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1. Introduction

I assume a bivariate distribution of pairs (y, X) in which y has a linear re-
gression on X

(1 1) y = ±fo+ X±+ e,

where e, X are independently distributed and E(eJX) = 0. However, the
measurement ofX is subject to error. Thus we actually observe pairs (y, x), with
x = X + h, where h is a random variable representing the error of measurement.

Given a random sample of pairs (y, x), previous writers have discussed various
approaches to the problem of making inferences about the line Bo + /31X, some-
times called the structural relation between y and X. In the present context this
line might be called "the regression of y on the correct X" to distinguish it from
"the regression of y on the fallible x." An obviously relevant question is: under
assumption (1.1), what is the nature of the regression ofy on x?

Lindley [5] gave the necessary and sufficient conditions that the regression
of y on the fallible x be linear in the narrow sense. This means that E(ylx) is
linear in x, or equivalently that

(1.2) y= io + f13x + e',

where E(e' lx) = 0. This definition does not require that e' and x be independently
distributed. Lindley's proof assumes that the error of measurement h is distri-
buted independently of X. His necessary and sufficient conditions are that
Fisher's cumulant function (logarithm of the characteristic function) of h be
a multiple of that of X. Roughly speaking, this implies that h and X belong to
the same class of distributions. Thus if X is distributed as x2c2, so is h, though
the degrees of freedom can differ: if X is normal, h must be normal.

Several writers have discussed the corresponding necessary and sufficient
conditions if we demand in addition that the residual e' in (1.2) be distributed
independently of x. In particular, Fix [3] showed that if the second moment of
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either X or h exists and X., h are independent as before, the conditions for
linearity of regression in this fuller sense are that both X and h be normally
distributed.
Thanks partly to computers, numerous regression studies are being done

nowadays, particularly in the social sciences and medicine, in which all the vari-
ables are difficult to measure, and therefore are presumably measured with
sizeable errors. In thinking about mathematical models appropriate to such uses,
it seems clear that the forces which determine the nature of the distribution of h
(the imperfections of the measuring instrument or process) are quite different
from those that determine the nature of the distribution of the correct X. Con-
sequently, my opinion is that in such applications even the Lindley conditions
will not be satisfied, except perhaps by a fluke or as an approximation (for
example, the cumulants ofX and h might be similar in the sense that both distri-
butions are close to normal).

This paper considers the regression of y on x when Lindley's conditions are
not satisfied. There are at least two reasons for interest in this regression. The
objective may be to obtain a consistent estimate of 3,B for purposes of inter-
pretation or adjustment by covariance (Lord [6]). Secondly, the purpose may be
to predict y from the fallible x by the regression technique in which case the
shape of this regression is relevant.
The strategy used here is first to construct a straight line relation between y

and the fallible x which may be called the linear component of the regression of
y on x. This is the line that we are estimating. in some sense, when we compute
a sample linear regression of y on x.
The paper then takes a look at the question: what is the nature of the departure

from linearity when Lindley's conditions are not satisfied? In particular, does
the linear component dominate? If it does, then as Kendall [4] remarks, "A
slight departure from linearity will sometimes allow the ordinary theory to be
used as an approximation." I have been unable to obtain any general results
that are exact, but something can be learned by a combination of an approach
via moments and the working out of some easy particular cases. These suggest,
fortunately, that the linear component often dominates, even with measure-
ments of rather poor reliability, but the issue needs more thorough investigation
by someone with greater mathematical power.

2. The linear component

As stated, a linear regression of y on the correct X (in the fullest sense) is
assumed, namely,

(2.1) Y = po + #,X + e,

where e, X are independently distributed and E(eIX) = 0. I also assume X scaled
so that E(X) = 0.
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As regards the error of measurement h, Lindley's result requires h. X to be
independently distributed, but this assumption limits the range of applications of
the result. Some measuring instruments or methods underestimate high values
of X and overestimate low values. I have been unable to obtain con(litions
analogous to Lindley's when X. h follow a general bivariate distribution O(X, h)
but there is no difficulty in obtaining the linear component in this case. D)enote
E(h) by ph, since measurements may be biased. It is assumed, as seems reasonable
for most applications, that h and hence x are distributed independently of' e.
Hence the regression of y on x is, from (2.1),

(2.2) E(ylx) = fBo + 1,3E(Xlx) = p0 + #3R(x),
say.
Thus we need to find R(x). Let +(X, h) be the joint frequency function of X. h.

The marginal distribution of the fallible x is

(2.3) *f(x) = f +4(X, x - X) dX.

while R(x) = E(Xlx) satisfies the equation

(2.4) R(x) fr(x) = f X+(X, x - X) dX.

The linear component of R(x) can be defined by fitting the straight line L(x) =
CO + C1x to R(x) by the population analogue of the method of least squares.
That is, we choose CO, C1 to minimize

(2.5) f {R(x) - Co - C1X}2?f(x) dx.

Clearly,

(2.6) f R(x)I(x) dx = fX(X, h)dXdh = hx = 0,

(2.7) f xR(x)/(x) dx = (X2 + Xh)4(X, h) dXdh = 7X + 'Xh,

where aXh is the population covariance of X and h. Hence the normal equations
for CO and C1 give

(2.8) Co Clgh, C X= (oX ± cXh)/(X ± ah + 20Xh)

From (2.2), the linear component of the regression of y on x is L(x) = fBo +
1l3(Co + Clx). If we write this fl'B + /'1x, we have

(2.9) Io = fi - f3lClHth, X1 = flIC1 = #I(Ux ± X)/(X + ah + 2,7Xh)
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Incidentally, expressions (2.9) for flt', #'1 can be obtained directly by noting
that our procedure is equivalent to defining (fl' + fl' x) as the linear component
of the regression of y on x if we write y -- fl + fl'1x + e' and determine 8%, ,fl
so that the residuals e' satisfy the conditions

(2.10) E(e') = 0, Cov (e', x) = 0.

Formulas (2.9) for P'0 and fl'1 agree with the well-known elementary results
in the literature, usually obtained on the assumption that X, h follow a bivariate
normal. Bias in the measurements affects the intercept fl' but not the slope fl'1.
If h and X are uncorrelated, a2lU= fl1 4/c2, the factor a2/o2 being often called
the reliability of the measurement x. For given 4X,,h, positive correlation of
the errors with X makes the underestimation of the slope worse, while negative
correlation alleviates it if o2 < 42. In the Berkson case [1], the investigator
plans to apply preselected amounts x of some agent or treatment in a laboratory
experiment, but owing to errors in measuring out this amount, the amount X
actually applied is different. Here, Cov (x, h) = 0, so that aXh = - hc and (2.9)
shows that l'1= fl1. This situation also applies when large samples are grouped
by their values of X into classes to facilitate the calculation of regression on a
desk machine, provided that x is taken as the mean of X within each class. The
common practice is of course to take x as the midpoint of the class. This makes
Cov (x, h) slightly positive for most unimodal distributions of X, so that some
residual inconsistency in fl'1 as an estimate of fl1 remains, though the incon-
sistency is in general trivial if at least ten classes are used.
Suppose now that y is also subject to an error of measurement d. If Y repre-

sents the correct value of y, we may rewrite the original model (1.1) as

(2.11) Y = Po + P1X + e, y = Y + d.

Hence

(2.12) E(ylx) = Po + flR(x) + E(d|x).

If errors in y are independent of Y, X and h, then E(dJx) = Md, the amount of
bias in d, and we get the old result that such errors in y do not affect the slope of
the regression line. If d is correlated with Y, the choice of an appropriate model
requires care. Specification of the joint frequency functions +(X, h), 6(Y, d) is
not enough to determine E(d lx); we need to know the relation between d and h.
The following might serve for applications in which the process by which y is
measured is independent of that by which x is measured. Noting that E(X) = 0,
E(Y) = P0, write

(2.13) d= Md + aY (Y -flo) + d', h= Ph + ahX + h',
y ~~~~~~~x

where h', d', with zero means, are assumed independent of each other and of
X, Y, and e. This model does not imply that d and h are independent, since
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(2.14) Cov (dh) = aYdaXhaXY
a_ 2

but this correlation arises only as a consequence of the X, Y correlation.
In some applications there may be further correlation between d and h because

the measuring processes are not independent. For instance, an individual pair
(x, y) might be estimates ofa town population five years apart, where the munici-
pal statisticians use the same techniques in a town, the technique varying from
town to town. In general, it will obviously be difficult to know which model to
pursue, and to get data for verification of a model.

If (2.13) holds,

(2.15) E(dlx) = Pd + 2d flR(X).ay

From (2.8) and (2.12), we obtain for the linear component of the regression of
y on x,

(2.16) PO+ Pd - flICIPh (ayi +aYd)] + fl-x (:yi(aYd)(aX + aTX)~
[~~~~~ ~~2l a2a(2 + 2Ux + a2 )

As is obvious from graphical considerations, errors in y that are positively corre-
lated with Y tend to increase the absolute value of f'1, whereas errors in x have
the opposite effect. With errors in both y and x, f'1 may be either greater or less
than f1.
The method of obtaining the linear component extends naturally to a multiple

linear regression of y on x1, x2, * * *, Xk. Even when the errors of measurement
hi are independent of Xi and of each other-the simplest case-fl; is a linear
function of all flj whose corresponding xj are subject to errors of measurement
(Cochran [2]). When the hi and Xi are correlated, we again meet the problem of
specifying the nature of the correlation between hi and hj.
One objective in working out the relations between fl, and the fl, is as a

possible means of estimating the coefficients flj of the structural regression by
using data from supplementary studies of the errors of measurement. With
errors in more than one variate, however, the algebraic results suggest that the
information needed about errors of measurement is more than we are likely to
be able to obtain.

3. Polynomial approach by moments

Now consider the nature of R(x) with errors in x only when Lindley's con-
ditions are not satisfied. Like Lindley, I assume h and X independent, with
Ph = 0. I first chose some simple forms for the frequency functions f(X) of X
and g(h) ofh for which R(x) can be worked out exactly in closed form. Examples
are the X distribution with a small number of degrees of freedom, the normal,
the uniform, and the exponential types like e-X, with X > 0, or Ie-lx, with
-oc < X < oo. Inspection ofa few cases indicated that if either X or h follows a
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skew distribution, the departure of R(x) from linearity, in a region around the
mean of x, is of the simple type that can be approximated by a quadratic curve
(an example will be given in Section 4).

If, however, both h and X are symmetrically distributed about their means 0,
then *(x) is also symmetrical and R(-x) = -R(x), which suggests a cubic
approximation with a zero quadratic term. The equations of the approximating
quadratic or cubic, by the least squares method, are obtained easily from the
low moments of the distributions of h and X. (In the symmetric case it is possible
that for some frequency functions a quadratic approximation in lx|, with reversal
of sign when x is negative, might do better than the cubic, but the fitting requires
calculation of some incomplete moments and this has not been pursued.)

In fitting a polynomial approximation of degree p to R(x), we choose the
coefficients Ci to minimize

p

(3.1) f {R(x) - E CiXi }2*(X) dx.
i=O

The rth normal equation is
p

(3.2) E Ci/,+i,X ff X(X + h)rf(X)g(h) dXdh,
i=O f

where the p denote moments about the mean.
Here we are fitting only the simplest nonlinear approximations, say Q(x).
Case 1. X or hskew.

(3.3) Q(x) = CIX + C2(X-2 2x)

where

(3.4) A = 84xP2x -3- 12x,

(3.5) C1 = (P4xP2X- P3xP3X -2x2X)A
(3.6) C2 = (82x83X -3x/2x)A

Case 2. X and h both symmetrical.

(3.7) C(z) = C1X + C3X3,
where

(3.8) A= 86xP2x -4x
(3.9) C1 = (86xl2X - P4x84X- 3P4xM2XY2h)A 1

(3.10) C3 = (84x82X 8-2xP4X- 392x92XP2h)A'.
There is obvious interest in seeing how well the quadratic and cubic approxi-

mations fit R(x). The reduction in the variance of R(x) due to these approxi-
mations can be obtained from the normal equations by the usual analysis of
variance rule of multiplying the solutions Ci or ci by the right sides of the normal
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equations. But I have been unable to obtain an exact expression for the variance
of R(x) which does not involve computing an integral, so that I do not have a
general result for the closeness of fit in this case, though it can be obtained by
numerical integration in specific examples, as discussed in Section 5.

This approach extends also to correlated errors, the expressions for the C1
involving joint moments of h and X which are easily obtained.

4. Two examples

As an example of the quadratic approximation I take

(4.1) f(X) = Xe-X212. X > 0. g(h) = N(0, a2).

Thus X is skew, essentially a X variate with two degrees of freedom. mean
7T/2 and variance (2 - n/2), about 0.429, while h is normal. The reliability of

the measurement is (4 - n)/(4 - 7r + 2a2), so that measurements with different
degrees of reliability from 92 per cent to 54 per cent are represented by taking
a = 0.2(0.1)0.6. Measurements of lower reliability have been reported, but this
range should cover the great majority of applications. Reliability of 50 per cent
is far from impressive: the measurement error has as big a variance as the correct
measurement. It is not claimed that this example corresponds to any actual
situation in practice: although X is essentially positive, x is not.
For this example, R(x) works out as

a f(u2+± )P(u) ± uz(uQ
(4.2) R(x) = (1 + C2)1/2 { uP(u) + Z(u) }

where u = x/a(l + a2)1/2, z(u), and P(u) are the ordinate and cumulative of
N(0, 1). (In this example X was not scaled so that E(X) = 0). Figure 1 presents
points on R(x) for a = 0.3 and a = 0.6, plus the line R(x) = x that would
apply if there were no error of measurement.

As suggested, the major departure from linearity of the points in Figure 1
near jM, is a simple curvature that is well represented by a quadratic curve, though
this quadratic would do very badly at points far away from y,. For instance,
with x and u becoming large and positive, P(u) tends to one and z(u) to zero, so
that R(x) behaves like x/(1 + a2), while for x negative R(x) tends to become
asymptotic to the origin. However, the approximation errors in the quadratic
Q(x) receive very little weight at these points, since they are far enough away
from the mean of x so that +(x) is tiny. The mean square error (MSE) of the
quadratic approximation, the integral of [Q(x) - R(x)]2 f(x) dx, is only around
0.0003 to 0.0007. The MSE of the linear approximation has the following values.

a .2 .3 .4 .5 .6

MSE[L(x)] .0010 .0025 .0041 .0052 .0069
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R(x)
R(x)= x

3

2-

l _ o-= 0.3
*'t Reliability =0.83

t / ~II I I
-I 0 Ij. 2 3 4 X

R (x)

R(x)= x
3 -

2-

l -= 0.6
. ' ' / Reliability = 0.54
I / II I I I

-I 0 IJ 2 3 4 X

FIGURE 1
Regression R(x) of X (correct) on x (fallible) measurement.

X is X (2 d.f.), error of measurement is N(O, 02).
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The example of the symmetrical case has X = N(0, 1), while the measure-
ment error h is uniform between -L and L. The reliability is 3/(3 + L2) and
with L = 0.5(0.25)1.5, it varies between 93 per cent and 57 per cent. Figure 2
shows R(x) for L = 1, L = 1.5, with reliabilites 0.75 and 0.57. In this example

(4.3) R(x) = [z(x - L) - z(x + L)][C(x + L) - C(x -L)]-.

R(x)

R(x) x
3 -

X * / * L = 1.0 Reliability 0.75

2~~~~~~~

X xi

-3 -2 -1 2 3 X

0 L =1.0 Reliability 0.75
X L =1.5 Reliability 0.57

-3

FIGURE 2
Regression of R(x) of X (correct) on x (fallible) measurement.

X is N(0, 1), error of measurement is uniform (-L, L).
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As x moves far away from its mean at 0, R(x) tends to become (x - L), again
linear in x rather than cubic. The MSE of the cubic approximation is very small,
the greatest value in the cases worked being 0.00054 at L = 1.5. For the linear
approximation, the MSE are as follows.

L 0.5 0.75 1 1.25 1.5

MSE[L(x)] .045 .0316 .0011 .0046 .0116

5. Adequacy of the linear approximation

In considering the adequacy of the linear approximation, I am not concerned
with applications in which the aim is to estimate the structural relationship, but
only with those in which (i) the objective is to predict y from x, in which case the
usual advice is to utilize the observed regression of y on x, or (ii) to test the null
hypothesis f3 0= 0 by a t test, as a means of testing the null hypothesis f3 0.

First, as Kendall [4] reminded us, Lindley's type of linearity falls short of
the assumptions of independence of the residual e' and x and normality of e'
that are needed for use of the standard regression formulas. The situation re-
sembles that in the standard texts on sample surveys, in which attempts have
been made to construct a theory of linear regression estimators without allotting
any specific structure to a relation between y and x except that all values of y
and x in the population are bounded. It is known in such cases that the usual
sample estimate fB' of ,B1 is biased, the leading term in the bias being
-E(e'x3)/na4, where n is the sample size. The usual formula for the variance of
,B1 holds as a first approximation, but it too has a bias that becomes negligible
in large samples, while the numerator and denominator of the t test of /31 only
become independent asymptotically. At best we can say that the usual methods
apply asymptotically.

As regards the effect of errors in x on the precision of regression estimates of
y, the most important quantity is the variance of the residuals from the regression
of y on x, or from approximations to this regression that we consider using. It is
worth starting with the simplest case in which X, h are normal and independent,
so that the regression ofy onx is linear in both senses. Here f,'B = fl1 ar /a' = Gfl1,
where G is the coefficient of reliability. Further, since

(5.1) a 2 + fl52= a2, ±al2a2 = 72, + Gfl2,72
we have
(5.2) 2= a2 + (1 - G)fla = (1- p2)U2 + (1 - G)p2U2
This is the familiar result that, even when there is no problem about nonlinearity,
errors in x increase the variance of the deviations from the linear prediction
model by (1 - G)p2ay, an increase that hurts most, for given G. when the pre-
diction formula is very good (p high).
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Returning to the assumptions of this paper, suppose y is predicted from its
regression on x. Since

(5.3) y = fo + fl1X + e =f0 +flR(x) + e'.

(54) 2 2 (a2 _ 2) = 02 + fl27(L a- la2e e ± e I RX

In the examples that I have worked, o2 /a2 comes numerically to withini one or
two percentage points of G = U2 /02, Consequently, if the population regression
of y on x is used for prediction, the loss of precision due to errors in x is about
what we expect fiom the value of the reliability coefficient G.
To pass to the additional loss of precision if L(x) instead of R(x) is used in the

prediction formula. write

(5.5) po + f1,R(x) + e' = p0 + f3lL(x) + e",

giving

(5.6) e2" = a2' + N(a2 - CL) = 2' ±+ fl2 MSE (L)

since the method of fitting L makes Cov (L, R - L) = 0. From the little tables
of MSE (L) in Section 4, the highest ratios of MSE (L) to ax, which occur when
reliability is lowest, are around 0.01 to 0.02. If these examples typify what happens
in applications, it appears that errors in x create an increase of around
(1 - G)p a, in the variance of residuals, but that even when reliability is low,
the additional increase in this variance (lue to use of L(x) instead of R(x) is un-
important.

Since e' and x are not independent, a look at the conditional distribution of e'
for fixed x may be worthwhile. From (5.2).

(5.7) e' = e + f13[X -R (x)].
By our hypothesis, the term e is independent of X. h. an(d hence x. so that this
term has the same shape of distribution and variance in all arrays with x fixed.
The second term is determined by the distribution of X for fixed x. In Example 1
this distribution works out as

(1±0 2) 1 1 (1+ 2) 2__
(5.8) f(XIx) = Xexp 2 2 X X2]}

where, with ,u = x/l(l + a2)1/2,
(5.9) K(x) = z(u) + uP(u).

This distribution changes in shape as x varies; its variance increases with x,
the increase being small when the reliability G is high but more marked when G
is lower.

In Example 2, f(XIx) is simply the incomplete normal

(5.10) f(XIx) = K(x)exp{ -2X2}; x-L_ X _x+L
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with K(x) = P(x + L) - P(x - L). When x is at its mean 0, this is symmetrical
with its maximum variance, but changes from negative to positive skewness as x
changes from negative to positive.
Thus the distribution of e' is a compound of two independent distributions,

one unchanging. the other changing with x. As we have seen, the average vari-
ances of the two comiponents aI-e a 2(I _ p2) and approximately p2a2(1 - G).
WVith G high and p modest. the unchanging component should dominate, and
the assumption that the (listribution of e' is the same for different x may be a
reasonable approximation. but with say p = 0.8, G = 0.5, the two components
have variances 0.36a2 and 0.32a2 and are about equally important.

6. Summary and discussion

This paper (leals with applications in which the standard linear regression
model y = /Io + [3,X + e., with e, X independent and E(e) = 0, is assumed to
apply to a bivariate sample of pairs (y, X). However, owing to difficulties in
measuring the X values, we actually have a bivariate sample (y, x) where x =

X + h. h being an error of measurement. My opinion is that in applications even
Lindley's conditions for linearity of the regression of y on x in the narrow sense
will not in general be satisfied.

Facing this situation we can define a linear relation y = IBo + 3,Bx that may
be called the linear component of the regression of y on x. The elementary
results in the literature for the relations between flB , fl' and /Bo, fl, (usually
derived on the assumption that h, X are normally distributed) hold for this linear
component. The linear component can be obtained when h and X are correlated,
whereas Lindley assumes h, X independent, and extends to errors in y also and
to multiple linear regression, subject to problems about specification of the nature
of correlated errors.
The next step was to work out the exact regression of y on x for a number of

specific examples in which this regression has a closed form. These suggest that
the departure from linearity can be approximated by a quadratic in x if either h
or X is skew and by a cubic in x if h, X are symmetrical. The equations of the
approximating quadratic or cubic are easily obtainable from the lower moments
of the distributions of h and X. Further, in these examples the linear component
dominates, in the sense that the mean square deviation of y from the linear com-
ponent is only slightly larger than that from the exact regression of y on x, even
for measurements of reliability not much more than 50 per cent.
A further result that holds well in these examples is of interest when the fallible

x is used to predict y. When h and X are independent and normal, so that the
regression of y on x is linear, it is known that the residual variance from the re-
gression ofy on x exceeds that for the regression ofy on X by (1 - G)p2ay , where
G is the coefficient of reliability of x. This result remains a good approximation
when X, h are independent but have different distributions so that Lindley's
conditions do not hold.
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Unfortunately the results here are only suggestive and leave unanswered the
important questions. For example, (i) what is the analogous result to Lindley's
when h and X are not independent? Some measuring instruments have the
property of underestimating high values of X and overestimating low values, and
vice versa. (ii) How far can the moments approach be trusted? Are there distri-
butions for which the departure from linearity is more complex than a quadratic
or cubic? (iii) Lindley's conditions guarantee linearity only in the narrow sense;
the deviations e' from the regression of y on x are not independent of x. There is
reason to believe that in this case linear regression theory can be used asymptotic-
ally in large samples, but more needs to be known about the practical importance
of the disturbances present in small samples.
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