the volume of a region can be viewed as a measure of the "quantity" of models (parameters) which are accepted by (included in) the confidence procedure. For example, in the case of two confidence intervals A and B of confidence γ we would prefer interval A to interval B if the length of A were always less than the length of B, because intuitively we we would feel that A would give us a more precise picture of which models are reasonable, given the data.

In the present situation our regions are ellipsoids in q dimensional Euclidean space. Since the volume of an ellipsoid

(4.1)
$$(u_1, u_2, \cdots, u_m) A^{-1} (u_1, u_2, \cdots, u_m)' \leq 1$$

is $c(m)|A|^{1/2}$, where $c(m) = (2\pi)^{m/2} \Gamma(m/2)$, we conclude that

(4.2) volume
$$E_1 = c(q) |NXS^{-1}X'|^{-1/2} b_0^{q/2}$$
,
volume $E_2 = c(q) |NXS^{-1}X'|^{-1/2} (1 + r)^{q/2} [qF_0/(n - p + 1)]^{q/2}$

where $F_0 = F_{q,n-p+1}^{(\gamma)}$ and $b_0 = b^{(\gamma)}$.

Since these volumes are random variables, we may compare their expected values. Thus, we say that region E_1 is preferable to region E_2 if and only if $\mathscr{E}[\text{volume } E_1] \leq \mathscr{E}[\text{volume } E_2]$, or equivalently if and only if the ratio

(4.3)
$$I_{1,2} = \left[\frac{(n-p+1)b_0}{qF_0}\right]^{q/2} \frac{\mathscr{E}[|NXS^{-1}X'|^{1/2}]}{\mathscr{E}[|NXS^{-1}X'|^{1/2}(1+r)^{q/2}]}$$

is less than or equal to 1. By Lemma 2 of Appendix A, $XS^{-1}X'$ and r are independently distributed and $(1 + r)^{-1}$ has a Beta distribution with $\frac{1}{2}(n - p + q + 1)$ and $\frac{1}{2}(p - q)$ degrees of freedom. Thus (4.3) becomes

(4.4)
$$I_{1,2} = \frac{\Gamma\left[\frac{1}{2}(n-q+1)\right]\Gamma\left[\frac{1}{2}(n-p+q+1)\right]}{\Gamma\left[\frac{1}{2}(n+1)\right]\Gamma\left[\frac{1}{2}(n-p+1)\right]} \left[\frac{(n-p+1)b_0}{qF_0}\right]^{q/2}$$

From equation 4.4 (and Table III of Appendix B), values of $I_{1,2}$ are computed for n = 10(2)30(5)35, $p = 2(1)\frac{1}{2}n$, q = 1(1) p - 2, and $\gamma = 0.90$, 0.95, 0.975, 0.99. In the resulting table we have observed certain patterns. (A selection from this table appears in Table I below.) First, if we fix n, p, and q, and allow γ to increase, then the ratio $I_{1,2}$ increases, becoming greater than 1 for large enough γ . The larger q is, the smaller the value of γ at which $I_{1,2}$ changes from less than 1 to greater than 1. Saying this another way, for fixed r, p, γ , the ratio $I_{1,2}$ is nearly monotonically decreasing in q (the decrease of $I_{1,2}$ in q is reversed in the third decimal place for $q \ge p - 4$).

TABLE I

Ratio of the Expected Volume of \boldsymbol{E}_1 to \boldsymbol{E}_2

		<i>n</i> =	14			n	= 24 (co	ntinued)	
p	q	0.90	0.95	0.99	p	q	0.90	0.95	0.99
2	1	1.00+	1.00+	1.01	8	1	1.00 +	1.01	1.02
						2	1.00 +	1.01	1.03
3	1	1.00 +	1.00 +	1.01		3	1.00 -	1.01	1.03
						4	0.99	1.00 +	1.03
4	1	1.00 +	1.01	1.02		5	0.98	1.00 -	1.02
	2	1.00 +	1.01	1.02		6	0.98	0.99	1.01
5	1	1.00 +	1.01	1.03	9	1	1.01+	1.01	1.02
	2	1.00 +	1.01	1.04		2	1.00	1.01	1.04
	3	0.99	1.00 +	1.03		3	1.00 -	1.01	1.04
						4	0.99	1.00 +	1.04
6	1	1.01	1.02	1.04		5	0.98	0.99	1.03
	2	1.00 +	1.02	1.05		6	0.97	0.98	1.00 +
	3	0.99	1.01	1.04		7	0.97	0.98	1.00 +
	4	0.98	0.99	1.02		•	0.01		
	-	0.00	0.000	1.02	10	1	1.00 +	1.01	1.03
7	1	1.01	1.02	1.05		2	1.00 +	1.02	1.05
•	9	$1.00 \pm$	1.02	1.07		2	1.00 -	1.01	1.05
	ã	0.98	1.01	1.06		4	0.98	1.00 +	1.05
	4	0.00	0.08	1.00		5	0.00	0.00	1.03
	5	0.00	0.55	$1.00 \pm$		6	0.07	0.00	1.00
	0	0.30	0.01	1.00 +		7	0.00	0.07	1.00 -
						0	0.55	0.07	0.00
						0	0.30	0.30	0.33
		n =	24		1 11	1	1.00	1.01	1.03
						2	1.00 +	1.02	1.05
	0	0.00	0.05	0.00		3	0.99	1.01	1.06
p	\boldsymbol{q}	0.90	0.95	0.99		4	0.98	1.00 +	1.05
						5	0.96	0.98	1.04
2	1	1.00	1.00 +	1.00 +		6	0.94	0.97	1.01
						7	0.93	0.95	1.00-
3	1	1.00 +	1.00 +	1.00 +		8	0.93	0.94	0.98
						9	0.93	0.94	0.97
4	1	1.00 +	1.00 +	1.01		Ū			
	2	1.00 +	1.00 +	1.01	12	1	1.01	1.01	1.04
					12	$\frac{1}{2}$	1.00 +	1.02	1.06
5	1	1.00 +	1.00 +	1.01		3	0.99	1.02	1.07
	2	1.00 +	1.00 +	1.01		4	0.97	1.00 -	1.06
	3	1.00 -	1.00 +	1.01		5	0.95	0.98	1.00
						6	0.00	0.95	1.01
6	1	1.00 +	1.00 +	1.01		7	0.02	0.00	0.99
	2	1.00 +	1.01	1.02		6	0.91	0.33	0.95
	3	1.00 -	1.01	1.02		0	0.00	0.02	0.95
	4	1.00 -	1.00 +	1.01		9 10	0.90	0.91	0.94
	_		• • •	1.00					
7	1	1.00 +	1.01	1.02					
	2	1.00+	1.01	1.03					
	3	1.00 -	1.01	1.03					
	4	0.99	1.00+	1.02					
	5	0.99	1.00 -	1.01					

TABLE I (Continued)

Ratio of the Expected Volume of E_1 to E_2

				n	= 35					
p	q	0.90	0.95	0.99		p	q	0.90	0.95	0.99
2	I	1.00	1.00 +	1.00+		10	1	1.00+	1.00 +	1.01
3	1	1.00 -	1.00 +	1.00+			2 3	1.00 + 1.00 -	1.01	1.02
4	1	1.00 -	1.00 ±	1.00 ±			4 5	0.99	1.00 + 1.00 -	1.02
4	2	1.00	$1.00 \pm 1.00 \pm$	1.00 +			6	0.98	0.99	1.02
	-						7	0.98	0.99	1.01
5	1	1.00 +	1.00 +	1.00 +			8	0.98	0.99	1.00 +
	2	1.00 -	1.00 +	1.00 +						
	3	1.00 -	1.00 +	1.01		11	1	1.00 +	1.00 +	1.01
							2	1.00 +	1.01	1.02
6	1	1.00 +	1.00 +	1.00+			3	1.00 -	1.01	1.03
	2	1.00 +	1.00 +	1.01			4	0.99	1.00 +	1.03
	3	1.00	1.00 +	1.01			Э С	0.99	0.99	1.02
	4	1.00	1.00+	1.01			7	0.98	0.99	1.02
7	1	1.00 ±	1.00 ±	1.01			8	0.98	0.98	1.01 + 1.01
'	2	1.00 +	1.00 +	1.01			9	0.97	0.98	1.00 -
	3	1.00 -	1.00 +	1.01			v	0.01	0.00	1.00
	4	1.00 -	1.00 +	1.01		12	1	1.00 +	1.01	1.01
	5	1.00 -	1.00 -	1.01			2	1.00 +	1.01	1.03
							3	1.00 -	1.01	1.03
8	1	1.00 +	1.00 +	1.01			4	0.99	1.00 +	1.03
	2	1.00 +	1.00 +	1.01	1		5	0.98	1.00 -	1.03
	3	1.00 -	1.00 +	1.01			6	0.97	0.98	1.02
	4	1.00 -	1.00 +	1.01			7	0.97	0.98	1.02
	5 6	0.99	1.00 - 1.00	1.01			8	0.96	0.98	1.01
	0	0.99	1.00-	1.01			9 10	0.90	0.97	0.99
9	1	1.00 +	1.00 +	1.01						
	2	1.00 +	1.01	1.02						
	3	1.00 -	1.01	1.02	1					
	4	0.99	1.01 + 1.00 +	1.02						
	D C	0.99	1.00+	1.02						
	7	0.99	0.00	$1.01 \pm$						
	'	0.99	0.99	1.01 +						

Second, if we fix p, q, and γ , and allow n to increase, then the ratio $I_{1,2}$ converges to 1. This result is not at all surprising since the pivotal quantities Δ and $\Delta(1 + r)^{-1}$ converge to one another in probability at an exponential rate as $n \to \infty$, regardless of the values of p, q, and γ .

Finally, if we fix n, q, and γ , and allow p to increase, then the ratio $I_{1,2}$ may increase or decrease depending on whether the initial value of $I_{1,2}$ in the series is greater or less than one. The actual pattern of movement of $I_{1,2}$ in p is probably a slowly undulating one, offering little practical guidance in the choice of procedure.

Recalling that values of $I_{1,2}$ greater than one favor procedure E_2 , that values of $I_{1,2}$ less than one favor procedure E_1 , and that a value of $I_{1,2}$ equal to one favors neither procedure, the patterns which we have noted in our table of $I_{1,2}$ suggest that the confidence region E_1 should be used if the requirements for probability of coverage are modest ($\gamma = 0.90$, or even 0.95), the number qof regression parameters is not much less than the dimension p of a single replication y of the model (1.1), and/or if N is of moderate size. However, it should be kept in mind that $I_{1,2}$ is a dimensionless quantity (a ratio of volumes), so that if a large saving in expected volume is of interest, the $I_{1,2}$ tells us little unless we also know the expected volume of one of the two confidence regions.

It should also be remarked that in our table of $I_{1,2}$, values very rarely are less than 0.88 or greater than 1.07. Thus, unless one is greatly concerned about keeping the expected volume of the region as low as possible, the choice between the regions E_1 and E_2 can be governed by computational convenience, by other aspects of the context of the given research problem, or by personal conviction.

REMARK. One advantage in using the conditional region E_2 is that its conditional probability of coverage given r is independent of r. Since r is a monotone function of the likelihood ratio test statistic for the goodness of fit of model (1.1), one can perform a preliminary test for the fit of the model without affecting the coverage probability of the confidence region for the parameters of the model (assuming the model is accepted by the likelihood ratio test). The expected volume of E_2 would, of course, be affected by such a two stage procedure. A similar two stage procedure based on r and E_1 could be constructed, but this would require new tables of $b^{(\gamma)}$. To our knowledge, no satisfactory criterion for comparing such two stage procedures has yet been proposed, so that balancing this advantage of region E_2 against a possibly smaller expected volume for E_1 must be left entirely to the individual.

5. An illustrative example

To illustrate the computation of the point estimators of β and Σ and the construction of the two confidence regions E_1 and E_2 for β , we make use of the growth curve data reported earlier by Potthoff and Roy [15]. In a study performed at the University of North Carolina Dental School, measurements were made of the distance (in mm.) from the center of the pituitary to the pteryo-

552 SIXTH BERKELEY SYMPOSIUM: GLESER AND OLKIN

maxillary fissure for eleven girls and sixteen boys at ages 8, 10, 12, and 14 years. The resulting data for the boys is given in Table II below.

		Age in	Years	
Subject Age	8	10	12	14
1	26	25	29	31
2	21.5	22.5	23	26.5
3	23	22.5	24	27.5
4	25.5	27.5	26.5	27
5	20	23.5	22.5	26
6	24.5	25.5	27	28.5
7	22	22	24.5	26.5
8	24	21.5	24.5	25.5
9	23	20.5	31	26
10	27.5	28	31	31.5
11	23	23	23.5	25
12	21.5	23.5	24	28
13	17	24.5	26	29.5
14	22.5	25.5	25.5	26
15	23	24.5	26	30
16	22	21.5	23.5	25

TABLE II

DISTANCE IN MM FROM CENTER OF PITUITARY TO PTERYOMAXILLARY FISSURE

In the present analysis we adopt a linear model for the growth curve; namely,

(5.1)
$$y_i = \beta_1 + \frac{1}{3}\beta_2(t_i - 11),$$

where y_i is the distance (in mm.) measured at time t_i with i = 1, 2, 3, 4. We have chosen to represent the model in terms of the orthogonal polynomials for the sake of computational convenience. In terms of the model (1.1),

(5.2)
$$X = \begin{pmatrix} 1 & 1 & 1 & 1 \\ -3 & -1 & 1 & 3 \end{pmatrix},$$

with p = 4 and q = 3. The sample size N = 16, so that n = 15. Computation yields the following:

$$\bar{y} = (22.88, 23.81, 25.72, 27.47),$$

$$(5.3) \qquad S = \begin{pmatrix} 90.25 & 34.37 & 42.16 & 24.19 \\ 34.37 & 68.44 & 32.91 & 42.16 \\ 54.44 & 32.91 & 105.48 & 48.61 \\ 24.19 & 42.16 & 48.61 & 65.23 \end{pmatrix}$$

from which

(5.4)

$$\hat{\beta} = (25.00, 0.83),$$

$$\hat{\Sigma} = \begin{pmatrix} 5.78 & 2.02 & 2.59 & 1.50 \\ 2.02 & 4.40 & 2.10 & 2.65 \\ 2.59 & 2.10 & 6.61 & 3.04 \\ 1.50 & 2.65 & 3.04 & 4.08 \end{pmatrix}.$$

The 95 per cent confidence region of form E_1 for (β_1, β_2) is given by

(5.5)
$$\mathbf{E}_1 = \{ (\beta_1, \beta_2) : 0.34(\beta_1 - 25.00)^2 \\ + 0.10(\beta_1 - 25.00)(\beta_2 - 0.83) + 7.27(\beta_2 - 0.83)^2 \leq 0.767 \},$$

where $b^{(.95)} = 0.767$ is obtained by linearly interpolating the values of $c^{(.95)}$ for n = 14 and n = 16, and then from the resulting c forming $b = c(1 - c)^{-1}$. The 95 per cent confidence region of form E_2 for (β_1, β_2) is given by

(5.6)
$$E_2 = \{ (\beta_1, \beta_2) : 0.34(\beta_1 - 25.00)^2 + 0.10(\beta_1 - 25.00)(\beta_2 - 0.83) + 7.27(\beta_2 - 0.83)^2 \le 0.611 \},$$

since r = 0.144, $F_{2,14}^{(.95)} = 3.74$. Notice that the volume of E_2 is less than the volume of E_1 for this example. Although this result will not always occur if this particular example is replicated (since r is a random variable), the tables of $I_{1,2}$ described in Section 4 would lead us to expect the result we have obtained (since for both n = 14 and n = 16, with p = 4, q = 2, and $\gamma = 0.95$, the value of $I_{1,2}$ is 1.01).

APPENDIX A

DISTRIBUTIONAL RESULTS

A.1. Introduction

In this appendix we derive the distributions of $\hat{\beta}$ and $\hat{\Sigma}$ by means of a certain canonical distributional representation of these statistics. As a first step in obtaining this representation, note that $\hat{\beta}$ is invariant under the transformation $\tilde{y} = \tilde{y}A, \tilde{S} = A'SA, \tilde{X} = XA$ for A nonsingular. Consequently, if we choose A so that $A'\Sigma A = I$ (that is, $A = \Sigma^{-1/2}$), then $\tilde{y} \sim N(\beta \tilde{X}, N^{-1}I), \tilde{S} \sim W(I; p, n),$ \tilde{y} and \tilde{S} are independently distributed. In terms of \tilde{y}, \tilde{S} , and \tilde{X} ,

(A.1)
$$\hat{\beta} = \tilde{y}\tilde{S}^{-1}\tilde{X}'(\tilde{X}\tilde{S}^{-1}\tilde{X}')^{-1}, N\hat{\Sigma} = \Sigma^{1/2}[\tilde{S} + N(\tilde{y} - \hat{\beta}\tilde{X})'(\tilde{y} - \hat{\beta}\tilde{X})]\Sigma^{1/2}.$$

Further simplification is possible. There exists a nonsingular $q \times q$ matrix T and a $p \times p$ orthogonal matrix Γ such that

(A.2)
$$\tilde{X} = T(I_q, 0)\Gamma',$$

(MacDuffee p. 77 [12]), where I_q is the $q \times q$ identity matrix. This has the effect of reducing the dimensionality of the space as follows. Transform from \tilde{y}, \tilde{S} to

(A.3)
$$z = \sqrt{N\tilde{y}\Gamma}, \qquad V = \Gamma'\tilde{S}\Gamma.$$

Let $z = (\dot{z}, \ddot{z})$, where \dot{z} consists of the first q components of z, and then partition V as

(A.4)
$$V = \begin{pmatrix} V_{11} & V_{12} \\ V_{21} & V_{22} \end{pmatrix}, \quad V_{11} : q \times q, \quad V_{22} : (p - q) \times (p - q).$$

It is easily verified that \dot{z} , \ddot{z} , and V are stochastically independent, that $\dot{z} \sim N(\sqrt{N\beta T}, I_q)$, that $\ddot{z} \sim N(0, I_{p-q})$, and that $V \sim W(I; p, n)$. Furthermore,

(A.5)
$$b \equiv \sqrt{N} \,\hat{\beta}T = \dot{z} - \ddot{z}V_{22}^{-1} V_{21},$$
$$\tilde{\Sigma} \equiv \Gamma' \Sigma^{-1/2} \hat{\Sigma} \Sigma^{-1/2} \Gamma = V + \begin{pmatrix} V_{12} V_{22}^{-1} \ddot{z}' \\ \ddot{z}' \end{pmatrix} (\ddot{z}V_{22}^{-1} V_{21}, \ddot{z}),$$

where

(A.6)
$$\tilde{\Sigma} = \begin{pmatrix} \tilde{\Sigma}_{11} & \tilde{\Sigma}_{12} \\ \tilde{\Sigma}_{21} & \tilde{\Sigma}_{22} \end{pmatrix}$$

is partitioned in the manner of V. Let $\mu = \sqrt{N} \beta T$. The following lemma is known (and easily verified).

LEMMA A.1. If V has a W(I; p, n) distribution, then $M = V_{11} - V_{12}V_{22}^{-1}V_{21} \sim W(I_q; q, n - p + q), V_{22} \sim W(I_{p-q}; p - q, n), and the <math>q(p - q)$ elements of $L = V_{22}^{-1/2}V_{21}$ are independently distributed as N(0, 1). Furthermore, M, V_{22} , and L are mutually stochastically independent.

A.2. The distribution of $\hat{\beta}$

Since $\sqrt{N}\hat{\beta} = bT^{-1}$, to obtain the distribution of $\hat{\beta}$ it is sufficient to find the distribution of b. From (A.5) and Lemma A.1, we see that

(A.7)
$$b = \dot{z} - wL \equiv \dot{z} - \ddot{z}V_{22}^{-1/2}L,$$

where w, \dot{z} , and L are independent. Again from Lemma A.1, it follows that the conditional distribution of b given w is $N(\mu, (1 + ww')I_q)$. Let r = ww' and note that $r = \ddot{z}V_{22}^{-1}\ddot{z}' = N(\bar{y} - \beta X)S^{-1}(\bar{y} - \beta X)'$. Since $\ddot{z} \sim N(0, I_{p-q})$ and $V_{22} \sim W(I; p - q, n)$ and \ddot{z} and V_{22} are independent, it can be shown in a straightforward manner using Hsu's theorem (Anderson [1], p. 319) that r has the density

554

REGRESSION WITH UNKNOWN COVARIANCE

(A.8)
$$p(r) = \frac{r^{(p-q)/2-1}}{B(\frac{1}{2}(p-q), \frac{1}{2}(n-p+q+1))(1+r)^{(n+1)/2}}.$$

The distribution of b given w is the same as that of b given r (since the former conditional distribution depends upon w only through r = ww'), namely $N(\mu, (1 + r)I_q)$, so that

(A.9)
$$p(b, r) = p(b|r)p(r)$$

= $\frac{r^{(p-q)/2-1} \exp\left\{-\frac{1}{2} \frac{(b-\mu)(b-\mu)'}{1+r}\right\}}{(2\pi)^{q/2} B(\frac{1}{2}(p-q), \frac{1}{2}(n-p+q+1))(1+r)^{(n+q+1)/2}}$

Transforming from b to $\hat{\beta} = N^{-1/2} b T^{-1}$ and from r to g = r/(1 + r), noting that $TT' = X\Sigma^{-1}X'$, that $\mu = \sqrt{N}\beta T$, and integrating over g, where $0 \leq g \leq 1$, yields (2.12). The expansion of the integral form (2.12) of $p(\hat{\beta})$ in terms of the confluent hypergeometric function ${}_{1}F_{1}(\frac{1}{2}(p-q), \frac{1}{2}(n+q+1); Q(\hat{\beta}))$ (equation (2.13)) is well known (for example, see Erdélyi [4], p. 255). Finally by grouping terms appropriately in the infinite sum representation of ${}_{1}F_{1}$ in the representation (2.13) for $p(\hat{\beta})$, we obtain (2.11) and the result of Theorem 2.5.

REMARK. The representations (2.12) and (2.13) for $p(\hat{\beta})$ were obtained by a slightly more complicated proof in Gleser and Olkin [7]. The representation (2.11) is new. As demonstrated in Section 2, the new representation is useful in finding approximations to $p(\hat{\beta})$ for moderate values of the sample size N.

As a byproduct of the above derivations and from Lemma A.1, we have the following result which is useful in Sections 3 and 4.

LEMMA A.2. The distribution of $(n - p + 1)N(\hat{\beta} - \beta)XS^{-1}X'(\hat{\beta} - \beta)'/q(1 + r)$ given $r = N(\bar{y} - \hat{\beta}X)S^{-1}(\bar{y} - \hat{\beta}X)'$ is $F_{q,n-p+1}$. Further, r and $XS^{-1}X'$ are stochastically independent, $(1 + r)^{-1}$ has a beta distribution with parameters $\frac{1}{2}(n - p + q + 1)$ and $\frac{1}{2}(p - q)$, and $(XS^{-1}X')^{-1} \sim W((X\Sigma^{-1}X')^{-1}; q, n - p + q)$.

PROOF. From (A.5), $\sqrt{N}(\hat{\beta} - \beta) = (b - \mu)T^{-1}$. Since, as shown above, the conditional distribution of b given r is $N(\mu, (1 + r)I_q)$, since from Lemma A.1, M is independent of \dot{z}, \ddot{z}, L , and V_{22} (thus of $\hat{\beta}$ and r), and since

(A.10)
$$\Delta = N(\hat{\beta} - \beta)(XS^{-1}X')(\hat{\beta} - \beta)' = (b - \mu)M^{-1}(b - \mu)',$$

it follows that $(n - p + 1)\Delta/q(1 + r)$ given r has Snedecor's F distribution with q and n - p + 1 degrees of freedom (see Anderson [1], Theorem 5.2.2). That $(1 + r)^{-1}$ has the beta distribution with parameters $\frac{1}{2}(n - p + q + 1)$ and $\frac{1}{2}(p - q)$ follows from (A.8). Finally

(A.11)
$$(XS^{-1}X')^{-1} = (T')^{-1}MT^{-1},$$

and thus $(XS^{-1}X')^{-1} \sim W((TT')^{-1}; q, n-p+q)$. Since $(TT')^{-1} = (X\Sigma^{-1}X')^{-1}$, the proof of the lemma is completed.

SIXTH BERKELEY SYMPOSIUM: GLESER AND OLKIN

A.3. The distribution of $\hat{\Sigma}$

From Equation (A.5),

(A.12)
$$\tilde{\Sigma} = \begin{pmatrix} \tilde{\Sigma}_{11} & \tilde{\Sigma}_{12} \\ \tilde{\Sigma}_{21} & \tilde{\Sigma}_{22} \end{pmatrix} = V + \begin{pmatrix} V_{12} V_{22}^{-1} \\ I \end{pmatrix} \ddot{z}' \ddot{z} (V_{22}^{-1} V_{21}, I),$$

where $V \sim W(I; p, n)$ is independently distributed of $\ddot{z} \sim N(0, I_{p-q})$. Let

(A.13)
$$\begin{split} M &= V_{11} - V_{12} V_{22}^{-1} V_{21}, \\ \tilde{\Sigma}_{12} &= V_{12} V_{22}^{-1} (V_{22} + \ddot{z}' \ddot{z}), \quad \tilde{\Sigma}_{22} = V_{22} + \ddot{z}' \ddot{z}, \end{split}$$

be a transformation from (V_{11}, V_{12}, V_{22}) to $(M, \tilde{\Sigma}_{12}, \tilde{\Sigma}_{22})$. Noting that (A.14) $V_{12}V_{22}^{-1}V_{21} = \tilde{\Sigma}_{12}\tilde{\Sigma}_{22}^{-1}(\tilde{\Sigma}_{22} - \ddot{z}'\ddot{z})\tilde{\Sigma}_{22}^{-1}\tilde{\Sigma}_{12}'$

and that $\tilde{\Sigma}_{12} = \tilde{\Sigma}'_{21}$, it follows by a direct computation that (A.15) $p(\ddot{z}, M, \tilde{\Sigma}_{12}, \tilde{\Sigma}_{22})$

$$= \frac{C(p, n)}{(2\pi)^{(p-q)/2}} |\tilde{\Sigma}_{22}|^{-q} |\tilde{\Sigma}_{22} - \ddot{z}'\ddot{z}|^{(n+2q-p-1)/2} |M|^{(n-p-1)/2}$$

$$\cdot \exp \{ -\frac{1}{2} [\operatorname{tr} \tilde{\Sigma}_{22} + \operatorname{tr} M + \operatorname{tr} \tilde{\Sigma}_{12} \tilde{\Sigma}_{22}^{-1} (\tilde{\Sigma}_{22} - \ddot{z}'\ddot{z}) \tilde{\Sigma}_{22}^{-1} \tilde{\Sigma}_{21}] \},$$

where M > 0, $\tilde{\Sigma}_{22} - \ddot{z}'\ddot{z} > 0$,

(A.16)
$$C^{-1}(p,n) = 2^{np/2} \pi^{p(p-1)/4} \prod_{i=1}^{p} \Gamma(\frac{1}{2}(n-i+1)),$$

and the elements of $\tilde{\Sigma}_{12}$ and \ddot{z} are unrestricted.

Now let

(A.17)
$$v = \ddot{z}\tilde{\Sigma}_{22}^{-1/2}, \qquad \tilde{\Sigma}_{11} = M + \tilde{\Sigma}_{12}\tilde{\Sigma}_{22}^{-1}\tilde{\Sigma}_{21}$$

be a transformation from (\ddot{z}, M) to $(v, \tilde{\Sigma}_{11})$. Then

$$(A.18) \quad p(\tilde{\Sigma}, v) = \frac{C(p, n)}{(2\pi)^{(p-q)/2}} |\tilde{\Sigma}_{22}|^{(n-p-1)/2} |\tilde{\Sigma}_{11} - \tilde{\Sigma}_{12}\tilde{\Sigma}_{22}^{-1}\tilde{\Sigma}_{21}|^{(n-p-1)/2} \cdot |\tilde{\Sigma}_{22}|^{1/2} (1 - vv')^{(n+2q-p-1)/2} \cdot \exp\{-\frac{1}{2} [\operatorname{tr} \tilde{\Sigma}_{11} + \operatorname{tr} \tilde{\Sigma}_{22} - \operatorname{tr} v \tilde{\Sigma}_{22}^{-1/2} \tilde{\Sigma}_{21} \tilde{\Sigma}_{12} \tilde{\Sigma}_{22}^{-1/2} v']\} = [C(p, n) |\tilde{\Sigma}|^{(n-p-1)/2} \exp\{-\frac{1}{2} \operatorname{tr} \tilde{\Sigma}\}] \cdot \left[\frac{|\tilde{\Sigma}_{22}|^{1/2} (1 - vv')^{(n+2q-p-1)/2}}{(2\pi)^{(p-q)/2}} \exp\{+\frac{1}{2} v \Xi(\tilde{\Sigma}) v'\}\right],$$

where $\Xi(H)$ is, for any positive definite

(A.19)
$$H = \begin{pmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{pmatrix},$$

556

defined by $\Xi(H) = H_{22}^{-1/2} H_{21} H_{12} H_{22}^{-1/2}$, and where the range of definition is $\tilde{\Sigma} > 0$, $vv' \leq 1$. We make use of the invariance of vv' under the transformation $v \rightarrow v\Gamma$, Γ orthogonal, to reduce the expression still further. Let U be the orthogonal matrix such that

(A.20)
$$U\Xi(\Sigma)U' = \operatorname{diag}(v_1, \cdots, v_{p-q}) \equiv D_{\nu},$$

where the values of v_i are the characteristic roots of $\Xi(\tilde{\Sigma})$. Hence, letting s = vU' where $s: 1 \times (p - q)$, we obtain

(A.21)
$$p(\tilde{\Sigma}) = \left[C(p, n) |\tilde{\Sigma}|^{(n-p-1)/2} \exp\left\{ -\frac{1}{2} \operatorname{tr} \tilde{\Sigma} \right\} \right] \\ \cdot \left[\frac{|\tilde{\Sigma}_{22}|^{1/2}}{(2\pi)^{(p-q)/2}} \int_{ss' \leq 1} (1 - ss')^{(n+2q-p-1)/2} \exp\left\{ \frac{1}{2} s D_{\nu} s' \right\} ds \right].$$

An alternative expression for $p(\tilde{\Sigma})$ may be obtained by noting that

$$\begin{split} \int_{ss' \leq 1} (1 - ss')^{(n+2q-p-1)/2} \exp\left\{\frac{1}{2}sD_{v}s'\right\} \\ &= 2^{q-p}\Gamma\left[\frac{1}{2}(n+2q-2+1)\right] \\ &\cdot \sum_{j_{1}, \cdots, j_{p-q}=0}^{\infty} \left[\Gamma\left(\sum_{i=1}^{p-q} j_{i} + \frac{1}{2}(n+q+1)\right)\right]^{-1} \prod_{i=1}^{p-q} \left(\frac{v_{i}}{2}\right)^{j_{i}} \frac{\Gamma(j_{i} + \frac{1}{2})}{j_{i}!}. \end{split}$$

When $p - q \ge q$, some of the v_i are 0 with probability one, so that the expressions for $p(\tilde{\Sigma})$ can be somewhat simplified.

The distribution of $\hat{\Sigma}$ may be determined by making the transformation from $\tilde{\Sigma}$ to $\hat{\Sigma} = N^{-1} \Sigma^{1/2} \Gamma \tilde{\Sigma} \Gamma' \Sigma^{1/2}$.

APPENDIX B

TABLES FOR APPLYING CONFIDENCE REGION E_1

Table III gives values of $c^{(\gamma)}$ (see equation (3.7)) needed in order to construct 100 γ per cent confidence regions of the form E_1 (see (3.6)). The present tables are calculated for n = 10(2)30(5)35, $p = 2(1)\frac{1}{2}n$, q = 1(1) p - 2, and $\gamma = 0.90$, 0.95, 0.975, 0.99. These values of n, p, q, and γ have been chosen as illustrative, but not exhaustive, examples of situations met in practice. For example, it is usually desirable for n to be somewhat larger than p so that sufficient degrees of freedom are available to accurately estimate Σ . For the distribution of $\hat{\Sigma}$ to be nonsingular, we must have $n \ge p + 1$; the assumption $n \ge 2p$ provides a comfortable number of degrees of freedom for $\hat{\Sigma}$. When n is large (say, over 40), this assumption is unnecessarily strict and can be replaced by the condition that n - p - 1 be of a reasonable magnitude.

558 SIXTH BERKELEY SYMPOSIUM: GLESER AND OLKIN

The values of n given are not uncommon in practice. Values of n less than 10 are rarely practical (unless p = 2) for reasons already indicated. If n is larger than 35 or 40, large sample approximations may be appropriate (unless p is too large). Simple linear or quadratic interpolation in the tables should give enough accuracy in most situations for the application of the confidence region E_1 when n is odd, $11 \leq n \leq 34$.

The coverage probabilities γ chosen for Table III are those customarily given in standard tables for upper tail probabilities. Finally, the values of q which have been chosen reflect the fact that (at least in the context of growth curves) the most desirable models are those which require estimation of the fewest parameters.

Starting with equation (3.7), the table was constructed as follows. First the expansion

(B.1)
$$(1 - gh)^{-(d_1 + d_2)} = \sum_{j=0}^{\infty} \frac{\Gamma(d_1 + d_2 + j)}{\Gamma(d_1 + d_2)} \frac{(gh)^j}{j!}$$

enables us to expand the double integral in (3.7) in the following infinite series:

(B.2)
$$\gamma = \sum_{j=0}^{\infty} \frac{\Gamma(d_1 + d_2 + j)}{\Gamma(d_1 + d_2)j!} \cdot \frac{\int_0^1 g^{a_1 + j - 1} (1 - g)^{a_2 - 1} dg \int_0^{c^{(\gamma)}} h^{d_1 + j - 1}}{B(a_1, a_2 - d_1)B(d_1, d_2)} (1 - h)^{d_2^{-1}} dh$$
$$= \sum_{j=0}^{\infty} c_j I_{c^{(\gamma)}}(d_1 + j, d_2),$$

where the values of c_j with $j = 0, 1, \cdots$ have already been defined in Theorem 2.1; where for constants $f_1, f_2 > 0, 0 \leq z \leq 1$,

(B.3)
$$I_z(f_1, f_2) = \int_0^z \frac{w^{f_1 - 1}(1 - w)^{f_2 - 1} dw}{B(f_1, f_2)},$$

and where $a_1 = \frac{1}{2}(p-q)$, $a_2 = \frac{1}{2}(n+2q-p+1)$, $d_1 = \frac{1}{2}q$, $d_2 = \frac{1}{2}(n-p+1)$. The interchange of summation and integration used to obtain equation (B.2) is readily justified from Fubini's theorem by noting that $c_j \ge 0$, all j, $\sum_{j=0}^{\infty} c_j = 1$, and $0 \le I_z(f_1, f_2) \le 1$. These facts also support the following inequality:

(B.4)
$$\sum_{j=0}^{M} c_j I_z(d_1 + j, d_2) \leq \sum_{j=0}^{\infty} c_j I_z(d_1 + j, d_2)$$
$$\leq \sum_{j=0}^{M} c_j I_z(d_1 + j, d_2) + \left(1 - \sum_{j=M+1}^{\infty} c_j\right),$$

which holds for all nonnegative integers M. This inequality permits evaluation of the error involved in truncating the infinite sum $\gamma(z) \equiv \sum_{j=0}^{\infty} c_j I_z(d_1 + j, d_2)$

after M terms have been computed. Using this inequality, a grid of values for the infinite sum $\gamma(z)$ was computed (to five place accuracy) for each n, p, q chosen, and for values of z ranging by jumps of 0.02 from 0.50 to 0.98. After such a grid was formed, a value of γ was chosen ($\gamma = 0.90, 0.95, 0.975, 0.99$) and the grid was searched for that value z^* of z which yielded a calculated value of $\gamma(z)$ closest to γ . Since $\gamma(z)$ is monotonic increasing in z, z was allowed to move in increments of 0.001 down or up from z^* depending on whether $\gamma(z^*)$ was greater or less than y. This movement was terminated once the size of $\gamma(z) - \gamma$ reversed from that of $\gamma(z^*) - \gamma$. A similar incremental movement in steps of 0.0001 from this new value of z was terminated when once again $\gamma(z) - \gamma$ reversed sign. The value of z computed in this entire series for which $|\gamma(z) - \gamma|$ was a minimum was then chosen to be $c^{(\gamma)}$. The resulting values of $c^{(\gamma)}$ are accurate to within $\pm 5 \times 10^{-5}$ —assuming that we want $c^{(\gamma)}$ to give us coverage γ up to an error of $\pm 5 \times 10^{-6}$ and ignoring errors in the calculation of the individual terms $c_i I_z(d_1 + j, d_2)$. The value of $c^{(\nu)}$ was checked by evaluating (B.2) within a six place accuracy.

The computations are simplified by noting the recursion

(B.5)
$$c_{j+1} = c_j \frac{(q+2j)(p-q+2j)}{(n+q+1+2j)(2+2j)}$$

Users of Table III should note that n = N - 1, where N is the sample size, and that for the value of γ selected, E_1 is to be used with $b^{(\gamma)} = c^{(\gamma)}/(1 - c^{(\gamma)})$.

			n = 10			n = 12						
p	q	0.90	0.95	0.975	0.99	p	q	0.90	0.95	0.975	0.99	
2	1	29496	39059	47606	57308	2	1	24342	32672	40351	49397	
3	1	35507	46173	55314	65209	3	l	28535	37844	46197	55735	
4	1	43063	54628	63985	73502	4	l	33711	44003	52913	62682	
	2	54450	63812	71169	78562		2	44962	53881	61302	69251	
5	1	52419	64336	73269	81642	5	1	40093	51253	60466	70060	
	2	63314	72388	79077	85361		2	51696	60903	68255	75786	
	3	67957	75669	81371	86783		3	57359	65398	71765	78283	
						6	1	47901	59595	68679	77545	
							2	59364	68491	75411	82124	
							3	64550	72346	78246	84002	
							4	67525	74504	79803	85010	

TABLE III

Tables of Critical Values $c^{(7)}$ for Confidence Region E_1

|--|

			n = 14							n = 16		
p	q	0.90	0.95	0.975	0.99	1	p	q	0.90	0.95	0.975	0.99
2	1	20693	28031	34938	43276	2	2	1	17984	24524	30771	38451
3	1	23765	31921	39457	48357	5	3	1	20322	27541	34346	42574
4	1 2	$27477 \\ 38079$	$36511 \\ 46318$	$\frac{44656}{53429}$	$54013 \\ 61362$	4	ł	1 2	23097 32930	31059 40479	$38435 \\ 47159$	47178 54827
5	$\frac{1}{2}$	31983 43220	41909 51937	$50586 \\ 59250$	60213 67157	ŧ	5	1 2	26406 36931	$35162 \\ 44993$	43098 51982	52279 59824
	3	49251	57076	63548	70497			3	42981	50394	56708	63708
6	1 2 3	37456 49136 55061	48211 58174 63005 65007	57247 65494 69373	66846 73116 75981 77649	e	3	1 2 3	30367 41527 47673	39938 50044 55363	48383 57246 61765 64581	57856 65109 68688 70989
7	4	44077	55460 64952	64555 72011	73717	7	7	4	35118 46770	58735 45478	54313	70888 63865 70592
	2 3 4	61453 64764	69278 71780	75315 77196	81334 82622			2 3 4 5	40779 52891 56735	55058 60733 63864	67084 69611	70585 73756 75644
	ð	66952	73405	78398	83428	c	2	5	59396 40806	51922	71320	76919
						c	,	1 2 3	52726 58629	61736 66442	68862 72567	76107 76107 78787
								4 5 6	$64635 \\ 66372$	09238 71100 72419	76165 77164	81343 82032

REGRESSION WITH UNKNOWN COVARIANCE

5	6	1
\cdot	v	

TABLE III (Continued)	þ
----------------------	---	---

			n = 18						n = 20	•	
p	q	0.90	0.95	0.975	0.99	p	q	0.90	0.95	0.975	0.99
2	ł	15893	21779	27464	34542	2	1	14238	19590	24806	31370
3	1	17729	24180	30347	37928	3	1	15718	21546	27182	34208
4	1	19873	26949	33626	41713	4	1	17420	23771	29850	37339
	2	28957	35872	42099	42092		2	25820	32179	37986	44899
5	1	22389	30141	37341	45904	5	1	19392	26317	32866	40826
	2	32137	39541	46107	53665		2	28397	35203	41343	48555
	3	38050	45004	51055	57928		3	34083	40582	46326	52965
6	1	25357	33834	41557	50542	6	1	21683	29231	36268	44676
	2	35768	43650	50511	58250		2	31317	38574	45030	52489
	3	41871	49158	55388	62329		3	37242	44086	50055	56855
	4	46002	52797	58552	64931		4	41388	47850	53423	59728
7	1	28870	38103	46317	55622	7	1	24360	32576	40103	48919
	2	39906	48222	55304	63096		2	34629	42334	49074	56719
	3	46134	53693	60025	66925		3	40755	47915	54061	60944
	4	50242	57215	63011	69303		4	44952	51647	57337	63668
	5	53177	59690	65081	70926		Э	48042	54354	59688	65609
8	1	33035	43014	51636	61092	8	1	27497	36413	44407	53554
	2	44608	53279	60469	68160		2	38379	46504	53469	61201
	3	50860	58595	64919	71642		3	44651	52078	58335	65202
	4	54864	61918	67653 coroc	73730		4	48852	55729	61475	67753
	Э с	5/0/2 50751	04218	09020	75158		6 6	54105	00020 60976	65391	70810
	U	09101	00033	10015	10110		0	04100	00270	00021	10015
9	1	37974	48629	57509	66882	9	1	31181	40800	49208	58558
	2	49917	58805	65947	73341		2	42619	51103	58209	65902
	3	56047	63818	69996 - 2420	76366		3	48956	56577	62861	69603
	4	59856	66866	72420	78150		4 5	56097	60073	65791 67910	71909
	о 6	02408 64371	00920	74044	79333		6	58226	64327	69301	74695
	7	65819	71533	76069	80787		7	59333	65718	70435	75488
						10	1	25512	45700	54517	62804
						10	1 9	47388	40199 56131	63255	70746
							3	53677	61383	67582	74062
							4	57669	64648	70237	76071
							5	60447	66893	72046	77434
							6	62493	68526	73347	78398
							7	64066	69771	74337	79131
							0	00000	10149	10020	10000

TABLE III (Continued)

			n = 22					,	n = 24		
p	q	0.90	0.95	0.975	0.99	p	q	0.90	0.95	0.975	0.99
2	1	12890	17791	22597	28693	2	1	11775	16293	20748	26436
3	1	14103	19405	24570	31066	3	l	12791	17656	22428	28483
4	1	15488	21234	26790	33713	4	1	13937	19181	24295	30734
_	2	23213	29142	34992	41008	_	z	21182	20023	31080	37842
5	1	17072	23306	29280	36648	ā	I	15231	20889	26363	33193
	2	25400	31666	37390	44208		2	22965	28764	34119	40579
	3	30840	36915	42350	48720		3	28146	33836	38978	40074
6	l	18888	25652	32060	39859	6	1	16706	22818	28682	35927
	2	27795	34480	40522	47633		2	24953	31125	36772	43512
	3	33480	39886	45555	52119		3	30385	36387	41764	48083
	4	37573	43691	49042	55188		4	34377	40162	45278	51227
7	1	20983	28325	35187	43415	7	1	18387	24996	31272	38938
	2	30489	37598	43941	51299		2	27177	33738	39680	46686
	3	36409	43139	49022	55742		3	32852	39165	44764	51266
	4	40595	46967	52475	58720		4	36965	43008	48301	54397
	5	43749	49806	55007	60878		5	40122	45909	50937	56691
8	1	23410	31369	38693	47319	8	1	20308	27450	34150	42215
	2	33522	41052	47666	55207		2	29673	36637	42870	50130
	3	39653	46686	52747	59565		3	35575	42193	47996	54645
	4	43901	50500	56127	62416		4	39787	46070	51513	57705
	5	47055	53287	58568	64449		5	42983	48967	54115	59942
	6	49497	55418	60416	65965		6	45502	51222	56117	61636
9	1	26227	34834	42605	51561	9	ł	22518	30234	37367	45815
	2	36941	44875	51720	59373		2	32466	39830	46330	53783
	3	43235	50533	56717	63551		3	38580	45489	51466	58224
	4	47504	54283	59975	66229		4	42864	49364	54928	61167
	5	50626	56987	62302	68131		5	46071	52223	57453	63297
	6	53011	59025	64031	69512		6	48572	54426	59380	64900
	7	54899	60624	65382	70587		7	50583	56181	60906	66163
10	1	29510	38781	46964	56164	10	1	25066	33387	40952	49744
	2	40787	49081	56091	63754		2	35594	43345	50073	57649
	3	47177	54680	60915	67665		3	41889	49060	55172	61974
	4	51417	58317	64009	70148		4	46209	52894	58534	64766
	5	54459	60888	66170	71859		5	49396	55680	60951	66757
	6	56747	62808	67767	73108		6	51853	57803	62776	68240
	7	58553	64293	68993	74055		7	53813	59484	64215	69413
	8	59999	65481	69969	74807		8	55408	60840	65364	70333
11	1	33342	43262	51787	61098						
	2	45095	53674	60748	68287						
	3	51497	59122	65320	71876						
	4	55635	62572	68180	74099						
	5	58550	64967	70141	75602						
	6	60722	66736	71579	76697						
	7	62402	68090	72672	77521						
	8	63738	69158	73525	78154						
	9	64830	70027	74219	78669						

REGRESSION WITH UNKNOWN COVARIANCE

TABLE III (Continued)

							1-					
			<i>n</i> =	24 (cont	inued)					n = 26		
	p	q	0.90	0.95	0.975	0.99	p	q	0.90	0.95	0.975	0.99
1	1	1	28009	36953	44922	53975	2	1	10836	15026	19178	24506
		2	291 00	47207	54116	61738						
		3	45519	52906	59092	65850	3	1	11698	16188	20617	26272
		4	49831	56647	62305	68452						
		$\mathbf{\tilde{5}}$	52965	59331	64592	70297	4	1	12661	17478	22205	28205
		6	55348	61347	66288	71641		2	19425	24489	29232	35041
		7	57227	62923	67609	72682	_				2200	
		8	58750	64194	68670	73521	ō	1	13743	18918	23967	30331
		9	60004	65230	69526	74181		2	20939	26321	31330	37422
1		1	91 (90	10000	40919			3	25870	31208	30000	41874
1	z	1	31420 49017	40990	49313	98928 86006	G	,	14050	90595	95017	99661
		2	40017	57020	00409 63904	60816	0	1 ->	14959	20020	20917 33691	32001
		3	49400 53737	60619	662204	72206		2	22017	20000	38404	39990 44599
		5	56769	63151	68336	73856		4	31664	37135	42015	44522
		6	59048	65036	69891	75062		•	01001	01100	12010	11110
		7	60824	66491	71083	75978	7	1	16331	22320	28072	35192
		8	62250	67651	72029	76700		2	24483	30557	36123	42778
		9	63420	68599	72799	77286	ļ	3	29892	35811	41117	47356
		10	64393	69381	73427	77758		4	33896	39613	44672	50560
								$\mathbf{\tilde{5}}$	37028	42546	47387	52988
							8	1	17888	24340	30479	37997
								2	26557	32996	38839	45745
								3	32206	38422	43944	50372
								4	36328	42289	47516	53542
) e	39517	45236	50213 20220	55914
								0	42071	47971	52550	57759
							9	1	19661	26613	33156	41070
							.,	2	28868	35684	41799	48936
								3	34747	41253	46969	53544
								4	38975	45168	50546	56679
								5	42202	48110	53200	58970
							ĺ	6	44764	50419	55265	60741
								7	46851	52282	56922	62151
							10	1	21679	29165	36114	44389
								2	31452	38651	45029	52378
								3	37538	44323	50211	56893
								4	41847	48201	53749 56995	09937 60155
								Э с	45098	01172 59496	20332 20244	02100
								07	41048	əə 4 ə0 55947	50021	00029 65155
								8	49709	56736	61999	66235
								0	01714	00100	01220	
						A						

SIXTH	BERKELEY	SYMPOSIUM:	GLESER	AND

	n = 26 (continued)							n = 28						
p	q	0.90	0.95	0.975	0.99	p	q	0.90	0.95	0.975	0.99			
11	1	23994	32043	39405	48021	2	1	10036	13943	17829	22841			
	2	34331	41902	48512	56006		_							
	3	40604	47646	53674	60416	3	1	10775	14942	19071	24371			
	4	44963	51550	57131	63326			11500	1001-	20100	20015			
	5	48207	54415	59641	65423	4	1	11596	16047	20439	26045			
	6	50726	56613	61550	66998		2	17936	22671	27130	32630			
	7	52742	58356	63051	68226									
	8	54396	59777	64271	69221	5	1	12510	17272	21947	27882			
	9	55779	60960	65283	70044		2	19234	24251	28950	34708			
					~		3	23932	28955	33558	39102			
12	l	26652	35289	43049	51951			10500		22222	20001			
	2	37538	45460	52257	59818	6	1	13530	18630	23606	29884			
	3	43961	51225	57347	64082		2	20667	25985	30937	36962			
	4	48333	55062	60681	66825		3	25588	30873	35688	41446			
	5	51538	57837	63069	68773		4	29339	34521	39178	44692			
	6	53998	59944	64864	70220	_								
	7	55951	61602	66271	71352	7	1	14672	20140	25442	32078			
	8	57538	62941	67399	72250		2	22250	27886	33098	39394			
	9	58856	64046	68328	72986		3	27399	32955	37981	43947			
	10	59967	64972	69101	73599		4	31282	36697	41531	47210			
	_						5	34362	39620	44271	49702			
13	1	29708	38941	47059	56159		-							
	2	41112	49345	56274	63824	8	1	15956	21824	27469	34474			
	3	47623	55053	61206	67845		2	24002	29972	35451	42010			
	4	51958	58774	64371	70384		3	29383	35218	40455	46618			
	5	55090	61429	66614	72175		4	33393	39042	44047	49880			
	6	57462	63416	68274	73481		5	36542	42001	46795	52346			
	7	59323	64962	69556	74481		6	39100	44377	48985	54293			
	8	60830	66209	70591	75295	0		1= 100	2000	20=00	0=00=			
	.9	62069	67226	71427	75939	9	1	17400	23697	29700	37067			
	10	63109	68077	72126	76481		2	25944	32263	38010	44825			
	11	63990	68793	72711	76928		3	31556	37673	43117	49463			
							4	35682	41562	46726	52688			
							Э	38892	44543	49466	55115			
							6	41476	46917	51629	57014			
							7	43609	48860	53391	58556			
						10		10005	25002	00104	00000			
						10	1	19037	25802	32184	39926			
							2	28095	34769	40775	47089			
							3	33937	40333	45968	52474			
							4	38168	44270	49581	55649			
							5	41422	47254	52288	58008			
							6	44019	49611	54411 70130	59844 61917			
							1	46146	51522	56122	61317			
							8	47922	53108	57534	62526			
						1								

TABLE III (Continued)

REGRESSION WITH UNKNOWN COVARIANCE

		<i>n</i> =	28 (conti	nuea)		n = 30						
p	q	0.90	0.95	0.975	0.99	p	q	0.90	0.95	0.975	0.99	
11	1	20894	28160	34934	43045	2	1	09346	13004	16655	21382	
	2	30484	37520	43775	51005							
	3	36540	43204	49010	55627	3	1	09987	13875	17741	22729	
	4	40862	47173	52607	58750							
	5	44141	50135	55256	61012	4	1	10696	14834	18935	24204	
	6	46735	52456	57319	62767		2	16656	21100	25305	30521	
	7	48843	54325	58971	64165							
	8	50591	55865	60325	65306	5	1	11476	15885	20234	25791	
	9	52066	57155	61454	66249		2	17784	22481	26906	32367	
							3	22257	26995	31361	36649	
2	1	23004	30795	37960	46398							
	2	33145	40542	47033	54433	6	1	12344	17045	21663	27527	
	3	39388	46303	52251	58935		2	19020	23986	28641	34350	
	4	43773	50265	55788	61950		3	23703	28683	33247	38746	
	5	47061	53191	58372	64126		4	27324	32238	36681	41977	
	6	49631	55455	60353	65777							
	7	51702	57263	61928	67087	7	1	13308	18329	23234	29426	
	8	53407	58741	63207	68142		2	20376	25627	30518	36477	
	9	54839	59977	64274	69021		3	25277	30505	35270	40971	
	10	56057	61022	65172	69757		4	29030	34163	38779	44246	
							5	32046	37060	41528	46784	
13	1	25414	33758	41309	50040							
	2	36096	43837	50527	58026	8	1	14382	19750	24960	3149 0	
	3	42501	49641	55694	62396		2	21871	27424	32562	38776	
	4	46915	53556	59131	65262		3	26992	32478	37444	43345	
	5	50180	56411	61610	67307		4	30876	36232	41017	46645	
	6	52706	58598	63495	68851		5	33969	39178	43790	49178	
	7	54722	60328	64978	70058		6	36508	41568	46020	51193	
	8	56370	61732	66174	71025							
	9	57746	62900	67167	71828	9	1	15584	21328	36864	33745	
	10	58909	63881	67997	72495		2	23519	29387	34780	41247	
	11	59905	64718	68701	73058	ľ	3	28864	34613	39779	45866	
							4	32873	38451	43399	4917 0	
4	1	28170	37084	44997	53963		5	36038	41437	46185	51689	
	2	39370	47423	54260	61780		6	38617	43844	48412	53683	
	3	45892	53214	59325	65975		7	40765	45829	50234	55299	
	4	50296	57041	62620	68658							
	5	53504	59791	64963	70547	10	1	16931	23082	28960	36198	
	6	55958	61874	66727	71960		2	25338	31536	37184	43895	
	7	57902	63513	68110	73068		3	30908	36925	42286	48549	
	8	59475	64828	69209	73936		4	35035	40834	45937	51838	
	9	60779	65914	70115	74651		5	38262	43846	48719	54320	
	10	61878	66825	70873	75249		c					
	11	62814	67598	71515	75752	10	6	40869	46253	50922	56265	
	12	63621	68259	72059	76171		7	43031	48232	52724	57852	
							8	44852	49885	54220	-59157	

TABLE III (Continued)

		n =	30 (cont	inued)			n = 30 (continued)						
p	q	0.90	0.95	0.975	0.99	p	q	0.90	0.95	0.975	0.99		
11	1	18444	25029	31959	38810	15	1	96789	35399	13100	51915		
••	•	27349	33888	39790	16733		;	47771	15619	52390	59875		
	3	33141	39426	44976	51394		$\overline{3}$	44978	51484	57538	64172		
	1	37373	43385	18628	54631		ă	48732	55400	60948	66992		
	5	40650	46409	51391	57065		5	52010	58243	63401	69004		
	6	43275	48804	53559	58952		6	54533	60409	65254	70510		
	7	45437	50760	55322	60485		7	56542	62120	66710	71685		
	8	47247	52386	56777	61740		8	58181	63508	67886	72635		
	9	48786	53759	57999	62782		9	59545	64657	68856	73411		
							10	60696	65622	69669	74060		
12	1	20155	27209	33810	41744		11	61682	66445	70359	74611		
	2	29570	36452	42594	49728		12	62535	67156	70954	75085		
	3	35579	42125	47846	54392		13	63277	67768	71459	75476		
	4	39903	46118	51484	57565								
	5	43213	49131	54202	59919								
	6	45842	51498	56319	61735				n = 35				
	7	47988	53414	58024	63189			0.00	0.07	0.055	0.00		
	8	49778	55003	59432	64389	<i>p</i>	q	0.90	0.95	0.97ə	0.99		
	9	51290	56336	60606	65381	2	1	79720	11125	14293	18425		
	10	52587	57472	61598	66211	-				11200	10.20		
						3	1	08440	11766	15099	19435		
13	1	22092	29642	36623	44898		-	00110		10000	10100		
	2	32029	39255	45623	42918	4	1	08950	12461	15972	20527		
	3	38235	45026	50892	57515		2	14127	17972	21644	26246		
	4	42635	49033	54498	60621								
	5	45957	52012	57145	62868	5	1	09504	13214	16913	21693		
	6	48572	54332	59193	64594		2	14949	18990	22838	27644		
	7	50690	56197	60830	65970		3	18935	23078	26937	31669		
	8	52444	57733	62174	67099								
	.9	53918	59014	63287	68019	6	1	10109	14034	17933	22950		
	10	55178	60104	64232	68807		2	15839	20088	24119	29135		
	11	56264	61039	65037	69468		3	19999	24335	28359	33275		
14		0400F	00050	90505	40050		4	23305	27643	31613	36407		
14	1	24280	32300	39700	48270								
	2 9	34707	42321	40090	00324 60777	7	1	10773	14930	19046	24321		
	3 4	41120	50194	57651	69760		2	16803	21271	25492	30717		
	7 5	48800	55054	60991	65912		3	21147	25685	29881	34985		
	6	51460	57306	62177	67529		4	24574	29097	33219	38178		
	7	53549	59102	63731	68810		$\tilde{5}$	27396	31866	35901	40716		
	8	55246	60570	64995	69848	0	1	11500	15005	00040	05500		
	9	56671	61791	66042	70704	8	1	11500	15907	20249	25790		
	10	57882	62823	66924	71423		2	17853	22554	26975	32422		
	11	58923	63706	67676	72032		3	22386	27134 20640	31003	30792 40049		
	12	59825	64468	68320	72547		4 ≍	29890	30048 2240#	34923 27650	40042 49616		
	-						6 8	20842	əə48ə 35841	34098 39900	42010		
							U	01200	00041	00000	TT 100		
						9	1	12301	16978	21567	27390		
							$\hat{2}$	18997	23943	28574	34245		
							3	23725	28691	33238	38709		
							4	27400	32305	36735	42010		
							5	30388	35204	39513	44607		
							6	32884	37597	41785	46704		
							7	35009	39618	43689	48453		

TABLE III (Continued)

	$n = 35 \ (continued)$												
<i>p</i>	q	0.90	0.95	0.975	0.99		р	q	0.90	0.95	0.975	0.99	
10	1	13182	18148	22994	29105		15	1	19271	26052	39499	40113	
	2	20245	25450	30297	36197			2	28481	35154	41130	48098	
	3	25174	30366	35092	40746			3	34455	40834	46425	52840	
	4	28974	34077	38662	44089			4	38811	44890	50152	56134	
	$\mathbf{\tilde{o}}$	32040	37029	41469	46687			5	42179	47982	52967	58602	
	6	34588	39458	43761	48792			6	44877	50434	55181	60528	
	7	36746	41494	45669	50530			7	47096	52435	56980	62089	
	8	38600	43231	47285	51988			8	48952	54095	58459	63353	
								9	53534	55503	59710	64423	
11	1	14157	19437	24558	30970			10	51895	56706	60773	65324	
	2	21607	27083	32152	38279			11	53083	57755	61700	66113	
	3	26745	32170	37080	42916			12	54126	58671	62504	66790	
	4	30665	35968	40701	46267			13	55050	59480	63213	67387	
	5	33808	38972	43542	48879				200.10	00150	0.4001	120-0	
	6	36401	41423	45836	50964		16	1	20940	28158	34861	42856	
	1	38586	43469	47740	02082 74100			2	30639	37626	43817	00900 77880	
	8	40450	45207	49347	54122 55959			3	36806	43410	49109	20000	
	9	42078	40707	30727	999999			4	41240	47488	52843 55619	0000 <i>1</i> 61969	
								e e	44033	59083	57710	62112	
12	1	15238	20855	26268	32995			7	41520	54045	50515	64605	
	2	23095	28855	34147	40491			6	49029	56569	60049	65819	
	3	28444	34106	39195	45197			a a	52011	57928	62143	66826	
	4	32486	37989	42872	48568			10	54240	59089	63158	67674	
	Ð	30098	41033	45724	51104			11	55395	60095	64036	68410	
	0	38331	43000	48015	03220 54010			12	56407	60976	64804	69055	
	4	40007	40049	49907	56990			13	57300	61748	65474	69611	
	0	42410	47201	59956	57521			14	58093	62430	66063	70096	
	10	44036	50058	54096	58550								
	10	10102	00000	04020	00000		17	1	22818	30498	37544	45824	
13	1	16439	22418	28137	35182			2	33005	40298	46681	53940	
10	2	24727	30783	36306	42872			3	39354	46176	52030	58599	
	3	30288	36190	41454	47613			4	43847	50246	55673	61711	
	4	34444	40146	45166	50980			5	47245	53284	58371	64003	
	5	37718	43219	48022	53549			6	49921	55653	60459	65766	
	6	40383	45694	50302	55579			7	52087	57556	62128	67168	
	7	42603	47737	52172	57238			8	53882	59123	63495	68311	
	8	44481	49452	53729	58600	1		.9	55394	60438	64641	69269	
	9	46099	50923	55064	59773			10	56681	61547	65595	70052	
	10	47502	52188	56203	60760			11	57797	62509	66428 67149	70744	
	11	48735	53298	57201	61628			12	20696	02241	67779	71946	
								10	60286	64721	68394	79908	
14	1	17777	24144	30184	37554			15	61064	65207	68817	72697	
	2	26517	32878	38630	45405			10	01004	00201	00011	12001	
	3	32286	38428	43860	50156								
	4	36548	42442	47590	53498								
	5	39876	45533	50435	56027								
	6 7	42565	48007	54597	08022 50691								
	1	44/87	00030 51795	04027 56057	09021 60040								
	o Q	40000	51120	57940	62070								
	10	40640	5440R	58454	63010								
	11	50864	55489	59422	63853								
	12	51933	56438	60264	64572								

REFERENCES

- [1] T. W. ANDERSON, Introduction to Multivariate Statistical Analysis, New York, Wiley, 1958.
- [2] W. G. COCHRAN and C. I. BLISS, "Discriminant functions with covariance," Ann. Math. Statist., Vol. 19 (1948), pp. 151-176.
- [3] R. C. ELSTON and J. E. GRIZZLE. "Estimation of time-response curves and their confidence bands," *Biometrics*, Vol. 18 (1962), pp. 148-159.
- [4] A. ERDÉLYI, et al., Higher Transcendental Functions. Vol. 1, Bateman Manuscript Project, New York, McGraw-Hill, 1953.
- [5] S. GEISSER and S. W. GREENHOUSE, "An extension of Box's results on the use of the F distribution in multivariate analysis," Ann. Math. Statist., Vol. 29 (1958), pp. 885-891.
- [6] ——, "On methods in the analysis of profile data," Psychometrika, Vol. 24 (1959), pp. 95-112.
- [7] L. J. GLESER and I. OLKIN, "Estimation for a regression model with covariance," Stanford University, Technical Report No. 15, August 14, 1964.
- [8] —, "A K-sample regression model with covariance." Multivariate Analysis I (edited by P. R. Krishnaiah), New York, Academic Press, 1966, pp. 59-72.
- [9] ——, "Linear models in multivariate analysis," Essays in Probability and Statistics (edited by R. C. Bose, et al.), Chapel Hill, University of North Carolina Press, 1970, pp. 267-292.
- [10] M. HALPERIN. "Normal regression theory in the presence of intra-class correlation." Ann. Math. Statist., Vol. 22 (1951), pp. 573-580.
- [11] D. G. KABE, "On the noncentral distribution of Rao's U statistic," Ann. Inst. Statist. Math., Vol. 17 (1965), pp. 75-80.
- [12] C. C. MACDUFFEE. The Theory of Matrices, New York, Chelsea. 1946 (2nd ed.).
- [13] R. D. NARAIN, "Some results on discriminant functions," J. Indian Soc. Agric. Statist., Vol. 2 (1950), pp. 49-59.
- [14] I. OLKIN and S. S. SHRIKHANDE, "On a modified T^2 problem," Ann. Math. Statist., Vol. 25 (1954), p. 808, no. 8.
- [15] R. F. POTHOFF and S. N. ROY, "A generalized multivariate analysis of variance model useful especially for growth curve problems," *Biometrika*, Vol. 51 (1964), pp. 313-326.
- [16] C. R. RAO, "Tests with discriminant functions in multivariate analysis," Sankhyā, Vol. 7 (1946), pp. 407-414.
- [17] ——, "On some problems arising out of discrimination with multiple characters," Sankhyā, Vol. 9 (1949), pp. 343-366.
- [18] . "A note on the distribution of $D_{p+q}^2 D_q^2$ and some computational aspects of D^2 statistic and discriminant function." Sankhyā, Vol. 10 (1950), pp. 257-268.
- [19] ——, "Some statistical methods for the comparison of growth curves," Biometrics, Vol. 14 (1958), pp. 1-17.
- [20] ———, "Some problems involving linear hypotheses in multivariate analysis," Biometrika, Vol. 46 (1959), pp. 49-58.
- [21] ——, "Least squares theory using an estimated dispersion matrix and its application to measurement of signals," *Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability*, Berkeley and Los Angeles, University of California Press, 1967, Vol. 1, pp. 355-372.
- [22] G. S. WATSON, "Serial correlation in regression analysis. I," Biometrika, Vol. 42 (1955), pp. 327-341.
- [23] ——, "Linear least squares regression," Ann. Math. Statist., Vol. 38 (1967), pp. 1679-1699.
- [24] G. S. WATSON and E. J. HANNAN, "Serial correlation in regression analysis II," Biometrika, Vol. 43 (1956), pp. 436-445.
- [25] J. S. WILLIAMS, "The variance of weighted regression estimators," J. Amer. Statist. Assoc., Vol. 62 (1967), pp. 1290-1301.