ESTIMATION FOR A REGRESSION MODEL WITH AN UNKNOWN COVARIANCE MATRIX

LEON JAY GLESER
The Johns Hopkins University
and
INGRAM OLKIN
Stanford University

1. Summary and introduction

A linear regression model is considered under which the residual error vector is assumed to have a multivariate normal distribution with unknown covariance matrix Σ. To estimate Σ, it is assumed that the regression design can be given independent replications. This problem has been considered by Rao, who obtains a point estimator and suggests two classes of confidence regions for the vector β of regression parameters. In the present paper, we find the maximum likelihood estimators of β and of Σ, and derive their distributions. One of Rao's two classes of confidence regions for β had previously been inapplicable due to the lack of tables for upper tail values of the distribution of the pivotal quantity. These tables are now provided, and the performances of the two classes of confidence regions are compared in terms of their expected volumes.

In the classical linear regression model, the vector of observations $y=$ $\left(y_{1}, y_{2}, \cdots, y_{p}\right)$ has the form

$$
\begin{equation*}
y=\beta X+\varepsilon, \tag{1.1}
\end{equation*}
$$

where $\beta: 1 \times q$ is an unknown vector of regression parameters, X is a known $q \times p$ matrix of rank $q \leqq p$, and ε has a p variate normal distribution with mean vector zero and covariance matrix $\Sigma=\sigma^{2} I$. Since the simple structure of the covariance matrix may not be valid for some problems, extensions of the results of the classical model to models where Σ has a more general structure have been considered. Such attempts can be classified in the following hierarchy of complexity:
(i) Σ an arbitrary known matrix,
(ii) Σ known up to a scale factor σ^{2},

[^0](iii) Σ unknown but with some special structure,
(iv) Σ completely unknown and arbitrary.

The maximum likelihood estimators (MLE) for cases (i) and (ii) are well known (see Anderson [1]). In both of these cases, the MLE $\hat{\beta}(\Sigma)$ of β has the form $\hat{\beta}(\Sigma)=y \Sigma^{-1} X^{\prime}\left(X \Sigma^{-1} X^{\prime}\right)^{-1}$ with covariance matrix $\left(X \Sigma^{-1} X^{\prime}\right)^{-1}$ yielding the minimum concentration ellipse among all linear unbiased estimators of β. (Note that in case (ii), $\hat{\beta}(\Sigma)$ is independent of the unknown scale factor σ^{2}.) Watson [22], [23] and Watson and Hannan [24] have investigated the errors involved when the assumptions made concerning Σ in cases (i) and (ii) are violated.

As an example of a model of the type considered in case (iii), assume that Σ has the intraclass correlation structure. This class of linear regression models has been considered by Halperin [10], by Geisser and Greenhouse [5], [6], and by other authors. Alternative possible special models for Σ include the models of autocorrelation, circular symmetry, and compound symmetry. In each of these special cases, as well as in cases (i) and (ii), inference concerning the parameters of the regression model is possible even when only one replication of the random vector y is available.

If, however, we are in complete ignorance of Σ, it is clear that more than one observation must be taken on y in order to estimate both β and Σ. In some problems, one may actually have independent replications of the y 's : for example, (a) where each y vector represents a score vector on an examination and the replications are individuals from a particular homogeneous group, or (b) in the analysis of growth curves (see Rao [19], Pothoff and Roy [15], Gleser and Olkin [8], [9]). The replications on y enable us to simultaneously estimate β and Σ.

Versions of case (iv) have been considered by many authors. Cochran and Bliss [2] discuss a variant of this model in connection with the comparison of discriminant functions from two populations. Rao [16], [17], [18] considers the problem of testing the hypothesis that the vector β of regression parameters obeys certain linear constraints, derives the likelihood ratio test statistic for this problem, and obtains its null and nonnull distributions. Further distributional results for the likelihood ratio statistic are given by Narain [13], Olkin and Shrikhande [14], and Kabe [11].

Rao [16], [18], [20], [21] also considers the problem of estimating β. He obtains a certain "least squares" estimator for β which is, in fact, the MLE of β (Gleser and Olkin [7]). They find the MLE of β and Σ, give representations for their densities, and compare the covariance matrices of the MLE of β and the BLUE of β when Σ is known. The comparison shows that for even moderate sample sizes, there is little difference in the accuracies of the two estimators. (Similar results are also given by Rao [21] and Williams [25].) The above results, together with a new and very useful representation for the density of the MLE of β, appear in Section 2 and Appendix A.

Rao ([16]-[21]) has proposed two classes of confidence regions for (linear combinations of) the elements of the vector β-one class based on a statistic
closely related to Mahalanobis's distance, the other on the likelihood ratio test statistic for testing that β obeys certain linear restraints. These two procedures are described in Section 3. Distributional difficulties with the former class of confidence regions have up to now severely limited its applicability, and have prevented comparisons with the class of regions based on the likelihood ratio statistic. In Appendix B of this paper, we provide the necessary tables for the application of this confidence procedure in certain cases, and indicate how these tables may be used (and extended) in more general contexts. The availability of these tables permits comparison of the two classes of confidence regions; these comparisons appear in Section 4. An illustrative example is given in Section 5.

2. The regression model: estimators of $\boldsymbol{\beta}$ and $\boldsymbol{\Sigma}$

Let $y^{(1)}, \cdots, y^{(N)}$ be N independent random p dimensional row vectors, each having a multivariate normal distribution with mean vector $\mathscr{E}\left(y^{(j)}\right)=\beta X$ and covariance matrix Σ, where X is a known $q \times p$ matrix of rank $q \leqq p$, where β is a $\mathbf{l} \times q$ vector of unknown regression parameters, and where Σ is an unknown positive definite matrix.

We may immediately reduce the data to the sufficient statistic (\bar{y}, S), where $\bar{y}=N^{-1} \Sigma_{j=1}^{N} y^{(j)}$ is the sample mean vector and $S=\Sigma_{i=1}^{N}\left(y^{(i)}-\bar{y}\right)^{\prime}\left(y^{(i)}-\bar{y}\right)$ is the sample cross product matrix. Thus, \bar{y} and S are independently distributed, \bar{y} has a multivariate normal distribution with mean vector βX and covariance matrix $N^{-1} \Sigma$, (denoted $\bar{y} \sim N\left(\beta X, N^{-1} \Sigma\right)$), and S has the Wishart distribution with $n \equiv N-1$ degrees of freedom and expectation $\mathscr{E}(S)=n \Sigma$, (denoted $S \sim W(\Sigma ; p, n)), S$ being $p \times p$. The joint density of \bar{y} and S is given by
$p(\bar{y}, S)=c|\Sigma|^{-N / 2}|S|^{(n-p-1) / 2} \exp \left\{-\frac{1}{2} \operatorname{tr} \Sigma^{-1}\left[S+N(\bar{y}-\beta X)^{\prime}(\bar{y}-\beta X)\right]\right\}$, where

$$
\begin{equation*}
c^{-1}=\left[2^{N} \pi^{(p+1) / 2} N^{-1}\right]^{p / 2} \prod_{i=1}^{p} \Gamma\left[\frac{1}{2}(n-i+1)\right] . \tag{2.2}
\end{equation*}
$$

To obtain the MLE of β and Σ, first maximize $p(\bar{y}, S)$ with respect to Σ; this yields

$$
\begin{equation*}
N \hat{\Sigma}(\beta)=S+N(\bar{y}-\beta X)^{\prime}(\bar{y}-\beta X) \tag{2.3}
\end{equation*}
$$

(see, for example, Anderson [1], p. 46). Inserting $\hat{\Sigma}(\beta)$ for Σ in the joint density yields a constant multiple of
$\left|S+N(\bar{y}-\beta X)^{\prime}(\bar{y}-\beta X)\right|^{-N / 2}=|S|^{-N / 2}\left[1+N(\bar{y}-\beta X) S^{-1}(\bar{y}-\beta X)^{\prime}\right]^{-N / 2}$, from which, maximizing with respect to β, we obtain the MLE of β to be

$$
\begin{equation*}
\hat{\beta}=\bar{y} S^{-1} X^{\prime}\left(X S^{-1} X^{\prime}\right)^{-1} \tag{2.5}
\end{equation*}
$$

The MLE of Σ is then $\hat{\Sigma} \equiv \hat{\Sigma}(\hat{\beta})$.

The distribution of $\hat{\beta}$ is obtained in Appendix A. There, it is shown that the following result holds.

Theorem 2.1. The probability density of $\hat{\beta}$ is

$$
\begin{equation*}
p(\hat{\beta})=\sum_{j=0}^{\infty} c_{j} \frac{\left|N X \Sigma^{-1} X^{\prime}\right|^{1 / 2}[Q(\hat{\beta})]^{j} \exp \left\{-\frac{1}{2} Q(\hat{\beta})\right\}}{(2 \pi)^{q / 2} 2^{j}\left[\Gamma\left(\frac{1}{2} q+j\right) / \Gamma\left(\frac{1}{2} q\right)\right]} \equiv \sum_{j=0}^{\infty} c_{j} h_{j}(\hat{\beta}), \tag{2.6}
\end{equation*}
$$

where $Q(\hat{\beta})=N(\hat{\beta}-\beta) X \Sigma^{-1} X^{\prime}(\hat{\beta}-\beta)^{\prime}$,

$$
\begin{equation*}
c_{j}=\frac{c_{0}}{j!} \frac{\Gamma\left(\frac{1}{2}(p-q)+j\right)}{\Gamma\left(\frac{1}{2}(p-q)\right)} \frac{\Gamma\left(\frac{1}{2} q+j\right)}{\Gamma\left(\frac{1}{2} q\right)} \frac{\Gamma\left(\frac{1}{2}(n+q+1)\right)}{\Gamma\left(\frac{1}{2}(n-p+q)+j\right)}, \tag{2.7}
\end{equation*}
$$

the components of $\hat{\beta}$ range from $-\infty$ to ∞, and

$$
\begin{equation*}
c_{0}=\frac{\Gamma\left(\frac{1}{2}(n+2 q-p+1)\right) \Gamma\left(\frac{1}{2}(n+1)\right)}{\Gamma\left(\frac{1}{2}(n+q+1)\right) \Gamma\left(\frac{1}{2}(n-p+q+1)\right)} . \tag{2.8}
\end{equation*}
$$

Note that $c_{j} \geqq 0$ for all j. It can be shown that $\sum_{j=0}^{\infty} c_{j}=1$ and that each $h_{j}(\hat{\beta}), j=0,1, \cdots$, is a q variate density. (Indeed, $h_{0}(\hat{\beta})$ is the density of a q variate normal distribution having mean vector β and covariance matrix $\left(N X \Sigma^{-1} X^{\prime}\right)^{-1}$.) Thus, (2.6) is a mixture of the densities $h_{j}(\hat{\beta})$. Using standard results concerning mixtures of densities, we can conclude that for any measurable set R in q dimensional space,

$$
\begin{equation*}
c_{0} P\{u \in R\} \leqq P\{\hat{\beta} \in R\} \leqq c_{0} P\{u \in R\}+\left(1-c_{0}\right) \tag{2.9}
\end{equation*}
$$

where $u \sim N\left(\beta,\left(N X \Sigma^{-1} X^{\prime}\right)^{-1}\right)$. From the fact that for fixed h.

$$
\begin{equation*}
\frac{\Gamma(t+h)}{\Gamma(t)}=t^{h}[1+o(1)] \tag{2.10}
\end{equation*}
$$

$$
t \rightarrow \infty
$$

it follows that

$$
\begin{equation*}
c_{0}=1-\frac{q(p-q)}{2 N}+O\left(N^{-2}\right) \tag{2.11}
\end{equation*}
$$

as $N \rightarrow \infty$. From (2.9) and (2.11), we see that $\sqrt{N}(\hat{\beta}-\beta$) has an asymptotic q variate normal distribution with mean vector zero and covariance matrix $\left(X \Sigma^{-1} X^{\prime}\right)^{-1}$, and we also have a measure of the accuracy of the approximation involved in replacing the finite sample distribution of $\hat{\beta}$ with the asymptotic distribution.
Two alternative forms for the density (2.6) of $\hat{\beta}$ in terms of an integral representation and a hypergeometric series may prove helpful (Gleser and Olkin [7]). These are the following:

$$
\begin{equation*}
p(\hat{\beta})=h_{0}(\hat{\beta}) \int_{0}^{1} \frac{g^{(p-q) / 2-1}(1-g)^{(n+2 q-p+1) / 2-1} \exp \left\{\frac{1}{2} g Q(\hat{\beta})\right\} d g}{B\left(\frac{1}{2}(p-q), \frac{1}{2}(n-p+q+1)\right)}, \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
p(\hat{\beta})=c_{0} h_{0}(\hat{\beta})_{1} F_{1}\left(\frac{1}{2}(p-q), \frac{1}{2}(n+q+1) ; \frac{1}{2} Q(\hat{\beta})\right) \tag{2.13}
\end{equation*}
$$

where ${ }_{1} F_{1}(a, b ; z)$ is the confluent hypergeometric function

$$
\begin{equation*}
{ }_{1} F_{1}(a, b ; z)=\sum_{j=0}^{\infty} \frac{\Gamma(a+j)}{\Gamma(a)} \frac{\Gamma(b)}{\Gamma(b+j)} \frac{z^{j}}{j!} \tag{2.14}
\end{equation*}
$$

From (2.12), a direct computation (involving an interchange of the order of integration between $\hat{\beta}$ and g) yields $\mathscr{E}(\hat{\beta})=\beta$ (that is, $\hat{\beta}$ is unbiased) and

$$
\begin{equation*}
N \operatorname{Cov}(\hat{\beta})=\frac{n-1}{n-p+q-1}\left(X \Sigma^{-1} X^{\prime}\right)^{-1} \tag{2.15}
\end{equation*}
$$

We have derived the estimators $\hat{\beta}$ and $\hat{\Sigma}$ assuming that Σ is unknown. If Σ is known, then the estimator $\hat{\beta}(\Sigma)=\bar{y} \Sigma^{-1} X^{\prime}\left(X \Sigma^{-1} X^{\prime}\right)^{-1}$ is the Gauss-Markov (BLUE) estimator of β - that is, among all unbiased linear estimators of $\beta, \hat{\beta}(\Sigma)$ has the smallest ellipsoid of concentration. The covariance matrix of $\hat{\beta}(\Sigma)$ is $\left(N X \Sigma^{-1} X^{\prime}\right)^{-1}$; from this fact and (2.15), it follows that for all Σ,

$$
\begin{equation*}
\operatorname{Cov}(\hat{\beta})=\left(1+\frac{p-q}{n-p+q-1}\right) \operatorname{Cov}[\hat{\beta}(\Sigma)] \tag{2.16}
\end{equation*}
$$

For n moderately large with respect to $p-q, \operatorname{Cov}(\hat{\beta})$ and $\operatorname{Cov}[\hat{\beta}(\Sigma)]$ are nearly equal (more accurately, they are of the same order of magnitude in N). We thus have an estimator $\hat{\beta}$ for β which, regardless of the value Σ of the unknown covariance matrix, has for large enough N approximately the minimal ellipse of concentration achievable by the BLUE of β given that value of $\boldsymbol{\Sigma}$. Comparisons similar to the above have been made in Gleser and Olkin [7], Rao [21], and Williams [25].

It is worth noting that as $N \rightarrow \infty$ both $\sqrt{N}(\hat{\beta}-\beta)$ and $\sqrt{N}[\hat{\beta}(\Sigma)-\beta]$ have the limiting distribution $N\left(0,\left(X \Sigma^{-1} X^{\prime}\right)^{-1}\right)$. A measure of the error involved in assuming that $\hat{\beta}$ and $\hat{\beta}(\Sigma)$ have the same distribution in small samples can be obtained from (2.9) and (2.11).

The distribution of $\hat{\Sigma}$ is given in Appendix A.

3. Confidence regions for $\boldsymbol{\beta}$

From (2.6), (2.12), or (2.13) it can be seen that the density of $\hat{\beta}$ is constant on ellipsoids that have the form

$$
\begin{equation*}
Q(\hat{\beta})=\text { constant } \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
Q(\hat{\beta})=N(\hat{\beta}-\beta)\left(X \Sigma^{-1} X^{\prime}\right)(\hat{\beta}-\beta)^{\prime} \tag{3.2}
\end{equation*}
$$

The regions of form (3.1) are thus ellipsoids of concentration for the distribution of $\hat{\beta}$. Since $\hat{\beta}$ has approximately a q variate normal distribution with mean vector β and covariance matrix $\left(N X \Sigma^{-1} X^{\prime}\right)^{-1}$, this suggests using the ellipsoid $\left\{\beta: Q(\hat{\beta}) \leqq \chi_{q}^{2}(\gamma)\right\}$, where $\chi_{q}^{2}(\gamma)$ is the upper tail of a χ_{q}^{2} distribution, as a 100γ per cent confidence interval for β. Unfortunately, this region cannot be used since Σ is unknown. We can, however, replace Σ by its MLE $\hat{\Sigma}$, and form a confidence region for β based on the pivotal quantity

$$
\begin{equation*}
\Delta=N(\hat{\beta}-\beta)\left(X \hat{\Sigma}^{-1} X^{\prime}\right)(\hat{\beta}-\beta)^{\prime} \tag{3.3}
\end{equation*}
$$

Since $(N \hat{\Sigma})^{-1}=S^{-1}-N(1+r)^{-1} S^{-1}(\bar{y}-\hat{\beta} X)^{\prime}(\bar{y}-\hat{\beta} X) S^{-1}$, where

$$
\begin{equation*}
r=N(\bar{y}-\hat{\beta} X) S^{-1}(\bar{y}-\hat{\beta} X)^{\prime}, \tag{3.4}
\end{equation*}
$$

and since $X S^{-1}(\bar{y}-\hat{\beta} X)=0$, it follows that $X \hat{\Sigma}^{-1} X^{\prime}=N X S^{-1} X^{\prime}$ and

$$
\begin{equation*}
\Delta=N^{2}(\hat{\beta}-\beta)\left(X S^{-1} X^{\prime}\right)(\hat{\beta}-\beta)^{\prime} \tag{3.5}
\end{equation*}
$$

Although the region $\left\{\beta: N^{2}(\hat{\beta}-\beta)\left(X S^{-1} X^{\prime}\right)(\hat{\beta}-\beta) \leqq \chi_{q}^{2}(\gamma)\right\}$ has asymptotic confidence γ as $N \rightarrow \infty$, it is not an exact 100γ per cent confidence region for β. Thus for moderate sample sizes it may be of value to determine exact confidence regions for β based on the pivotal quantity Δ defined in (3.5).

The problem of finding the constant $b^{(\gamma)}$ for which the region

$$
\begin{equation*}
E_{1}=\left\{\beta: N(\hat{\beta}-\beta)\left(X S^{-1} X^{\prime}\right)(\hat{\beta}-\beta)^{\prime} \leqq b^{(\gamma)}\right\} \tag{3.6}
\end{equation*}
$$

has exact confidence γ is quite difficult since $b^{(\gamma)}$ or equivalently $c^{(\gamma)}=$ $b^{(\gamma)} /\left(1+b^{(\gamma)}\right)$ is obtained as the solution of the integral equation

$$
\begin{equation*}
\int_{0}^{1} d g \int_{0}^{c(\gamma)} d h \frac{g^{a_{1}-1}(1-g)^{a_{2}-1} h^{d_{1}-1}(1-h)^{d_{2}-1}(1-g h)^{-\left(d_{1}+d_{2}\right)}}{B\left(a_{1}, a_{2}-d_{1}\right) B\left(d_{1}, d_{2}\right)}=\gamma \tag{3.7}
\end{equation*}
$$

where $a_{1}=\frac{1}{2}(p-q), a_{2}=\frac{1}{2}(n+2 q-p+1), d_{1}=\frac{1}{2} q$, and $d_{2}=\frac{1}{2}(n-p+1)$.
Theorem 3.1. If $c^{(\gamma)}$ is chosen to satisfy (3.7), then E_{1} (with $b^{(\gamma)}=$ $c^{(\gamma)} /\left(1-c^{(\gamma)}\right)$) is a 100γ per cent confidence region for β.

Proof. From (3.4) and Lemma 2 of Appendix A, $(n-p+1) \Delta / q(1+r)$ has, conditional upon r, Snedecor's F distribution with q and $n-p+1$ degrees of freedom. Also $(1+r)^{-1}$ has a Beta distribution with parameters $\frac{1}{2}(n-p+$ $q+1)$ and $\frac{1}{2}(p-q)$. It follows, therefore, that for $P\left\{\beta \in E_{1}\right\}$ to be equal to γ, we must have

$$
\begin{align*}
\gamma & =P\left\{\beta \in E_{1}\right\}=P\left\{\frac{(n-p+1) \Delta}{q(1+r)} \leqq\left(\frac{n-p+1}{q}\right) \frac{b^{(\gamma)}}{1+r}\right\} \tag{3.8}\\
& =\int_{0}^{\infty} \frac{r^{(p-q) / 2-1} d r}{B\left(\frac{1}{2}(p-q), \frac{1}{2}(n+q-p+1)\right)(1+r)^{(n+1) / 2}} \\
& \cdot \int_{0}^{b(\gamma) /(1+r)} \frac{x^{q / 2-1} d x}{B\left(\frac{1}{2} q, \frac{1}{2}(n-p+1)\right)(1+x)^{(n-p+q+1) / 2}} .
\end{align*}
$$

By a change of variables to $g=r /(1+r), h=(x+x r) /(1+x+x r)$, we obtain (3.7). Q.E.D.

Another expression for $P\left\{\beta \in E_{1}\right\}$ has been given by Rao [17] in terms of the hypergeometric function. However, in either form it is difficult to solve for the cutoff point $b^{(\gamma)}$. A computer program has been written utilizing a certain mixture representation for the integral (3.7). This program is described in Appendix B.

Notice that the statistic $r=N(\bar{y}-\hat{\beta} X) S^{-1}(\bar{y}-\hat{\beta} X)^{\prime}$ is a function of the sufficient statistic (\bar{y}, S) and has a distribution which is functionally independent of the parameters β and Σ under the model (1.1). Thus, r is an ancillary statistic. Indeed, the statistic r can be used to test the goodness of fit of the model (1.1) (see Rao [20]). Following a somewhat standard practice, we might agree to find a confidence region for β which has probability of coverage γ, conditional upon r for each possible value of r. Returning to the distributional fact used in the proof of Theorem 3.1, we see that one such region is

$$
\begin{equation*}
E_{2}=\left\{\beta: \frac{(n-p+1) N(\hat{\beta}-\beta)\left(X S^{-1} X^{\prime}\right)(\hat{\beta}-\beta)^{\prime}}{q(1+r)} \leqq F_{q, n-p+1}^{(\gamma)}\right\} \tag{3.9}
\end{equation*}
$$

where $F_{q, n-p+1}^{(\gamma)}$ is the upper tail of Snedecor's F distribution with q and $n-p+1$ degrees of freedom. Since E_{2} has, conditional upon r, coverage γ for β, it is also a 100γ per cent unconditional confidence region for β. Because tables of the F distribution are easily available, the region E_{2} has been preferred by statisticians. However, in certain circumstances the performance of region E_{1} may be superior to that of region E_{2}. Without values of $b^{(\gamma)}$, comparisons of these two confidence regions are difficult, if not impossible, to do. Using the tables of $b^{(\gamma)}$, such comparisons can now be made.

Before leaving the present section, however, it is worth noting that the region E_{2} is the set of all vectors β_{0} in q dimensional space for which the null hypothesis $H: \beta=\beta_{0}$ is not rejected by the appropriate likelihood ratio test at level $\alpha=1-\gamma$. The likelihood ratio test of $H: \beta=\beta_{0}$ versus general alternatives has rejection region

$$
\begin{equation*}
\frac{(n-p+1) N\left(\hat{\beta}-\beta_{0}\right)\left(X S^{-1} X^{\prime}\right)\left(\hat{\beta}-\beta_{0}\right)^{\prime}}{q(1+r)} \geqq F_{q, n-p+1}^{(\gamma)} \tag{3.10}
\end{equation*}
$$

(Rao [21]), so that for given values of \bar{y} and S (and thus of $\hat{\beta}, S$, and r), we accept $H: \beta=\beta_{0}$ if and only if β_{0} is in E_{2}.

4. Comparison of the two procedures

Historically, there have been two main sets of criteria for the comparison of confidence regions-those based on concepts of power and those based on volume considerations. Since every confidence region can generate a test for such hypotheses as $H: \beta=\beta_{0}$, it seems reasonable to apply power considerations in the comparison of confidence regions. However, the difficulty involved in
obtaining and analyzing the nonnull distributions of Δ and $\Delta(1+r)^{-1}$ discourage comparisons based on power concepts (see Rao [18], [21]).

Comparisons of confidence regions through consideration of their volumes also have intuitive appeal, since the volume of a region can be viewed as a measure of the "quantity" of models (parameters) which are accepted by (included in) the confidence procedure. For example, in the case of two confidence intervals A and B of confidence γ we would prefer interval A to interval B if the length of A were always less than the length of B, because intuitively we we would feel that A would give us a more precise picture of which models are reasonable, given the data.

In the present situation our regions are ellipsoids in q dimensional Euclidean space. Since the volume of an ellipsoid

$$
\begin{equation*}
\left(u_{1}, u_{2}, \cdots, u_{m}\right) A^{-1}\left(u_{1}, u_{2}, \cdots, u_{m}\right)^{\prime} \leqq 1 \tag{4.1}
\end{equation*}
$$

is $c(m)|A|^{1 / 2}$, where $c(m)=(2 \pi)^{m / 2} \Gamma(m / 2)$, we conclude that

$$
\begin{align*}
& \text { volume } E_{1}=c(q)\left|N X S^{-1} X^{\prime}\right|^{-1 / 2} b_{0}^{q / 2} \\
& \text { volume } E_{2}=c(q)\left|N X S^{-1} X^{\prime}\right|^{-1 / 2}(1+r)^{q / 2}\left[q F_{0} /(n-p+1)\right]^{q / 2} \tag{4.2}
\end{align*}
$$

where $F_{0}=F_{q, n-p+1}^{(\gamma)}$ and $b_{0}=b^{(\gamma)}$.
Since these volumes are random variables, we may compare their expected values. Thus, we say that region E_{1} is preferable to region E_{2} if and only if \mathscr{E} [volume $\left.E_{1}\right] \leqq \mathscr{E}$ [volume E_{2}], or equivalently if and only if the ratio

$$
\begin{equation*}
I_{1,2}=\left[\frac{(n-p+1) b_{0}}{q F_{0}}\right]^{q / 2} \frac{\mathscr{E}\left[\left|N X S^{-1} X^{\prime}\right|^{1 / 2}\right]}{\mathscr{E}\left[\left|N X S^{-1} X^{\prime}\right|^{1 / 2}(1+r)^{q / 2}\right]} \tag{4.3}
\end{equation*}
$$

is less than or equal to 1 . By Lemma 2 of Appendix A, $X S^{-1} X^{\prime}$ and r are independently distributed and $(1+r)^{-1}$ has a Beta distribution with $\frac{1}{2}(n-p+q+1)$ and $\frac{1}{2}(p-q)$ degrees of freedom. Thus (4.3) becomes

$$
\begin{equation*}
I_{1,2}=\frac{\Gamma\left[\frac{1}{2}(n-q+1)\right] \Gamma\left[\frac{1}{2}(n-p+q+1)\right]}{\Gamma\left[\frac{1}{2}(n+1)\right] \Gamma\left[\frac{1}{2}(n-p+1)\right]}\left[\frac{(n-p+1) b_{0}}{q F_{0}}\right]^{q / 2} . \tag{4.4}
\end{equation*}
$$

From equation 4.4 (and Table III of Appendix B), values of $I_{1,2}$ are computed for $n=10(2) 30(5) 35, p=2(1) \frac{1}{2} n, q=1(1) p-2$, and $\gamma=0.90,0.95,0.975$, 0.99. In the resulting table we have observed certain patterns. (A selection from this table appears in Table I below.) First, if we fix n, p, and q, and allow γ to increase, then the ratio $I_{1,2}$ increases, becoming greater than 1 for large enough γ. The larger q is, the smaller the value of γ at which $I_{1,2}$ changes from less than 1 to greater than 1. Saying this another way, for fixed r, p, γ, the ratio $I_{1,2}$ is nearly monotonically decreasing in q (the decrease of $I_{1,2}$ in q is reversed in the third decimal place for $q \geqq p-4$).

TABLE I
Ratio of the Expected Volume of E_{1} to E_{2}

$n=14$					$n=24$ (continued)				
p	q	0.90	0.95	0.99	p	q	0.90	0.95	0.99
2	1	$1.00+$	$1.00+$	1.01	8	1	$1.00+$	1.01	1.02
						2	$1.00+$	1.01	1.03
3	1	$1.00+$	$1.00+$	1.01		3	$1.00-$	1.01	1.03
						4	0.99	$1.00+$	1.03
4	1	$1.00+$	1.01	1.02		5	0.98	$1.00-$	1.02
	2	$1.00+$	1.01	1.02		6	0.98	0.99	1.01
5	1	$1.00+$	1.01	1.03	9	1	$1.01+$	1.01	1.02
	2	$1.00+$	1.01	1.04		2	1.00	1.01	1.04
	3	0.99	$1.00+$	1.03		3	$1.00-$	1.01	1.04
						4	0.99	$1.00+$	1.04
6	1	1.01	1.02	1.04		5	0.98	0.99	1.03
	2	$1.00+$	1.02	1.05		6	0.97	0.98	$1.00+$
	3	0.99	1.01	1.04		7	0.97	0.98	$1.00+$
	4	0.98	0.99	1.02					
					10	1	$1.00+$	1.01	1.03
7	1	1.01	1.02	1.05		2	$1.00+$	1.02	1.05
	2	$1.00+$	1.02	1.07		3	$1.00-$	1.01	1.05
	3	0.98	1.01	1.06		4	0.98	$1.00+$	1.05
	4	0.96	0.98	1.03		5	0.97	0.99	1.03
	5	0.95	0.97	$1.00+$		6	0.96	0.97	1.01
						7	0.95	0.97	$1.00-$
						8	0.95	0.96	0.99
	$n=24$								
					11	1	1.00 $1.00+$	1.01 1.02	$\begin{aligned} & 1.03 \\ & 1.05 \end{aligned}$
p	q	0.90	0.95	0.99		3	0.99	1.01	1.06
						4	0.98	$1.00+$	1.05
2	1	1.00	$1.00+$	$1.00+$		5	0.96	0.98	1.04
						6	0.94	0.97	1.01
3	1	$1.00+$	$1.00+$	$1.00+$		7	0.93	0.95	
						8	0.93	0.94	0.98
4	1	$1.00+$	$1.00+$	1.01		9	0.93	0.94	0.97
	2	$1.00+$	$1.00+$	1.01	12	1	1.01	1.01	1.04
5						2	$1.00+$	1.02	1.06
	1 2	$\begin{aligned} & 1.00+ \\ & 1.00+ \end{aligned}$	$\begin{aligned} & 1.00+ \\ & 1.00+ \end{aligned}$	$\begin{aligned} & 1.01 \\ & 1.01 \end{aligned}$		3	0.99	1.02	1.07
	3	$1.00-$	$1.00+$	1.01		4	0.97	$1.00-$	1.06
						5	0.95	0.98	1.04
6	1	$1.00+$	$1.00+$	1.01		6		0.95	1.01
	2	$1.00+$	1.01	1.02		7	0.91	0.93	0.99
	3	$1.00-$	1.01	1.02		8		0.92	0.96 0.95
	4	$1.00-$	$1.00+$	1.01		9 10	$\begin{aligned} & 0.90 \\ & 0.91 \end{aligned}$	0.91 0.92	0.95 0.94
7	1	$1.00+$	1.01	1.02					
	2	$1.00+$	1.01	1.03					
	3	$1.00-$	1.01	1.03					
	4	0.99	$1.00+$	1.02					
	5	0.99	$1.00-$	1.01					

TABLE 1 (Continued)
Ratio of the Expected Volume of E_{1} to E_{2}

Second, if we fix p, q, and γ, and allow n to increase, then the ratio $I_{1,2}$ converges to 1 . This result is not at all surprising since the pivotal quantities Δ and $\Delta(1+r)^{-1}$ converge to one another in probability at an exponential rate as $n \rightarrow \infty$, regardless of the values of p, q, and γ.

Finally, if we fix n, q, and γ, and allow p to increase, then the ratio $I_{1,2}$ may increase or decrease depending on whether the initial value of $I_{1,2}$ in the series is greater or less than one. The actual pattern of movement of $I_{1,2}$ in p is probably a slowly undulating one, offering little practical guidance in the choice of procedure.

Recalling that values of $I_{1,2}$ greater than one favor procedure E_{2}, that values of $I_{1,2}$ less than one favor procedure E_{1}, and that a value of $I_{1,2}$ equal to one favors neither procedure, the patterns which we have noted in our table of $I_{1,2}$ suggest that the confidence region E_{1} should be used if the requirements for probability of coverage are modest ($\gamma=0.90$, or even 0.95), the number q of regression parameters is not much less than the dimension p of a single replication y of the model (1.1), and/or if N is of moderate size. However, it should be kept in mind that $I_{1,2}$ is a dimensionless quantity (a ratio of volumes), so that if a large saving in expected volume is of interest, the $I_{1,2}$ tells us little unless we also know the expected volume of one of the two confidence regions.

It should also be remarked that in our table of $I_{1,2}$, values very rarely are less than 0.88 or greater than 1.07 . Thus, unless one is greatly concerned about keeping the expected volume of the region as low as possible, the choice between the regions E_{1} and E_{2} can be governed by computational convenience, by other aspects of the context of the given research problem, or by personal conviction.

Remark. One advantage in using the conditional region E_{2} is that its conditional probability of coverage given r is independent of r. Since r is a monotone function of the likelihood ratio test statistic for the goodness of fit of model (1.1), one can perform a preliminary test for the fit of the model without affecting the coverage probability of the confidence region for the parameters of the model (assuming the model is accepted by the likelihood ratio test). The expected volume of E_{2} would, of course, be affected by such a two stage procedure. A similar two stage procedure based on r and E_{1} could be constructed, but this would require new tables of $b^{(\gamma)}$. To our knowledge, no satisfactory criterion for comparing such two stage procedures has yet been proposed, so that balancing this advantage of region E_{2} against a possibly smaller expected volume for E_{1} must be left entirely to the individual.

5. An illustrative example

To illustrate the computation of the point estimators of β and Σ and the construction of the two confidence regions E_{1} and E_{2} for β, we make use of the growth curve data reported earlier by Potthoff and Roy [15]. In a study performed at the University of North Carolina Dental School, measurements were made of the distance (in mm .) from the center of the pituitary to the pteryo-
maxillary fissure for eleven girls and sixteen boys at ages $8,10,12$, and 14 years. The resulting data for the boys is given in Table II below.

TABLE II
Distance in mm from Center of Pituitary to Pteryomaxillary Fissure

Subject Age	8	10	Age in Years	12
	26	25	29	14
	21.5	22.5	23	21
3	23	22.5	24	26.5
4	25.5	27.5	26.5	27.5
5	20	23.5	22.5	26
6	24.5	25.5	27	28.5
7	22	22	24.5	26.5
8	24	21.5	24.5	26.5
9	23	20.5	31	31.5
10	27.5	28	23.5	28
11	23	23	24	29.5
12	21.5	23.5	26	26
13	17	24.5	25.5	30
14	22.5	25.5	26	25
15	23	24.5	23.5	
16	22	21.5		20

In the present analysis we adopt a linear model for the growth curve; namely,

$$
\begin{equation*}
y_{i}=\beta_{1}+\frac{1}{3} \beta_{2}\left(t_{i}-11\right) \tag{5.1}
\end{equation*}
$$

where y_{i} is the distance (in mm.) measured at time t_{i} with $i=1,2,3,4$. We have chosen to represent the model in terms of the orthogonal polynomials for the sake of computational convenience. In terms of the model (1.1),

$$
X=\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \tag{5.2}\\
-3 & -1 & 1 & 3
\end{array}\right)
$$

with $p=4$ and $q=3$. The sample size $N=16$, so that $n=15$. Computation yields the following:

$$
\begin{align*}
\bar{y} & =(22.88,23.81,25.72,27.47), \\
S & =\left(\begin{array}{rrrr}
90.25 & 34.37 & 42.16 & 24.19 \\
34.37 & 68.44 & 32.91 & 42.16 \\
54.44 & 32.91 & 105.48 & 48.61 \\
24.19 & 42.16 & 48.61 & 65.23
\end{array}\right), \tag{5.3}
\end{align*}
$$

from which

$$
\begin{align*}
\hat{\beta} & =(25.00,0.83), \\
\hat{\Sigma} & =\left(\begin{array}{llll}
5.78 & 2.02 & 2.59 & 1.50 \\
2.02 & 4.40 & 2.10 & 2.65 \\
2.59 & 2.10 & 6.61 & 3.04 \\
1.50 & 2.65 & 3.04 & 4.08
\end{array}\right) \tag{5.4}
\end{align*}
$$

The 95 per cent confidence region of form E_{1} for $\left(\beta_{1}, \beta_{2}\right)$ is given by

$$
\begin{align*}
\mathrm{E}_{1}=\{ & \left\{\left(\beta_{1}, \beta_{2}\right): 0.34\left(\beta_{1}-25.00\right)^{2}\right. \tag{5.5}\\
& \left.+0.10\left(\beta_{1}-25.00\right)\left(\beta_{2}-0.83\right)+7.27\left(\beta_{2}-0.83\right)^{2} \leqq 0.767\right\}
\end{align*}
$$

where $b^{(.95)}=0.767$ is obtained by linearly interpolating the values of $c^{(.95)}$ for $n=14$ and $n=16$, and then from the resulting c forming $b=c(1-c)^{-1}$. The 95 per cent confidence region of form E_{2} for (β_{1}, β_{2}) is given by

$$
\begin{align*}
E_{2}=\{ & \left\{\left(\beta_{1}, \beta_{2}\right): 0.34\left(\beta_{1}-25.00\right)^{2}\right. \tag{5.6}\\
& \left.+0.10\left(\beta_{1}-25.00\right)\left(\beta_{2}-0.83\right)+7.27\left(\beta_{2}-0.83\right)^{2} \leqq 0.611\right\}
\end{align*}
$$

since $r=0.144, F_{2,14}^{(.95)}=3.74$. Notice that the volume of E_{2} is less than the volume of E_{1} for this example. Although this result will not always occur if this particular example is replicated (since r is a random variable), the tables of $I_{1,2}$ described in Section 4 would lead us to expect the result we have obtained (since for both $n=14$ and $n=16$, with $p=4, q=2$, and $\gamma=0.95$, the value of $I_{1,2}$ is 1.01).

Distributional Results

A.1. Introduction

In this appendix we derive the distributions of $\hat{\beta}$ and $\hat{\Sigma}$ by means of a certain canonical distributional representation of these statistics. As a first step in obtaining this representation, note that $\hat{\beta}$ is invariant under the transformation $\tilde{y}=\tilde{y} A, \tilde{S}=A^{\prime} S A, \tilde{X}=X A$ for A nonsingular. Consequently, if we choose A so that $A^{\prime} \Sigma A=I$ (that is, $\left.A=\Sigma^{-1 / 2}\right)$, then $\tilde{y} \sim N\left(\beta \tilde{X}, N^{-1} I\right), \tilde{S} \sim W(I ; p, n)$, \tilde{y} and \tilde{S} are independently distributed. In terms of \tilde{y}, \tilde{S}, and \tilde{X},

$$
\begin{align*}
\hat{\beta} & =\tilde{y} \tilde{S}^{-1} \tilde{X}^{\prime}\left(\tilde{X} \tilde{S}^{-1} \tilde{X}^{\prime}\right)^{-1} \\
N \tilde{\Sigma} & =\Sigma^{1 / 2}\left[\tilde{S}+N(\tilde{y}-\hat{\beta} \tilde{X})^{\prime}(\tilde{y}-\hat{\beta} \tilde{X})\right] \Sigma^{1 / 2} . \tag{A.1}
\end{align*}
$$

Further simplification is possible. There exists a nonsingular $q \times q$ matrix T and a $p \times p$ orthogonal matrix Γ such that

$$
\begin{equation*}
\tilde{X}=T\left(I_{q}, 0\right) \Gamma^{\prime} \tag{A.2}
\end{equation*}
$$

(MacDuffee p. 77 [12]), where I_{q} is the $q \times q$ identity matrix. This has the effect of reducing the dimensionality of the space as follows. Transform from \tilde{y}, \tilde{S} to

$$
\begin{equation*}
z=\sqrt{N} \tilde{y} \Gamma, \quad V=\Gamma^{\prime} \tilde{S} \Gamma \tag{A.3}
\end{equation*}
$$

Let $z=(\dot{z}, \ddot{z})$, where \dot{z} consists of the first q components of z, and then partition V as

$$
V=\left(\begin{array}{ll}
V_{11} & V_{12} \tag{A.4}\\
V_{21} & V_{22}
\end{array}\right), \quad V_{11}: q \times q, \quad V_{22}:(p-q) \times(p-q)
$$

It is easily verified that \dot{z}, \ddot{z}, and V are stochastically independent, that $\dot{z} \sim$ $N\left(\sqrt{N \beta T}, I_{q}\right)$, that $\ddot{z} \sim N\left(0, I_{p-q}\right)$, and that $V \sim W(I ; p, n)$. Furthermore,

$$
\begin{align*}
b & \equiv \sqrt{N} \hat{\beta} T=\dot{z}-\ddot{z} V_{22}^{-1} V_{21} \\
\tilde{\Sigma} & \equiv \Gamma^{\prime} \Sigma^{-1 / 2} \hat{\Sigma} \Sigma^{-1 / 2} \Gamma=V+\binom{V_{12} V_{22}^{-1} \ddot{z}^{\prime}}{\ddot{z}^{\prime}}\left(\ddot{z} V_{22}^{-1} V_{21}, \ddot{z}\right), \tag{A.5}
\end{align*}
$$

where

$$
\tilde{\Sigma}=\left(\begin{array}{ll}
\tilde{\Sigma}_{11} & \tilde{\Sigma}_{12} \tag{A.6}\\
\tilde{\Sigma}_{21} & \tilde{\Sigma}_{22}
\end{array}\right)
$$

is partitioned in the manner of V. Let $\mu=\sqrt{N} \beta T$. The following lemma is known (and easily verified).

Lemma A.1. If V has $a W(I ; p, n)$ distribution, then $M=V_{11}-V_{12} V_{22}^{-1} V_{21} \sim$ $W\left(I_{q} ; q, n-p+q\right), V_{22} \sim W\left(I_{p-q} ; p-q, n\right)$, and the $q(p-q)$ elements of $L=V_{22}^{-1 / 2} V_{21}$ are independently distributed as $N(0,1)$. Furthermore, M, V_{22}, and L are mutually stochastically independent.

A.2. The distribution of $\hat{\boldsymbol{\beta}}$

Since $\sqrt{N} \hat{\beta}=b T^{-1}$, to obtain the distribution of $\hat{\beta}$ it is sufficient to find the distribution of b. From (A.5) and Lemma A.1, we see that

$$
\begin{equation*}
b=\dot{z}-w L \equiv \dot{z}-\ddot{z} V_{22}^{-1 / 2} L \tag{A.7}
\end{equation*}
$$

where w, \dot{z}, and L are independent. Again from Lemma A.l, it follows that the conditional distribution of b given w is $N\left(\mu,\left(1+w w^{\prime}\right) I_{q}\right)$. Let $r=w w^{\prime}$ and note that $r=\ddot{z} V_{22}^{-1} \ddot{z}{ }^{\prime}=N(\bar{y}-\beta X) S^{-1}(\bar{y}-\beta X)^{\prime}$. Since $\ddot{z} \sim N\left(0, I_{p-q}\right)$ and $V_{22} \sim W(I ; p-q, n)$ and \ddot{z} and V_{22} are independent, it can be shown in a straightforward manner using Hsu's theorem (Anderson [1], p. 319) that r has the density

$$
\begin{equation*}
p(r)=\frac{r^{(p-q) / 2-1}}{B\left(\frac{1}{2}(p-q), \frac{1}{2}(n-p+q+1)\right)(1+r)^{(n+1) / 2}} \tag{A.8}
\end{equation*}
$$

The distribution of b given w is the same as that of b given r (since the former conditional distribution depends upon w only through $r=w w^{\prime}$), namely $N\left(\mu,(1+r) I_{q}\right)$, so that

$$
\begin{align*}
p(b, r) & =p(b \mid r) p(r) \quad r^{(p-q) / 2-1} \exp \left\{-\frac{1}{2} \frac{(b-\mu)(b-\mu)^{\prime}}{1+r}\right\} \tag{A.9}\\
& =\frac{(2 \pi)^{q / 2} B\left(\frac{1}{2}(p-q), \frac{1}{2}(n-p+q+1)\right)(1+r)^{(n+q+1) / 2}}{}
\end{align*}
$$

Transforming from b to $\hat{\beta}=N^{-1 / 2} b T^{-1}$ and from r to $g=r /(1+r)$, noting that $T T^{\prime}=X \Sigma^{-1} X^{\prime}$, that $\mu=\sqrt{N} \beta T$, and integrating over g, where $0 \leqq g \leqq 1$, yields (2.12). The expansion of the integral form (2.12) of $p(\hat{\beta})$ in terms of the confluent hypergeometric function ${ }_{1} F_{1}\left(\frac{1}{2}(p-q), \frac{1}{2}(n+q+1) ; Q(\hat{\beta})\right)$ (equation (2.13)) is well known (for example, see Erdélyi [4], p. 255). Finally by grouping terms appropriately in the infinite sum representation of ${ }_{1} F_{1}$ in the representation (2.13) for $p(\hat{\beta})$, we obtain (2.11) and the result of Theorem 2.5.

Remark. The representations (2.12) and (2.13) for $p(\hat{\beta})$ were obtained by a slightly more complicated proof in Gleser and Olkin [7]. The representation (2.11) is new. As demonstrated in Section 2, the new representation is useful in finding approximations to $p(\hat{\beta})$ for moderate values of the sample size N.

As a byproduct of the above derivations and from Lemma A.1, we have the following result which is useful in Sections 3 and 4.

Lemma A.2. The distribution of $(n-p+1) N(\hat{\beta}-\beta) X S^{-1} X^{\prime}(\hat{\beta}-\beta)^{\prime} / q(1+r)$ given $r=N(\bar{y}-\hat{\beta} X) S^{-1}(\bar{y}-\hat{\beta} X)^{\prime}$ is $F_{q, n-p+1}$. Further, r and $X S^{-1} X^{\prime}$ are stochastically independent, $(1+r)^{-1}$ has a beta distribution with parameters $\frac{1}{2}(n-p+q+1)$ and $\frac{1}{2}(p-q)$, and $\left(X S^{-1} X^{\prime}\right)^{-1} \sim W\left(\left(X \Sigma^{-1} X^{\prime}\right)^{-1} ; q, n-\right.$ $p+q)$.

Proof. From (A.5), $\sqrt{N}(\hat{\beta}-\beta)=(b-\mu) T^{-1}$. Since, as shown above, the conditional distribution of b given r is $N\left(\mu,(1+r) I_{q}\right)$, since from Lemma A.l, M is independent of \dot{z}, \ddot{z}, L, and V_{22} (thus of $\hat{\beta}$ and r), and since

$$
\begin{equation*}
\Delta=N(\hat{\beta}-\beta)\left(X S^{-1} X^{\prime}\right)(\hat{\beta}-\beta)^{\prime}=(b-\mu) M^{-1}(b-\mu)^{\prime}, \tag{A.10}
\end{equation*}
$$

it follows that ($n-p+1) \Delta / q(1+r)$ given r has Snedecor's F distribution with q and $n-p+1$ degrees of freedom (see Anderson [1], Theorem 5.2.2). That $(1+r)^{-1}$ has the beta distribution with parameters $\frac{1}{2}(n-p+q+1)$ and $\frac{1}{2}(p-q)$ follows from (A.8). Finally

$$
\begin{equation*}
\left(X S^{-1} X^{\prime}\right)^{-1}=\left(T^{\prime}\right)^{-1} M T^{-1} \tag{A.11}
\end{equation*}
$$

and thus $\left(X S^{-1} X^{\prime}\right)^{-1} \sim W\left(\left(T T^{\prime}\right)^{-1} ; q, n-p+q\right)$. Since $\quad\left(T T^{\prime}\right)^{-1}=$ $\left(X \Sigma^{-1} X^{\prime}\right)^{-1}$, the proof of the lemma is completed.

A.3. The distribution of $\hat{\boldsymbol{\Sigma}}$

From Equation (A.5),

$$
\tilde{\Sigma}=\left(\begin{array}{ll}
\tilde{\Sigma}_{11} & \tilde{\Sigma}_{12} \tag{A.12}\\
\tilde{\Sigma}_{21} & \tilde{\Sigma}_{22}
\end{array}\right)=V+\binom{V_{12} V_{22}^{-1}}{I} \ddot{z}^{\prime} \dot{z}\left(V_{22}^{-1} V_{21}, I\right),
$$

where $V \sim W(I ; p, n)$ is independently distributed of $\ddot{z} \sim N\left(0, I_{p-q}\right)$. Let

$$
\begin{align*}
M & =V_{11}-V_{12} V_{22}^{-1} V_{21}, \\
\tilde{\Sigma}_{12} & =V_{12} V_{22}^{-1}\left(V_{22}+\ddot{z}^{\prime} \ddot{z}\right), \quad \tilde{\Sigma}_{22}=V_{22}+\ddot{z}^{\prime} \ddot{z}, \tag{A.13}
\end{align*}
$$

be a transformation from $\left(V_{11}, V_{12}, V_{22}\right)$ to $\left(M, \tilde{\Sigma}_{12}, \tilde{\Sigma}_{22}\right)$. Noting that

$$
\begin{equation*}
V_{12} V_{22}^{-1} V_{21}=\tilde{\Sigma}_{12} \tilde{\Sigma}_{22}^{-1}\left(\tilde{\Sigma}_{22}-\ddot{z}^{\prime} \dot{z}\right) \tilde{\Sigma}_{22}^{-1} \tilde{\Sigma}_{12}^{\prime} \tag{A.14}
\end{equation*}
$$

and that $\tilde{\Sigma}_{12}=\tilde{\Sigma}_{21}^{\prime}$, it follows by a direct computation that
(A.15) $p\left(\ddot{z}, M, \tilde{\Sigma}_{12}, \tilde{\Sigma}_{22}\right)$

$$
\begin{aligned}
= & \frac{C(p, n)}{(2 \pi)^{(p-q) / 2}}\left|\tilde{\Sigma}_{22}\right|^{-q}\left|\tilde{\Sigma}_{22}-\ddot{z}^{\prime} \ddot{z}\right|^{(n+2 q-p-1) / 2}|M|^{(n-p-1) / 2} \\
& \cdot \exp \left\{-\frac{1}{2}\left[\operatorname{tr} \tilde{\Sigma}_{22}+\operatorname{tr} M+\operatorname{tr} \tilde{\Sigma}_{12} \tilde{\Sigma}_{22}^{-1}\left(\tilde{\Sigma}_{22}-\ddot{z}^{\prime} \ddot{z}\right) \tilde{\Sigma}_{22}^{-1} \tilde{\Sigma}_{21}\right]\right\}
\end{aligned}
$$

where $M>0, \tilde{\Sigma}_{22}-\ddot{z}^{\prime} \ddot{z}>0$,

$$
\begin{equation*}
C^{-1}(p, n)=2^{n p / 2} \pi^{p(p-1) / 4} \prod_{i=1}^{p} \Gamma\left(\frac{1}{2}(n-i+1)\right) \tag{A.16}
\end{equation*}
$$

and the elements of $\tilde{\Sigma}_{12}$ and \tilde{z} are unrestricted.
Now let

$$
\begin{equation*}
v=\ddot{z} \tilde{\Sigma}_{22}^{-1 / 2}, \quad \tilde{\Sigma}_{11}=M+\tilde{\Sigma}_{12} \tilde{\Sigma}_{22}^{-1} \tilde{\Sigma}_{21} \tag{A.17}
\end{equation*}
$$

be a transformation from (\ddot{z}, M) to $\left(v, \tilde{\Sigma}_{11}\right)$. Then

$$
\begin{align*}
p(\tilde{\Sigma}, v)= & \frac{C(p, n)}{(2 \pi)^{(p-q) / 2}}\left|\tilde{\Sigma}_{22}\right|^{(n-p-1) / 2}\left|\tilde{\Sigma}_{11}-\tilde{\Sigma}_{12} \tilde{\Sigma}_{22}^{-1} \tilde{\Sigma}_{21}\right|^{(n-p-1) / 2} \tag{A.18}\\
& \cdot\left|\tilde{\Sigma}_{22}\right|^{1 / 2}\left(1-v v^{\prime}\right)^{(n+2 q-p-1) / 2} \\
& \cdot \exp \left\{-\frac{1}{2}\left[\operatorname{tr} \tilde{\Sigma}_{11}+\operatorname{tr} \tilde{\Sigma}_{22}-\operatorname{tr} v \tilde{\Sigma}_{22}^{-1 / 2} \tilde{\Sigma}_{21} \tilde{\Sigma}_{12} \tilde{\Sigma}_{22}^{-1 / 2} v^{\prime}\right]\right\} \\
= & {\left[C(p, n)|\tilde{\Sigma}|^{(n-p-1) / 2} \exp \left\{-\frac{1}{2} \operatorname{tr} \tilde{\Sigma}\right\}\right] } \\
& \cdot\left[\frac{\left|\tilde{\Sigma}_{22}\right|^{1 / 2}\left(1-v v^{\prime}\right)^{(n+2 q-p-1) / 2}}{(2 \pi)^{(p-q) / 2}} \exp \left\{+\frac{1}{2} v \Xi(\tilde{\Sigma}) v^{\prime}\right\}\right]
\end{align*}
$$

where $\Xi(H)$ is, for any positive definite

$$
H=\left(\begin{array}{ll}
H_{11} & H_{12} \tag{A.19}\\
H_{21} & H_{22}
\end{array}\right)
$$

defined by $\Xi(H)=H_{22}^{-1 / 2} H_{21} H_{12} H_{22}^{-1 / 2}$, and where the range of definition is $\tilde{\Sigma}>0, v v^{\prime} \leqq 1$. We make use of the invariance of $v v^{\prime}$ under the transformation $v \rightarrow v \Gamma, \Gamma$ orthogonal, to reduce the expression still further. Let U be the orthogonal matrix such that

$$
\begin{equation*}
U \Xi(\tilde{\Sigma}) U^{\prime}=\operatorname{diag}\left(v_{1}, \cdots, v_{p-q}\right) \equiv D_{v} \tag{A.20}
\end{equation*}
$$

where the values of v_{i} are the characteristic roots of $\Xi(\tilde{\Sigma})$. Hence, letting $s=v U^{\prime}$ where $s: 1 \times(p-q)$, we obtain

$$
\begin{align*}
p(\tilde{\Sigma})=[& \left.C(p, n)|\tilde{\Sigma}|^{(n-p-1) / 2} \exp \left\{-\frac{1}{2} \operatorname{tr} \tilde{\Sigma}\right\}\right] \tag{A.21}\\
& \cdot\left[\frac{\left|\tilde{\Sigma}_{22}\right|^{1 / 2}}{(2 \pi)^{(p-q) / 2}} \int_{s s^{\prime} \leqq 1}\left(1-s s^{\prime}\right)^{(n+2 q-p-1) / 2} \exp \left\{\frac{1}{2} s D_{v} s^{\prime}\right\} d s\right]
\end{align*}
$$

An alternative expression for $p(\tilde{\Sigma})$ may be obtained by noting that

$$
\begin{align*}
& \int_{s s^{\prime} \leqq 1}\left(1-s s^{\prime}\right)^{(n+2 q-p-1) / 2} \exp \left\{\frac{1}{2} s D_{v} s^{\prime}\right\} \tag{A.22}\\
&= 2^{q-p} \Gamma\left[\frac{1}{2}(n+2 q-2+1)\right] \\
& \cdot \sum_{j_{1}, \ldots, j_{p-q}=0}^{\infty}\left[\Gamma\left(\sum_{i=1}^{p-q} j_{i}+\frac{1}{2}(n+q+1)\right)\right]^{-1} \prod_{i=1}^{p-q}\left(\frac{v_{i}}{2}\right)^{j_{i}} \frac{\Gamma\left(j_{i}+\frac{1}{2}\right)}{j_{i}!} .
\end{align*}
$$

When $p-q \geqq q$, some of the v_{i} are 0 with probability one, so that the expressions for $p(\tilde{\tilde{\Sigma}})$ can be somewhat simplified.

The distribution of $\hat{\Sigma}$ may be determined by making the transformation from $\tilde{\Sigma}$ to $\hat{\Sigma}=N^{-1} \Sigma^{1 / 2} \Gamma \tilde{\Sigma} \Gamma^{\prime} \Sigma^{1 / 2}$.

APPENDIX B

Tables for Applying Confidence Region \boldsymbol{E}_{1}

Table III gives values of $c^{(\gamma)}$ (see equation (3.7)) needed in order to construct 100γ per cent confidence regions of the form E_{1} (see (3.6)). The present tables are calculated for $n=10(2) 30(5) 35, p=2(1) \frac{1}{2} n, q=1(1) p-2$, and $\gamma=0.90$, $0.95,0.975,0.99$. These values of n, p, q, and γ have been chosen as illustrative, but not exhaustive, examples of situations met in practice. For example, it is usually desirable for n to be somewhat larger than p so that sufficient degrees of freedom are available to accurately estimate Σ. For the distribution of $\hat{\Sigma}$ to be nonsingular, we must have $n \geqq p+1$; the assumption $n \geqq 2 p$ provides a comfortable number of degrees of freedom for $\hat{\Sigma}$. When n is large (say, over 40), this assumption is unnecessarily strict and can be replaced by the condition that $n-p-1$ be of a reasonable magnitude.

The values of n given are not uncommon in practice. Values of n less than 10 are rarely practical (unless $p=2$) for reasons already indicated. If n is larger than 35 or 40 , large sample approximations may be appropriate (unless p is too large). Simple linear or quadratic interpolation in the tables should give enough accuracy in most situations for the application of the confidence region E_{1} when n is odd, $11 \leqq n \leqq 34$.

The coverage probabilities γ chosen for Table III are those customarily given in standard tables for upper tail probabilities. Finally, the values of q which have been chosen reflect the fact that (at least in the context of growth curves) the most desirable models are those which require estimation of the fewest parameters.

Starting with equation (3.7), the table was constructed as follows. First the expansion

$$
\begin{equation*}
(1-g h)^{-\left(d_{1}+d_{2}\right)}=\sum_{j=0}^{\infty} \frac{\Gamma\left(d_{1}+d_{2}+j\right)}{\Gamma\left(d_{1}+d_{2}\right)} \frac{(g h)^{j}}{j!} \tag{B.1}
\end{equation*}
$$

enables us to expand the double integral in (3.7) in the following infinite series:

$$
\begin{align*}
\gamma= & \sum_{j=0}^{\infty} \frac{\Gamma\left(d_{1}+d_{2}+j\right)}{\Gamma\left(d_{1}+d_{2}\right) j!} \tag{B.2}\\
& \quad \frac{\int_{0}^{1} g^{a_{1}+j-1}(1-g)^{a_{2}-1} d g \int_{0}^{c^{(\gamma)}} h^{d_{1}+j-1}}{B\left(a_{1}, a_{2}-d_{1}\right) B\left(d_{1}, d_{2}\right)}(1-h)^{d^{-1}} d h \\
= & \sum_{j=0}^{\infty} c_{j} I_{\mathrm{c}(\gamma)}\left(d_{1}+j, d_{2}\right),
\end{align*}
$$

where the values of c_{j} with $j=0,1, \cdots$ have already been defined in Theorem 2.1 ; where for constants $f_{1}, f_{2}>0,0 \leqq z \leqq 1$,

$$
\begin{equation*}
I_{z}\left(f_{1}, f_{2}\right)=\int_{0}^{z} \frac{w^{f_{1}-1}(1-w)^{f_{2}-1} d w}{B\left(f_{1}, f_{2}\right)} \tag{B.3}
\end{equation*}
$$

and where $a_{1}=\frac{1}{2}(p-q), a_{2}=\frac{1}{2}(n+2 q-p+1), d_{1}=\frac{1}{2} q, d_{2}=\frac{1}{2}(n-p+$ 1). The interchange of summation and integration used to obtain equation (B.2) is readily justified from Fubini's theorem by noting that $c_{j} \geqq 0$, all j, $\sum_{j=0}^{\infty} c_{j}=1$, and $0 \leqq I_{z}\left(f_{1}, f_{2}\right) \leqq 1$. These facts also support the following inequality:

$$
\begin{align*}
\sum_{j=0}^{M} c_{j} I_{z}\left(d_{1}+j, d_{2}\right) & \leqq \sum_{j=0}^{\infty} c_{j} I_{z}\left(d_{1}+j, d_{2}\right) \tag{B.4}\\
& \leqq \sum_{j=0}^{M} c_{j} I_{z}\left(d_{1}+j, d_{2}\right)+\left(1-\sum_{j=M+1}^{\infty} c_{j}\right),
\end{align*}
$$

which holds for all nonnegative integers M. This inequality permits evaluation of the error involved in truncating the infinite sum $\gamma(z) \equiv \Sigma_{j=0}^{\infty} c_{j} I_{z}\left(d_{1}+j, d_{2}\right)$
after M terms have been computed. Using this inequality, a grid of values for the infinite sum $\gamma(z)$ was computed (to five place accuracy) for each n, p, q chosen. and for values of z ranging by jumps of 0.02 from 0.50 to 0.98 . After such a grid was formed, a value of γ was chosen $(\gamma=0.90,0.95,0.975,0.99)$ and the grid was searched for that value z^{*} of z which yielded a calculated value of $\gamma(z)$ closest to γ. Since $\gamma(z)$ is monotonic increasing in z, z was allowed to move in increments of 0.001 down or up from z^{*} depending on whether $\gamma\left(z^{*}\right)$ was greater or less than γ. This movement was terminated once the size of $\gamma(z)-\gamma$ reversed from that of $\gamma\left(z^{*}\right)-\gamma$. A similar incremental movement in steps of 0.0001 from this new value of z was terminated when once again $\gamma(z)-\gamma$ reversed sign. The value of z computed in this entire series for which $|\gamma(z)-\gamma|$ was a minimum was then chosen to be $c^{(\nu)}$. The resulting values of $c^{(\gamma)}$ are accurate to within $\pm 5 \times 10^{-5}$-assuming that we want $c^{(\gamma)}$ to give us coverage γ up to an error of $\pm 5 \times 10^{-6}$ and ignoring errors in the calculation of the individual terms $c_{j} I_{z}\left(d_{1}+j, d_{2}\right)$. The value of $c^{(\nu)}$ was checked by evaluating (B.2) within a six place accuracy.

The computations are simplified by noting the recursion

$$
\begin{equation*}
c_{j+1}=c_{j} \frac{(q+2 j)(p-q+2 j)}{(n+q+1+2 j)(2+2 j)} \tag{B.5}
\end{equation*}
$$

Users of Table III should note that $n=N-1$, where N is the sample size, and that for the value of γ selected, E_{1} is to be used with $b^{(\nu)}=c^{(\nu)} /\left(1-c^{(\gamma)}\right)$.

TABLE III
Tables of Critical Values $c^{(\%)}$ for Confidence Region E_{1}

$n=10$						$n=12$					
p	q	0.90	0.95	0.975	0.99	p	q	0.90	0.95	0.975	0.99
2	1	29496	39059	47606	57308	2	1	24342	32672	40351	49397
3	1	35507	46173	55314	65209	3	1	28535	37844	46197	55735
4	1	43063	54628	63985	73502	4	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	33711	44003	52913	62682
	2	54450	63812	71169	78562			44962	53881	61302	69251
5	1	52419	64336	73269	81642	5	1	40093	51253	60466	70060
	2	63314	72388	79077	85361		2	51696	60903	68255	75786
	3	67957	75669	81371	86783		3	57359	65398	71765	78283
						6	1	47901	59595	68679	77545
							2	59364	68491	75411	82124
							3	64550	72346	78246	84002
							4	67525	74504	79803	85010

TABLE III (Continued)

TABLE III (Continued)

$n=18$						$n=20$					
p	q	0.90	0.95	0.975	0.99	p	q	0.90	0.95	0.975	0.99
2	1	15893	21779	27464	34542	2	1	14238	19590	24806	31370
3	1	17729	24180	30347	37928	3	1	15718	21546	27182	34208
4	1	19873	26949	33626	41713	4	12	$\begin{aligned} & 17420 \\ & 25820 \end{aligned}$	$\begin{aligned} & 23771 \\ & 32179 \end{aligned}$	$\begin{aligned} & 29850 \\ & 37986 \end{aligned}$	$\begin{aligned} & 37339 \\ & 44899 \end{aligned}$
	2	28957	35872	42099	42092						
5	1	22389	30141	37341	45904	5	123	$\begin{aligned} & 19392 \\ & 28397 \\ & 34083 \end{aligned}$	$\begin{aligned} & 26317 \\ & 35203 \\ & 40582 \end{aligned}$	$\begin{aligned} & 32866 \\ & 41343 \\ & 46326 \end{aligned}$	$\begin{aligned} & 40826 \\ & 48555 \\ & 52965 \end{aligned}$
	2	32137	39541	46107	53665						
	3	38050	45004	51055	57928						
6	1	25357	33834	41557	50542	6	1234	$\begin{aligned} & 21683 \\ & 31317 \\ & 37242 \\ & 41388 \end{aligned}$	$\begin{aligned} & 29231 \\ & 38574 \\ & 44086 \\ & 47850 \end{aligned}$	$\begin{aligned} & 36268 \\ & 45030 \\ & 50055 \\ & 53423 \end{aligned}$	$\begin{aligned} & 44676 \\ & 52489 \\ & 56855 \\ & 59728 \end{aligned}$
	2	35768	43650	50511	58250						
	3	41871	49158	55388	62329						
	4	46002	52797	58552	64931						
7	1	28870	38103	46317	55622	7	12345	$\begin{aligned} & 24360 \\ & 34629 \\ & 40755 \\ & 44952 \\ & 48042 \end{aligned}$	$\begin{aligned} & 32576 \\ & 42334 \\ & 47915 \\ & 51647 \\ & 54354 \end{aligned}$	40103 49074 54061 57337 59688	$\begin{aligned} & 48919 \\ & 56719 \\ & 60944 \\ & 63668 \\ & 65609 \end{aligned}$
	2	39906	48222	55304	63096						
	3	46134	53693	60025	66925						
	4	50242	57215	63011	69303						
	5	53177	59690	65081	70926						
8	1	33035	43014	51636	61092	8	1234556	$\begin{aligned} & 27497 \\ & 38379 \\ & 44651 \\ & 48852 \\ & 51888 \\ & 54195 \end{aligned}$	$\begin{aligned} & 36413 \\ & 46504 \\ & 52078 \\ & 55729 \\ & 58325 \\ & 60276 \end{aligned}$	$\begin{aligned} & 44407 \\ & 53469 \\ & 58335 \\ & 61475 \\ & 63678 \\ & 65321 \end{aligned}$	$\begin{aligned} & 53554 \\ & 61201 \\ & 65202 \\ & 67753 \\ & 69516 \\ & 70819 \end{aligned}$
	2	44608	53279	60469	68160						
	3	50860	58595	64919	71642						
	4	54864	61918	67653	73730						
	5	57672	64218	69526	75158						
	6	59751	65899	70879	76170						
9	1	37974	48629	57509	66882	9	1234567	$\begin{aligned} & 31181 \\ & 42619 \\ & 48956 \\ & 53093 \\ & 56027 \\ & 58226 \\ & 59333 \end{aligned}$	$\begin{aligned} & 40800 \\ & 51103 \end{aligned}$	49208	5855865902
	2	49917	58805	65947	73341					$\begin{aligned} & 58209 \\ & 62861 \end{aligned}$	
	3	56047	63818	69996	76366				$\begin{aligned} & 56577 \\ & 60073 \end{aligned}$		$\begin{aligned} & 65902 \\ & 69603 \end{aligned}$
	4	59856	66866	72420	78150					62861 65791	7190973472
	5	62468	68928	74044	79335				$\begin{aligned} & 62514 \\ & 64327 \end{aligned}$	$\begin{aligned} & 67810 \\ & 69301 \end{aligned}$	
	6	64371	70413	75200	80166						$\begin{aligned} & 73472 \\ & 74625 \end{aligned}$
	7	65819	71533	76069	80787				65718	70435	75488
						10	135513		45799	5451763255	6389470746
							2	47388	$\begin{aligned} & 56131 \\ & 61383 \end{aligned}$		
							3	$\begin{aligned} & 53677 \\ & 57669 \end{aligned}$		$\begin{aligned} & 63255 \\ & 67582 \end{aligned}$	$\begin{aligned} & 70746 \\ & 74062 \end{aligned}$
									$\begin{aligned} & 61383 \\ & 64648 \end{aligned}$	70237	76071
							5	60447	66893	72046	77434
							6	62493 64066 65306	$\begin{aligned} & 68526 \\ & 69771 \\ & 70743 \end{aligned}$	$\begin{aligned} & 73347 \\ & 74337 \\ & 75098 \end{aligned}$	78398 79131 79680
							8				

TABLE III (Continued)

$n=22$						$n=24$					
p	q	0.90	0.95	0.975	0.99	p	q	0.90	0.95	0.975	0.99
2	1	12890	17791	22597	28693	2	1	11775	16293	20748	26436
3	1	14103	19405	24.570	31066	3	1	12791	17656	$22+28$	28483
4	1	1.5488	21234	26790	33713	4	1	13937	19181	24295	30734
	2	23275	29142	34552	41068		2	21182	26623	31685	37842
5	1	17072	23306	29280	36648	5	1	15231	20889	26363	33193
	2	25400	31666	37390	44208		2	22965	28764	34119	40579
	3	30840	36915	42350	48720		3	28146	33836	38978	45074
6		18888	25652	32060	398.59	6	1	16706	22818	28688	35927
	2	27795	34480	40522	47633		2	24953	31125	36772	43512
	3	33480	39886	45555	52119		3	30385	36387	41764	48083
	4	37573	43691	49042	55188		4	34377	40162	45278	51227
7	1	20983	28325	35187	43415	7	1	18387	24996	31272	38938
	2	30489	37598	43941	51299		2	27177	33738	39680	46686
	3	36409	43139	49022	55742		3	32852	39165	44764	51266
	4	40595	46967	52475	58720		4	36965	43008	48301	54397
	5	43749	49806	55007	60878		5	40122	45909	50937	56691
8	1	23410	31369	38693	47319	8	1	20308	27450	34150	42215
	2	33522	41052	47666	55207		2	29673	36637	42870	50130
	3	39653	46686	52747	59565		3	35575	42193	47996	54645
	4	43901	50500	56127	62416		4	39787	46070	51513	57705
	5	47055	53287	58568	64449		5	42983	48967	54115	59942
	6	49497	55418	60416	65965		6	45502	51222	56117	61636
9	1	26227	34834	42605	51561	9	1	22518	30234	37367	45815
	2	36941	44875	51720	59373		2	32466	39830	46330	53783
	3	43235	50533	56717	63551		3	38580	45489	51466	58224
	4	47504	54283	59975	66229		4	42864	49364	54928	61167
	5	50626	56987	62302	68131		5	46071	52223	57453	63297
	6	53011	59025	64031	69512		6	48572	54426	59380	64900
	7	54899	60624	65382	70587		7	50583	56181	60906	66163
10	1	29510	38781	46964	56164	10	1	25066	33387	40952	49744
	2	40787	49081	56091	63754		2	35594	43345	50073	57649
	3	47177	54680	60915	67665		3	41889	49060	55172	61974
	4	51417	58317	64009	70148		4	46209	52894	58534	64766
	5	54459	60888	66170	71859		5	49396	55680	60951	66757
	6	56747	62808	67767	73108		6	51853	57803	62776	68240
	7	58553	64293	68993	74055		7	53813	59484	64215	69413
	8	59999	65481	69969	74807		8	55408	60840	65364	70333
11	1	33342	43262	51787	61098						
	2	45095	53674	60748	68287						
	3	51497	59122	65320	71876						
	4	55635	62572	68180	74099						
	5	58550	64967	70141	75602						
	6	60722	66736	71579	76697						
	7	62402	68090	72672	77521						
	8	63738	69158	73525	78154						
	9	64830	70027	74219	78669						

TABLE III (Continued)

$n=2+$ (continued)						$n=26$						
p	q	0.90	0.95	0.975	0.99	p	q	0.90	0.95	0.975	0.99	
11	1	28009	36953	44922	53975	2	1	10836	15026	19178	24506	
	2	29100	47207	54116	61738							
	3	45519	52906	59092	65850	3	1	11698	16188	20617	26272	
	4	49831	56647	62305	68452							
	5	52965	59331	64592	70297	4	1	12661	17478	22205	28205	
	6	55348	61347	66288	71641		2	19425	24489	29232	35041	
	7	57227	62923	67609	72682							
	8	58750	64194	68670	73521	5	1	13743	18918	23967	30331	
	9	60004	65230	69526	74181		2	20939	26321	31330	37422	
							3	25870	31208	36066	41874	
12	1	31420	40990	49313	58528							
	2	43017	51427	58439	66006	6	1	14959	20525	25917	32661	
	3	49486	57020	63204	69816		2	22617	28336	33621	39998	
	4	53737	60619	66229	72206		3	27786	33410	38494	44522	
	5	56769	63151	68336	73856		4	31664	37135	42015	47745	
	6	59048	65036	69891	75062							
	7	60824	66491	71083	75978	7	1	16331	22320	28072	35192	
	8	62250	67651	72029	76700		2	24483	30557	36123	42778	
	9	63420	68599	72799	77286		3	29892	35811	41117	47356	
	10		64393	69381	73427	77758		4	33896	39613	44672	50560
								5	37028	42546	47387	52988
							8	1	17888	24340	30479	37997
								2	26557	32996	38839	45745
								3	32206	38422	43944	50372
								4	36328	42289	47516	53542
								5	39517	45236	50213	55914
								6	42071	47571	52330	57759
							9	1	19661	26613	33156	41070
								2	28868	35684	41799	48936
								3	34747	41253	46969	53544
								4	38975	45168	50546	56679
								5	42202	48110	53200	58970
								6	44764	50419	55265	60741
								7	46851	52282	56922	62151
							10	1	21679	29165	36114	44389
								2	31452	38651	45029	52378
								3	37538	44323	50211	56893
								4	41847	48251	53749	59937
								5	45098	51172	56335	62155
								6	47648	53436	58344	63829
								7	49709	55247	59931	65155
								8	51412	56736	61229	66235

TABLE III (Continued)

$n=26($ continued $)$						$n=28$					
p	q	0.90	0.95	0.975	0.99	p	q	0.90	0.95	0.975	0.99
11	1	23994	32043	39405	48021	2	1	10036	13943	17829	22841
	2	34331	41902	48512	56006						
	3	40604	47646	53674	60416	3	1	10775	14942	19071	24371
	4	44963	51550	57131	63326						
	5	48207	54415	59641	65423	4	1	11596	16047	20439	26045
	6	50726	56613	61550	66998		2	17936	22671	27130	32630
	7	52742	58356	63051	68226						
	8	54396	59777	64271	69221	5	1	12510	17272	21947	27882
	9	55779	60960	65283	70044		2	19234	24251	28950	34708
							3	23932	28955	33558	39102
12	1	26652	35289	43049	51951						
	2	37538	45460	52257	59818	6	1	13530	18630	23606	29884
	3	43961	51225	57347	64082		2	20667	25985	30937	36962
	4	48333	55062	60681	66825		3	25588	30873	35688	41446
	5	51538	57837	63069	68773		4	29339	34521	39178	44692
	6	53998	59944	64864	70220						
	7	55951	61602	66271	71352	7	1	14672	20140	25442	32078
	8	57538	62941	67399	72250		2	22250	27886	33098	39394
	9	58856	64046	68328	72986		3	27399	32955	37981	43947
	10	59967	64972	69101	73599		4	31282	36697	41531	47210
							5	34362	39620	44271	49702
13	1	29708	38941	47059	56159						
	2	41112	49345	56274	63824	8	1	15956	21824	27469	34474
	3	47623	55053	61206	67845		2	24002	29972	35451	42010
	4	51958	58774	64371	70384		3	29383	35218	40455	46618
	5	55090	61429	66614	72175		4	33393	39042	44047	49880
	6	57462	63416	68274	73481		5	36542	42001	46795	52346
	7	59323	64962	69556	74481		6	39100	44377	48985	54293
	8	60830	66209	70591	75295						
	9	62069	67226	71427	75939	9	1	17400	23697	29700	37067
	10	63109	68077	72126	76481		2	25944	32263	38010	44825
	11	63990	68793	72711	76928		3	31556	37673	43117	49463
							4	35682	41562	46726	52688
							5	38892	44543	49466	55115
							6	41476	46917	51629	57014
							7	43609	48860	53391	58556
						10	1	19037	25802	32184	39926
							2	28095	34769	40775	47089
							3	33937	40333	45968	52474
							4	38168	44270	49581	55649
							5	41422	47254	52288	58008
							6	44019	49611	54411	59844
							7	46146	51522	56122	61317
							8	47922	53108	57534	62526

TABLE III (Continued)

$n=28$ (continued)						$n=30$					
p	q	0.90	0.95	0.975	0.99	p	q	0.90	0.95	0.975	0.99
11	1	20894	28160	34934	43045	2	1	09346	13004	16655	21382
	2	30484	37520	43775	51005						
	3	36540	43204	49010	55627	3	1	09987	13875	17741	22729
	4	40862	47173	52607	58750						
	5	44141	50135	55256	61012	4	1	10696	14834	18935	24204
	6	46735	52456	57319	62767		2	16656	21100	25305	30521
	7	48843	54325	58971	64165						
	8	50591	55865	60325	65306	5	1	11476	15885	20234	25791
	9	52066	57155	61454	66249		2	17784	22481	26906	32367
							3	22257	26995	31361	36649
12	1	23004	30795	37960	46398						
	2	33145	40542	47033	54433	6	1	12344	17045	21663	27527
	3	39388	46303	52251	58935		2	19020	23986	28641	34350
	4	43773	50265	55788	61950		3	23703	28683	33247	38746
	5	47061	53191	58372	64126		4	27324	32238	36681	41977
	6	49631	55455	60353	65777						
	7	51702	57263	61928	67087	7	1	13308	18329	23234	29426
	8	53407	58741	63207	68142		2	20376	25627	30518	36477
	9	54839	59977	64274	69021		3	25277	30505	35270	40971
	10	56057	61022	65172	69757		4	29030	34163	38779	44246
							5	32046	37060	41528	46784
13	1	25414	33758	41309	50040						
	2	36096	43837	50527	58026	8	1	14382	19750	24960	31490
	3	42501	49641	55694	62396		2	21871	27424	32562	38776
	4	46915	53556	59131	65262		3	26992	32478	37444	43345
	5	50180	56411	61610	67307		4	30876	36232	41017	46645
	6	52706	58598	63495	68851		5	33969	39178	43790	49178
	7	54722	60328	64978	70058		6	36508	41568	46020	51193
	8	56370	61732	66174	71025						
	9	57746	62900	67167	71828	9	1	15584	21328	36864	33745
	10	58909	63881	67997	72495		2	23519	29387	34780	41247
	11	59905	64718	68701	73058		3	28864	34613	39779	45866
							4	32873	38451	43399	49170
14	1		37084		53963		5	36038	41437	46185	51689
	2	39370	47423	54260	61780		6	38617	43844	48412	53683
	3	45892	53214	59325	65975		7	40765	45829	50234	55299
	4	50296	57041	62620	68658						
	5	53504	59791	64963	70547	10	1	16931	23082	28960	36198
	6	55958	61874	66727	71960		2	25338	31536	37184	43895
	7	57902	63513	68110	73068		3	30908	36925	42286	48549
	8	59475	64828	69209	73936		4	35035	40834	45937	51838
	9	60779	65914	70115	74651		5	38262	43846	48719	54320
	10	61878	66825	70873	75249						
	11	62814	67598	71515	75752	10	6	40869	46253	50922	56265
	12	63621	68259	72059	76171		7	43031	48232	52724	57852
							8	44852	49885	54220	591.57

TABLE III (Continued)

TABLE III (Continued)

$n=35$ (continued)											
p	q	0.90	0.95	0.975	0.99	p	q	0.90	0.95	0.975	0.99
10	1	13182	18148	22994	29105	15	1	19271	26052	32422	40113
	2	20245	25450	30297	36197		2	28481	35154	41130	48098
	3	25174	30366	35092	40746		3	34455	40834	46425	52840
	4	28974	34077	38662	44089		4	38811	44890	50152	56134
	5	32040	37029	41469	46687		5	42179	47982	52967	58602
	6	34588	39458	43761	48792		6	44877	50434	55181	60528
	7	36746	41494	45669	50530		7	47096	52435	56980	62089
	8	38600	43231	47285	51988		8	48952	54095	58459	63353
							9	53534	55503	59710	64423
11	1	14157	19437	24558	30970		10	51895	56706	60773	65324
	2	21607	27083	32152	38279		11	53083	57755	61700	66113
	3	26745	32170	37080	42916		12	54126	58671	62504	66790
	4	30665	35968	40701	46267		13	55050	59480	63213	67387
	5	33808	38972	43542	48879						
	6	36401	41423	45836	50964	16	1	20940	28158	34861	42856
	7	38586	43469	47740	52682		2	30639	37626	43817	50955
	8	40456	45207	49347	54122		3	36806	43415	49159	55660
	9	42078	46707	50727	55353		4	41240	47488	52843	58867
							5	44633	50565	55612	61262
12	1	15238	20855	26268	32995		6	47328	52983	57710	63112
	2	23095	28855	34147	40491		7	49529	54945	59515	64605
	3	28444	34106	39195	45197		8	51359	56562	60942	65812
	4	32486	37989	42872	48568		9	52911	57928	62143	66826
	5	35698	41033	45724	51164		10	54240	59089	63158	67674
	6	38331	43500	48015	53226		11	55395	60095	64036	68410
	7	40537	45549	49907	54919		12	56407	60976	64804	69055
	8	42415	47281	51496	56329		13	57300	61748	65474	69611
	9	44038	48769	52856	57531		14	58093	62430	66063	70096
	10	45452	50058	54026	58559	17	1	22818	30498	37544	45824
13	1	16439	22418	28137	35182		2	33005	40298	46681	53940
	2	24727	30783	36306	42872		3	39354	46176	52030	58599
	3	30288	36190	41454	47613		4	43847	50246	55673	61711
	4	34444	40146	45166	50980		5	47245	53284	58371	64003
	5	37718	43219	48022	53549		6	49921	55653	60459	65766
		40383	45694	50302	55579		8	52087	57556	62128	67168
	7	42603	47737	52172	57238		8	53882	59123	63495	68311
	8	44481	49452	53729	58600		9	55394	60438	64641	69269
	9	46099	50923	55064	59773		10	56681	61547	65595	70052
	10	47502	52188	56203	60760		11	57797	62509	66428	70744
	11	48735	53298	57201	61628		12				71327
14							13	59626 60386	64075 64721	67772 68324	71846 72298
	1	17777	24144	30184	37554						
	2	26517	32878	38630	45405		15				
	3	32286	38428	43860	50156						
	4	36548	42442	47590	53498						
	5	39876	45533	50435	56027						
	6	42565	48007	52694	58022						
	7	44787	50030	54527	59621						
	8	46660	51725	56054	60949						
	9	48263	53167	57349	62070						
	10	49649	54406	58454	63019						
	11	50864	55489	59422	63853						
	12	51933	56438	60264	64572						

REFERENCES

[1] T. W. Anderson, Introduction to Multivariate Statistical Analysis, New York, Wiley, 1958.
[2] W. G. Cochran and C. I. Bliss, "Discriminant functions with covariance," Ann. Math. Statist., Vol. 19 (1948), pp. 151-176.
[3] R. C. Elston and J. E. Grizzle. "Estimation of time-response curves and their confidence bands," Biometrics, Vol. 18 (1962), pp. 148-159.
[4] A. Erdélyi, et al., Higher Transcendental Functions. Vol. 1. Bateman Manuscript Project, New York, McGraw-Hill, 1953.
[5] S. Geisser and S. W. Greenhouse, "An extension of Box's results on the use of the F distribution in multivariate analysis," Ann. Math. Statist., Vol. 29 (1958), pp. 885-891.
[6] -, "On methods in the analysis of profile data," Psychometrika, Vol. 24 (1959), pp. 95-112.
[7] L. J. Gleser and I. Olkin, "Estimation for a regression model with covariance," Stanford University, Technical Report No. 15, August 14, 1964.
[8] _, "A K-sample regression model with covariance." Multivariate Analysis I (edited by P. R. Krishnaiah), New York, Academic Press, 1966, pp. 59-72.
[9] - "Linear models in multivariate analysis," Essays in Probability and Statistics (edited by R. C. Bose, et al.), Chapel Hill, University of North Carolina Press, 1970, pp. 267-292.
[10] M. Halperin. "Normal regression theory in the presence of intra-class correlation." Ann. Math. Statist., Vol. 22 (1951), pp. 573-580.
[11] D. G. Kabe, "On the noncentral distribution of Rao's U statistic," Ann. Inst. Statist. Math., Vol. 17 (1965), pp. 75-80.
[12] C. C. MacDuffee, The Theory of Matrices, New York. Chelsea. 1946 (2nd ed.).
[13] R. D. Narain, "Some results on discriminant functions." J. Indian Soc. Agric. Statist., Vol. 2 (1950), pp. 49-59.
[14] I. Olkin and S. S. Shrikhande, "On a modified T^{2} problem," Ann. Math. Statist., Vol. 25 (1954), p. 808, no. 8.
[15] R. F. Ротнoff and S. N. Roy, "A generalized multivariate analysis of variance model useful especially for growth curve problems," Biometrika, Vol. 51 (1964), pp. 313-326.
[16] C. R. Rao, "Tests with discriminant functions in multivariate analysis," Sankhyā, Vol. 7 (1946), pp. 407-414.
[17] ——, "On some problems arising out of discrimination with multiple characters," Sankhyā, Vol. 9 (1949), pp. 343-366.
[18] -, "A note on the distribution of $D_{p+q}^{2}-D_{q}^{2}$ and some computational aspects of D^{2} statistic and discriminant function." Sankhyā, Vol. 10 (1950), pp. 257-268.
[19] -. "Some statistical methods for the comparison of growth curves," Biometrics, Vol. 14 (1958), pp. 1-17.
[20] , "Some problems involving linear hypotheses in multivariate analysis," Biometrika, Vol. 46 (1959), pp. 49-58.
[21] -, "Least squares theory using an estimated dispersion matrix and its application to measurement of signals," Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley and Los Angeles, University of California Press, 1967, Vol. 1, pp. 355-372.
[22] G. S. Watson, "Serial correlation in regression analysis. I," Biometrika, Vol. 42 (1955), pp. 327-341.
[23] -, "Linear least squares regression," Ann. Math. Statist., Vol. 38 (1967), pp. 1679-1699.
[24] G. S. Watson and E. J. Hannan, "Serial correlation in regression analysis II," Biometrika, Vol. 43 (1956), pp. 436-445.
[25] J. S. Williams, "The variance of weighted regression estimators," J. Amer. Statist. Assoc., Vol. 62 (1967), pp. 1290-1301.

[^0]: This work was supported in part by the National Science Foundation Grant GP-6681 at Stanford University.

