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1. Introduction and statement of problem

Wald's general conditions for strong consistency of Approximate Maximum
Likelihood Estimators (AMLE) [11] have been extended by several authors,
notably LeCam [9], Kiefer and Wolfowitz [8], Huber [7], Bahadur [1], and
Crawford [4]. Except for mild identifiability and local regularity conditions
these papers (except [9]) share two critical global assumptions, global in the
sense that they concern the behavior of the Log Likelihood Ratio (LLR) over
the entire parameter space 0 (which may be infinite dimensional). Crudely
state(d these are (a) there exists a "'suitable compactification" 0 of E) (see [1],
,o. :320) to which the LLR may be extended in a continuous manner without
altering the value of its supremum, and (b) the supremum of the LLR is inte-
grable (dominance). Condition (b), however, is not satisfied in many common
problems. especially multiparametric ones. where AMLE are known to be
consistent. Kiefer and Wolfowitz and later Berk [3] suggested a method which
seemed to overcome this difficulty in special cases, namely: consider the observa-
tions pairwise. or in groups of k. In the more general context of "maximum w"
estimation described below. however, this method fails (see Example 2). Noticing
this. Huber proposed that the LLR be divided by a function b(O) such that this
normalized LLR satisfies (a) and (b).

In Section 2 of this paper we show that under an extended global dominance
assumption the method of Kiefer. Wolfowitz, and Berk is precisely the correct
one. This idea is then extended to include Huber's modification. In Section 5 we
show that (generalized versions of) LeCam's conditions are equivalent to those
based on dominance.
The methods described above have several drawbacks, however: they require

determination of a suitable group size k, normalizing functions b(O), and a
compactification 0. As demonstrated by several examples below, these are
not always naturally occurring quantities and may be difficult to determine.
In Section 3 we introduce a new condition for strong consistency, based on a
global uniformity assumption rather than dominance, which seems to present
a more natural and straightforward method for determining strong consistency.
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It has the advantage that it is intrinsic, that is. it does not require searching for
quantities k. b(0), or 0 which are not specified in the original problem.

Necessary and sufficient conditions for strong consistency are discussed in
Section 4.
Throughout this paper we treat the problem of strong consistency of AMLE

in the following generalized context.
Let -O be a set of distinct probability distributions on a measurable space

(X, sl). Let 0 = O(P) be a mapping of BP onto a Hausdorff topological space E)
which satisfies the first axiom of countability. Let XI. X2. * * be a sequence
of independent. identically distributed (i.i.d.) random variables assuming values
in d, each distributed according to P0. and let 00 = 0(P0). The symbol P0 is
also used to denote the product probability measure on the infinite product
space of all sequences (xI, x2, .), and Po denotes the induced inner measure
on this space. Let w(x. 0) be a real-valued function defined on T x 0 such
that for each fixed 0, w('. 0) is measurable, and for n = 1, 2, let

n
(1.1 ) w. (0) = U7n (x I X ". 0) - Ew(Xi. 0).

n j=

(For any other function y(x. 0). yn(0) is defined in a similar manner.) In this
paper we discuss the strong consistency of estimators which are based on
maximizing wn(0).

Let S° denote the class of all estimating sequences {TM} = {T.(X X,n)
(Tn is a 0-valued function and is not necessarily measurable) such that for all
PO in .4

(1.2) *Po[sup wn(0) = uw(Tn) a.a. n] = 1

(all suprema in this paper are taken with respect to 0 over the indicated subset),
where, if {An} is any sequence of sets. {An a.a. n} is the set

(1.3) lim infAn =U nQA
n X n= I k->n

If {Tnj is in Jl, we call it a Maximutn wr Estimiator (M\'E). Since Y° may be
empty (the supremum may not be attaine(d). we shall mainly consider the
larger class 52 consisting of all estimating sequences such that for all P0 in Y

(1.4) *PO[H(sup wn(O), wv,(Tn)) 0] = l.
0

where

a-b if a < oXi

(1.5) H(a, b)- bl if a = c and b > 0

I1 if a = c and b < 0.

If {Tn} is in J2. it is called an Approxinmate Maximunm w Estimator (AMWE).
EXAMPLE 1. Suppose that 0(P) is one-to-one and that each P has a density

f(x, 0) with respect to some measure HI. If w(x. 0) = log f(x. 0), then Y2 contains
all AMLE (in the sense of Wald [11], p. 600, Theorem 2).
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EXAMPLE 2. Let Y denote the set of all distributions on (-o, oo) which
possess a unique population median. Let E = (- o, oc) and 0(P) = median
of P. If w(x. 0) = -|x- 0. then 9" contains all sample medians (recall that
the sample median may not be uniquely determined).

For each 00 in E let {Vr} = {Vr(00)} be a decreasing sequence of neighbor-
hoodls of 00 which form a base for the neighborhood system at 00 (so
n 1r = {00}), and let Qr = Qr(00) = (D- 1,.(00). Then an estimating sequence
{Tn} is strongly consistent if and only if for all P0 in BP an(d r _ 1.

(1.6) PO[Tn in Vr(00) a.a. n] = 1.

Note that if this is satisfied for one such sequence of neighborhoods {V,}. it
must be satisfied for any other such sequence.
A convenient starting point for this problem is the following obvious fact:
LEMMA 1.1. A sufficient condition for the strong consistency of every AMWE

is that

(1.7) *Po[lim sup sup un(0: 0o) < 0] = 1
n-ce

for every PO in 9 and r > 1. where

u(x, 0) u(x, 0; 00) _ w(x, 0) - W(X. 0o).

(1.8) un(0) _u(0: 00)"o(O) - e1 n(0o).
(Under some additional assumptions (1.7) is also a necessary condition, see
Section 4.)
The earlier papers [1] (p. 320), [4]. [7] (p. 222), [8] (p. 890), [9] (pp. 302-304),

and [11] all present conditions which imply Conditions 1 or 2 below, and there-
fore imply (1.7). (See discussion preceding Theorem 2.3 and see Section 5.) If
E) (hence Qr,) is compact, Theorem 2.4 below is applicable. In this paper we are
mainly concerned with the more interesting and difficult situation where 0) is
not compact. In this case earlier papers (except LeCam [9]) assume that a "suit-
able compactification" of 0 exists (see [1], p. 320). Such a compactification is
not always apparent if it exists; the one-point compactification is often unsuit-
able (see Example 4 and subsequent discussion). In this paper, as in LeCam
([9] pp. 302-304), we attempt to avoid the need to extend the parameter space.
The lim sup in (1.7) is studied directly, first with no assumptions on Qr (Section
2) and then assuming Qr is a-compact (Section 3).

2. Conditions for strong consistency of AMWE based on dominance and semi-
dominance

Let F be a subset of 0 (so F is first countable and Hausdorff) and let
y(x. 0) be a real-valued function, defined on ( x F, which is measurable in x
for each fixed 0. Let the sequence of -f-valued i.i.d. random variables X1, X2,



266 SIXTH BERKELEY SYMPOSIUM: PERLMAN

have probability distribution P (which need not be in B). (Later we shall take
F = Q, y(x, 0) = u(x, 0: Oo), and P = PO).

DEFINITION 1. The function y (x. 0) is dominated (dominated by 0) on Fr with
respect to P if there is a positive integer k and a real valued function S(x1 * Xk)
on X x ... x X, measurable with respect to the product c-field d x ... x V1.
such that

(i) sUPr Yk(O) s(x1 xk) for all x, Xk in a set ofprobability one, and
(ii) Es(X 1, * * Xk ) < °5 (< 0)

(The subscript k will be used exclusively to refer to this definition.)
REMARK. Note that if supr Yk(O) is measurable, it can be used in place of

s(x1. . X.k) In any case, note that s can be chosen to be a symmetric function
of x1. . Xk. for we may replace s by

(2.1) (x1 Xk) Z s(x(1). xi(k))

where the sum is taken over all permutations of (1. k). Also, s can be
chosen such that Es(X1. Xk) > -o for, if not, replace s by max (s, M)
for any number M (or any Ml such that E max (s. M) < 0).

I)EFINITION 2. y(X. 0) is .semnidoninated (semidomninated by 0) on F with
respect to P if there existts a function b(0) defined on F. 0 < b(0) < x. such
that y(x. 0)/b(0) is dom.inated (donminated by 0) on F with respect to P and
infr b (0) > 0.
REMARK. Note that if b1 (0), with 0 < b1 (0) < cc. is such that y(x. 0)/b1 (0)

is dominated by 0 on F. it does not necessarily follow that y(x. 0) is semi-
dominated by 0 on F. since replacing b1 (0) by b(0) = max (b, (0). a) with a > 0
will not necessarily preserve dominance by 0.
We first investigate some implications among Definitions 1, 2 and the con-

dition (recall (1.7))

(2.2) *P[lim sup sup yn(0) < 0] = 1.
n- r

THEOREM 2.1. Ifyiis dom7tinated (or sem7?idominated) by0 on F then (2.2) holds.
PROOF. We show that dominance by 0 implies (2.2) using an idea of Berk

[3]. For any n _ k, let Lx = {X1. , Xk} denote a selection of k indices from
{1, 2, .n}. Then

(2.3) Yn(0) = (k) 2 [k1 E y(xi, 0)]
31 iE31

so that for all x1.... , xn in a set of probability one

(2.4) sup yN(O) - (k) Es(Xnk, * , X2j -n,k
r a

(We choose s to be a symmetric function of x1. Xk.) Berk ([3]. pp. 55-56)
shows that {Sn,k}1n=k forms a reverse martingale sequence and Sn, k -+ Es < 0
almost surely as n - oc, which implies (2.2).
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Finally we show that semidominance by 0 implies (2.2). If y is semidominated
by 0 on F. there is a function b(O) such that, applying the above argument.

(2.5) *P[lim sup sup (y.(O)/b(O)) < 0] = 1.
n-oo F

Since infr b(O) > 0, this implies (2.2). Q.E.D.
EXAMPLE 3. X1, X2, are i.i.d. random variables, each with the normal

distribution N(-1, 1). Take F [1, or) and y(x, 0) = Ox, so Yn(O) = O04
Since Xn* 1 a.s., supr y,,(0) - 1 a.s. so (2.2) is satisfied. However, for all n

(2.6) P[sup Yn(0) = c] = P[X- > 0] > 0,
F

so y is not dominated on F. Choosing b(0) = 0 we see that y is semidominated
by 0 on F. Thus neither (2.2) nor semidominance by 0 necessarily implies
dominance by 0.
A partial converse to Theorem 2.1 is presented in Theorem 2.2 (ii). Several

preliminary results are needed.
LEMMA 2.1. If X and Y are independent real valued randonm variables. then

E(X + Y)+ <c=x EX' < o and EY+ < oc.
PROOF. Since E(X + Y)+ = E{E[(X + Y)+ Y]} it follows that

E(X + y)+ < oo for almost all y. But X+ < (X + Y)+ + IyI so EX+ < oc,
and similarlyEY+ < oo. Q.E.D.
LEMMA 2.2. If y is dominated or semidominated on F then for every 0' in F,

E[y1 (O')]+ < oc. Thus for every 0' and n Eyn(0') = EyI (O') is well defined
(possibly = -oc) and supr Ey1 (0) < xc.
PROOF. If y is dominated on F, Definition 1 implies that

(2.7) Yk(0) . SUp Yk(0) _ 8(X1, Xk)
F

so E[yk(O')]+ _ Es+ < oc. The result then follows from Lemma 2.1 (the semi-
dominated case is treated similarly). Q.E.D.
LEMMA 2.3. Suppose that for every 0' in F. Ey, (O') is wvell defined (possibly

±oc). Then

(2.8) FP[sup Ey1(0) _ lim inf supy(0)] =
r n-x F

PROOF. For each 0' in F and all n, Yn(0') _ supr yy(0). Letting n oc
the result follows from the Strong Law of Large Numbers (SLLN).
REMARK. Lemma 2.3 implies that

(2.9) *P[sup Ey1 (0) . lim sup sup Yn(0)] = 1,
F n-.o F

and that

(2.10) *P[SUPYn(0) -- sup EyI(O)] = 1
r r

if and only if equality holds in (2.9), in fact, if and only if

(2.11) P[supEy1(0) _ lim sup sup y(0)] = 1.
r n-.o r
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LEMMA 2.4. (i) IfEy1 (0') > -oeforsome6' inF, then E[supr Yn(0)] < (X
for all n such that supr y.(0) is measurable, in which case E supr y.(0) is well
defined (possibly = + oo ).

(ii) If y is dominated on F, then E[supr yn(0)]+ < °° for all n _ k such that
supr yn (0) is measurable, in which case E supr y,,(0) is well defined (possibly =
-o ).
PROOF. Part (i) is obvious; part (ii) follows from

(2.12) sup Y.(0) _- (kn) -E sup [k y('Y ) _ nk()
r a r iea

(see the proof of Theorem 2.1). Q.E.D.
The result need not hold if only semidominance is assumed.
LEMMA 2.5. If Ey1 (0') is well defined for all 0' in F and if supr Yn(0) is

measurable and E supr y,, (0) is well defined for almost all n then

(2.13) sup Ey1 (0) . I lim E supyn(0).
r n- 00 r

PROOF. From (2.12) with n, k replaced by n + 1, n,

(2.14) sup EyI(0) = sup Eyn+I(0) . Esupyn+1(0) . Esupyn(0),
which implies (2.13). Q.E.D.

Under the hypothesis of Lemma 2.5, (2.9) is valid with *P replaced by P, and
should be compared with (2.13). The relationship between (2.9) and (2.13) is
now clarified.
THEOREM 2.2. (i) If supr y"(0) is measurable and E supF yN(W) well defined

for almost all n then

(2.15) P[lim sup sup yn(O) < I lim E sup yn(O)] = 1.
n-co r no r

(ii) If y is dominated on F and supr Yn (0) is measurable for almost all n then

(2.16) P[lim sup sup yn(0) = 4 lim E sup yn(0)] = 1.
n-o r n-'o r

Therefore under this measurability assumption, y is dominated by 0 on F if and
only if (2.2) is satisfied and y is dominated on F.
PROOF. For part (i) assume that the right side of the inequality is < oo (in

which case y is dominated on F; otherwise (2.15) is trivial). Referring to (2.12),
for any q such that E supr yq(O) < oc, {Yn,q} is a reverse martingale, n =
1, 2, and

(2.17) Yn,q -+ Esup yq(0) a.s. as n -+ o,
F

so lim SUPn-. suPr Yn(0) . E supr yq(0) a.s. Letting q -+ 00 we obtain (2.15).
For part (ii) we use (2.12) and (2.17) to apply a well-known extension of the

Fatou-Lebesgue theorem ([10], p. 162), obtaining

(2.18) 4 lim E sup Yn(0) . E[lim sup sup yn(0)].
n-co F n-r0 r

Combining this with (2.15) yields (2.16). Q.E.D.
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REMARK. By the Hewitt-Savage zero-one law under the measurability
assumption of Theorem 2.2 (ii), lim sup,- supF y,, () is a constant a.s. (also
lim inf), whether or not dominance holds.
Returning to the problem of strong consistency, we state the global
DOMINANCE AND MEASURABILITY ASSUMPTION 9. For every PO in A and

r _ 1. u(x, 0: 00) is dominated on Qr and sup0 U,, (0: 00) is mneasurable for almost
all n.

Condition 1. For every P0 and r . 1. u(x, 0 : 00) is dominated by 0 on K2,
Then Theorem 2.2 (ii) implies: if -9 holds then Condition 1 is necessary and
sufficient for (1.7), and is thus sufficient for the strong consistency of all AMIWE.
The integer k needed to verify dominance of u(x, 0: 00) may be _ 2. especially

in multiparameter cases, as pointed out by Kiefer and Wolfowitz ([8]. p. 904).
Huber, and others. For example, in the context of Example 1, let 0 = (p, a)
and consider AMLE of (,u, a) in the location and scale family of densities
19'f(g-a(x - i)). f specified. If f(0) > 0 then E supn,u,(0) = +oo for r
sufficiently large so if u(x, 0: 00) is dominated, k must be _ 2. For example in
the normal case, that is, f(z) = (27)-1/2 exp {_- IZ2} E SUpe u2(0) < co.
Theorem 2.2 (ii) and Lemma 1.1 also imply that a sufficient condition for the

strong consistency of all AMWE is
Condition 2. For every P0 in B and r > 1., u(x. 0: 00) is semidominated

by 0 on Qr
The need for considering semidominance is illustrated by
EXAMPLE 2 (continued). Consistent estimation of the population median

(see Huber [7]. p. 223). Assuming without loss of generality that 00 = 0, we
have u(x, 0) = lx - Ix - 01. With

(2.19) Qr. = (-X. -i'] U [if'. X)

it can be shown that u(x, 0) is not dominated on Qr: for all r and n

) Supun(0_ hr(tl! , xn)n_{ min |xil if xi _ r- 1 in=(2.20) sup u,,(0) > h' > rtXi = 1.'''
Qr -r- otherwise.

Let Xl, X2, * be i.i.d. real random variables, each distributed on (-Go, oo)
symmetrically about 0 and each IXil having a cumulative distribution function
(c.d.f.)

log (I1±x) ifx. 0.
(2.21) F±(x) =| + log (I + x)

t0 if x < 0.

Since sgn Xi is independent of |Xil,
(2.22) E{min IXilIXi > r-1, i = 1, . , n}

= E{min IXiH|Xil > r i = 1,, n}

= E{min IXiImin IXi| _ r- 1 }
= +0oo.
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so Eh,(X1.. XJ) = + oc. Thus u(x, 0) is not dominated on r. Setting
b(0) = 101 (or 0 - 00 if 00 * 0), however, Huber's arguments can be used to
show that Condition 2 holds (see also our discussion preceding Theorem 2.3
below). (Huber takes b(0) = 101 + 1 but this is not necessary since 101 is
bounded away from 0 on tr.) Thus all AMWE are strongly consistent even
though dominance fails in this example.

It was stated above that the conditions of [1]. [4]. [8]. [11] in fact imply
Condition 1 and the conditions of Huber [7] imply Condition 2. These authors
essentially assume that a compactification 0 of E and an extension of u(x. 0)
to 0 exist where every 0' * 00 in 0 possesses a sufficiently small neighborhood
V(0') such that u(x. 0: O,) is dominated (or semidominated) by 0 on V(0').
Then using the compactness of 0r and a by now well known argument (see
Theorem 2.4 below) they deduce that (1.7) holds. The essential idea is, of course,
to note that (1.7) holds with Qr replaced by V(0'), obtain a finite subcover
V(01). . V(Oh) of 9r, and conclude that (1.7) holds for Kr2 Part (ii) of
Theorem 2.3 isolates the key feature of the above method and shows that the
conditions of the papers listed above do in fact imply Conditions 1 or 2.
THEOREM 2.3. (i) If y is dominated on F and F' c F. then y is dominated on

F'. This remains true if "dominated" is replaced by "semidominated," "dominated
by 0." or ''semidominated by 0."

(ii) If y is dominated on Fi. i = 1. , h. then y is dominated on U Fi. This
remains true if "dominated" is replaced as above.
PROOF. Part (i) is trivial. We prove part (ii) for h = 2 with "dominated"

replaced by "dominated by 0," as this is the more difficult case. Using part (i)
if necessary. we may assume that F1 and F2 are disjoint. Let F = F, u F2 and
let ki and si(x1..... x,.) be as in Definition 1, i = 1, 2. Let m. = k1k2.

1 k(i)-1

(2.23) S(i) = i s (Xjki + 1, X(j+ l)ki)kc(i) j=0

where k(1) = k2 . k(2) = k 1. and

(2.24) Y (0) =S(1) if 0 rF-S(2) ifOeF-12.

Thus y (0) . y'(0) and y.,.(0) _ yn(0). Since ES(i) = Esi < 0.

(2.25) sup yn(0) = max (Sn(1), Sn(2)) max (Es1. Es2) < O.
F

Applying Theorem 2.2 (ii) with y replaced byy*, this implies thatE supr y(0) <0
for some p. Setting k = mp and s(x1. ,Xk) = supr y(0), we conclude that
y is dominated by 0 on F. Note that we cannot set k = m and s = supr y*(0) =
max (S(1), S(2)). since ES(i) < 0 need not imply that E max (S(1), S(2)) < 0.
Q.E.D.
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The preceding result is now used to show that, under local regular ity assump-
tions only, (2.10) holds if F is compact. In Section 3 this is extended to
a-compact sets by imposing a uniformity assumption. We say y(x. 0) is locally
dominated on F if every 0' in F possesses a neighborhood on which y(x. 0) is
dominated. Recall that F is a first countable Hausdorff space.
THEOREM 2.4. Let F be a compact subspace of E) such that y(X. 0) is locally

dominated on F. For each 0' in F suppose that y(x. -) i.s Supper semicoltinuous at
0' except for x in a P-null set possibly depending on 0' and that for somle decreasing
sequence {Gm} = {Gm(0')} of subsets of E forming a base for the neighborhood
system at 0', SUPGm yN() is measurable for almost all mi and alm11ost all n. Then
(2.11) holds, implying (2.10). Also Ey1 (0) is an upper .semicontinuous function of 0.

PROOF. Local dominance and compactness imply y is dominated on F by
Theorem 2.3. L,et k be an integer such that E supr Yk(O) < . Sinceeln (/, = {O'}
upper semicontinuity of Yk(0) implies supG_ yk(0) Ijyk(0') as m -X o for almost
all xl, *, Xk. Then by Lemmas 2.2 and 2.4 and the monotone convergence
theorem, for each 0' in F.

(2.26) Esup Yk(0) I Ey1 (0') as n - oc.
Gm

Thus, given 3 > 0, there is an integer p = p(0') such that

(2.27) Esupyk(0) . sup EyI(0) + 3.
G,, r

There is a finite subset {0..... '} of F such that F1... F, covers F. where
Fi =G5,(,,) Let

(2.28) y*(x, 0) = y(x, 0) - sup Ey, (0) - 23,

so y* is dominated by 0 on each Fi. Then Theorem 2.3 implies that y is
dominated by 0 on F. Applying Theorem 2.1 to y* and then letting 3 -O0
yields (2.11) and hence (2.10). Finally, since

(2.29) Ey1 (0') . sup Ey1 (0) . E Sup Yk (0),
Gm Gm

(2.26) implies that Ey1(0') is upper semicontinuous at each 0'. Q.E.D.
The measurability assumption in Theorem 2.4 is satisfied, for example, if F is a

separable space, each Gm is open, and y(x, -) is lower semicontinuous on F for
almost all x. (For common spaces F, other criteria for measurability may be
more useful, such as right continuity if 0 is a real-valued parameter.) In
particular, if F is separable and {y(x, )} is an equicontinuous family of
functions on F (except for x in a P-null set) then all the assumptions of
Theorem 2.4 are satisfied.
We conclude this section with several remarks concerning the determination

of a normalizing function b(0) such that y(x, 0) is semidominated by 0. If
y(x, 0) is not itself dominated by 0 on F no general conditions guaranteeing the
existence of such a function b(O) are known to the author and if such a function
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does exist no general formula for b(O) is known. Necessary conditions for the
existence of b(0) are that suprEy1(0) < 0 and b(O) . bjEy1(0)j for some
6 > 0 (by (2.2) and Lemma 2.3). This suggests choosing b(0) = jEy1(0)j (as
in Example 3) or more generally choosing b(0) such that b(0)/IEy, (0)I is bounded
away from 0 and oc (as in Example 2, see the continuation of this example in
Section 3). This "rule of thumb" seems to be satisfactory in most statistical
applications but, at the level of generality of this paper, it is not universally valid.
To see this we present an example where y is not dominated by 0 but is
semidominated by 0, and where b(0) cannot be lEy1(0)I. Let F = [1 0c) and
let W be a random variable assuming the values 2 and -2 with probabilities
1/4 and 3/4 respectively. Let U be a stochastic process with parameter space F,
U independent of W, such that for each 0, U(0) is uniformly distributed on the
interval (-202, -0) and {U(0): 0 in F} is a set of mutually independent random
variables. Let V(0) = OW and let X = {X(0)} - {U(0) + V(0)}. Let X1, X2, *
be a sequence of i.i.d. stochastic processes, each having the same distribution as
X. Let X be the set of all real-valued functions on F, and for (x, 0) E X x F
set y(x, 0) = x(0). ThenP[supryk(0) = oo] > Oforeveryk, soyisnotdominated.
Setting b(0) = 0 we have y(X, 0)/0 = W + U(0)/0 and sup, [y, (0)/0] . W - 1,
so y is semidominated by 0. However, 2IEyi(0)j = 30 + 02 and for every k,
we have sup,[y,(O)/(30 + 02)] _ 0 with probability 1.

This example shows that the choice of b(O), if it exists, is very delicate: if b(0)
is too small, y(x. 0)/b(0) may not even be dominated, while if b(0) is too large
y (x., 0)/b (0) may be dominated but not dominated by 0. Also, there are situations
where no such b(0) exists: let F = [1, xo) and let X be a stochastic process with
parameter space F such that {X(0): 0 E F} are mutually independent and each
X(0) is uniformly distributed on (- 1, - 1/0). With y(x, 0) as defined in the
preceding paragraph, y(x. 0) is dominated on F but not semidominated by 0
on F. Note that if b(0) = 1/0, y(x. 0)/b(0) is dominated by 0 but inf b(0) = 0.
If the example is changed slightly so that X(0) is uniformly distributed on
(-1, 0) for each 0 then there is no function b(f) > 0 such that y(x, 0)/b(0) is
dominated by 0, even if we do not require that inf b(0) > 0.

It should be clear by now that due to the attempt to achieve wide generality
Conditions 1 and 2, although extending (perhaps "consolidating" is a better
term) earlier conditions based on compactification of E, do not eliminate the
usefulness of these conditions in actually verifying strong consistency. As seen
by Example 2, direct determination of a suitable integer k to verify that
u (x, 0; 00) is dominated by 0 or semidominated by 0 on Q, may not be feasible.
Also, no general method is known for determining suitable normalizing functions
b(0). Conditions 1 and 2 and earlier conditions do share a common drawback,
however: these conditions all require global dominance or semidominance
over the possibly noncompact set Qr which, it is felt, is not a natural restriction.
We now amplify these remarks and introduce a new method based on a global
uniformity assumption which requires neither dominance on Qr nor
compactification.



MAXIMUM LIKELIHOOD ESTIMATORS 273

3. A new condition for strong consistency of AMWE based on uniformity

Throughout this section and the next it is assumed that Eoul (0 00) is well
defined (possibly infinite) for every 0 in 0) and every PO in g where Eo denotes
expectation under PO. and therefore that Ey1 (0) is well defined for every 0 in F.
By Lemma 2.3 a necessary condition for (1.7). therefore weaker than Conditions
1 or 2, is

Condition 3. For every PO in a and r _ 1

(3.1) *P, [supun(0; oo) < X a.a. n] = 1
0,-

and

(3.2) sup Eou1 (0; 00) < 0.
0,.

(Notice that sup Eoul is obviously easier to compute than Eo sup un.)
This condition has a natural interpretation. In Example 1, for instance,

u1(0; 00) is the log likelihood ratio and (3.2) is simply an identifiability con-
dition stating that the topology of the parametrization is suited to the underlying
probabilistic model. More precisely it states that if the densityf(x, 0) converges
to f(x, 00) in terms of Kullback-Leibler distance (information), so that the
associated distributions converge. then 0 must converge to 00. Clearly this is a
minimal assumption which must be imposed.
An approach to the problem of strong consistency which seems natural,

therefore, is to replace the assumption of dominance or semidominance of
u(x. 0: 00) on Qr by an assumption which implies that

(3.3) Po[lim sup sup u (0: 00) = sup Eou1(0: Oo)] = 1

for every PO and r. (The uniformity assumption is stated after Theorem 3.1.)
That is, we are now concerned with verifying (2.10) rather than (2.16). Recall
that Theorem 2.4 gave such conditions for a compact set F. A useful extension
is based on the following result concerning equality of iterated limits, the proof
of which is straightforward. When we say a limit exists we allow it to assume an
infinite value.

LEMMA 3.1. Let {,f(n, m)} be a double sequence of extended real numbers
such that f3(n, m) is increasing in m. Suppose that the limlit f,(n. xc)
tlimm, f,(n, m) satisfies -oc f_(n, oo) < oc for a.a. n, that the limit
f3(oo, m) lim,_ f0(n, m)existsfor allm,and that -oc _ Tlimm.,O f3(cc, m) <
oc. Then

(3.4) lim f,(oo, m) = lim f3(n. oc)
m-00 n~oo

if and only if

(3.5) fl(n, m) Bf(oc, m)

uniformly in m.
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and both (3.4) and (3.5) are implied by

(3.6) f3(n, m)T /(n, oo)
uniformly in n (a.a. n).
If - c < limm ff3(oc. m) < oc then (3.4). (3.5), and (3.6) are mutually
equivalent.
THEOREM 3.1. Suppose that F = U 1 FmF uhereFmF r[m+1 for all m.Assume

that

(3.7) -xc _ sup Ey, (0) < ac,
F

(3.8) ~P[sup y,(O) < occa.a. n] =1r

and

(3.9) P[sup yn (O) -)sup Eyl(0)] = 1 for all m.
F_ Fm

Then *P supr y (O) suPr Ey10] = 1. if and only if the convergence in (3.9) is
uniform in m. that is,

(3.10) P[sup yn(0) - supEy1 (0) uniformly inm] = 1,
F- r_

and both (2.10) and (3.10) are implied by

(3.11) P [sup yn(0)T sup yn(O) uniformly in n (a.a. n)] = 1.

If -oc < sup-Eyj(0),< cc, then (2.10), (3.10), and (3.11) are mutually
equivalent.

PROOF. Let /3(n, m) = SUPrm yn(0) and apply Lemma 3.1. Q.E.D.
Using this theorem we can extend Theorem 2.4 to a-compact sets.
THEOREM 3.2. Let F be a a-compact space, that is, F = U'=,1 Fm where each

Fm is compact. Suppose that for each O' in F the local dominance, upper semi-
continuity, and measurability assumptions of Theorem 2.4 are satisfied, and that
the conditions of (3.7) and (3.8) hold. Then all the conclusions of Theorem 3.1 hold.
that is, (3.11) => (3.10) -- (2.10), and these are mutually equivalent if supr Eyl(0)
is finite. Furthermore Ey, (0) is upper semicontinuous on F.
PROOF. We can assume that Fm c Fm+i,. Theorem 2.4 implies (3.9) since Fm

is compact. so all hypotheses of Theorem 3.1 are satisfied. Also Ey1 (0) is upper
semicontinuous on each Fm, hence on F. Q.E.D.
REMARK. Suppose the hypotheses of Theorem 3.2 hold and that F=

Um=,1 Fm is another representation of F as an increasing union of compact sets,
so that (3.9) holds for {IF,} as well as {Fm}. Since (2.10) does not depend on the
decomposition of F, (3.10) holds for {Fm,} if and only if it holds for {Fm}.
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We can now state the global
UNIFORMITY ASSUMPTION W. For each PO in ' and r > 1, Qr = Qr(00) can

be expressed as Um= I Qr,m Where Qr,m C Qr,m+l and

(3.12) AP [supyn(0) - sup EOu1 (0; 00) uniformly in m] = 1.
Qr,m Qr,m

Then Theorem 3.1 implies: if q holds then Condition 3 is necessary and sufficient
for (1.7) and is therefore sufficient for the strong consistency of all AMWE.

In some cases it may be easier to verify a condition based on (3.11), rather than
(3.12) which is based on (3.10). Notice also that the crucial aspect of (3.12) is the
uniformity of the convergence: if Qr m is compact the convergence itself is
guaranteed by local regularity assumptions only, as in Theorem 3.2.

It is felt that this represents a more directly applicable approach to the problem
of strong consistency than that contained in the statement following Condition 1.
This is illustrated by Example 2 where it was shown earlier that dominance g
fails but where we now show that 1 and Condition 3 hold.
EXAMPLE 2 (continued). Fix PO and r and assume 00 = 0. With F = Q,r as

defined in Section 2 let

(3.13) Fm = Qr,m = [-in -r1]u[if', m],

a compact set. Since u (0) _ n1ilXi 1, (3.1) is obviously true. Since u(x, 0)
is continuous in 0 (in fact equicontinuous) and u1 (0) < m on Fm, the hypotheses
of Theorem 2.4 are satisfied so (3.8.) holds. Thus to verify 1 we must only verify
the uniformity of the convergence in (3.12).

Note that un(0) is a unimodal function with mode at X[(n + 1)/2] (the
(n + 1)/2th order statistic from a sample of size n) if n is odd, and mode
"plateau" on the interval (X[n/2], X[(n/2) + 1]) if n is even. Thus, if we choose
6 such that

(3.14) Po[-b . X, . 6] > 2

it follows that

(3.15) Po[-6 . mode (plateau) of u (0) _ 6 a.a. n] = 1,

which implies the uniformity in (3.11) or (3.12). It remains only to verify (3.2).
If 0 _ 0 (0 . 0 is similar),

(3.16) E0u1(0) = 2{OPO[Xi . 0] + J xdPo(x)}-0

< 0{2PO[X, > 0] - 1}

. 0.

The first inequality is strict if Po[O < X1I < 0] > 0 and the second is strict if
PO[Xj > 0] < 1/2. Thus PO[X, > 0] < 1/2 implies supnQEouj(0) < 0. If
PJ[Xj > 0] = 1/2 then for all 0 > 0, PO[O < X, < 0] > 0 since otherwise
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the population median would not be unique. This again implies sup,Eoul (0) <0
since this expectation decreases monotonically in I0!. so (3.2) holds. Incidentally,
lEu1(0) .1I0sincelui(0) .101 whichshowsthatif b(0) = 101 then b(0)/IEul(0)!
is bounided away from () (and x, as seen in Section 2). thus verifying an earlier
remark.
Of course we saw earlier that Condition 2. based on semidominanee, and

Huber's conditions. based on compactification. each apply in this example.
The present method has the advantage, however. that we did not have to search
for normalizing functions b(0). integers k. or suitable compactifications. which
seems to be a great advantage in general. Even when dominance and Condition 1
apply the present method retains these advanitages. as illustrated by the next
example.
EXAMPLE 4. In the context of Example 1, let 0 = [0, cc) ,u = Lebesgue

measure, and

(3.17) f(-. 0) = (21 ) LI + l + 0 sin (x - 0)] if () <. _ 2 z

f(x, 0) = O otherwise, where 0 < a < I is a constant. We wish to show that all
approximate maximum likelihood estimators are strongly consistent, although
neither Wald's. Kiefer and Wolfowitz's nor Huber's conditions are satisfied
here. Fix 00 and r, and let

(3.18) Q, = [°. - r ]u[0o + r-. °°).
Sinceu(x,0) = logf(x.0) - logf(x.Oo) . log2(I + 00). (3.1)issatisfied,and
in fact, u is dominated on Q, Setting F Q, and Fm = rm = F r [0, m],Fm
is compact, u is dominated on 1m, and u is continuous so Theorem 2.4 implies
(3.9). To verify (3.12) note that log t is uniformly continuous on [1 -a, 1 + a],
that for any xi

(3.19) [1 + aO sin (xi-0)- [1 + a sin (xi -0)] _ + .

and that both terms in square brackets lie in [1 - a, 1 + a]. Therefore, given
any 6 > 0 there exists M > 0 such that 0 > M implies

1 n[ a0 0) 1
(3.20) 1log 1 + l+ sin (xi- 1)- -log i [1 + a sin (xi-0)] < 6

n =L J+0 i=1

independently of n and x1, x2, Thus for 0 sufficiently large, un(0) can be
approximated arbitrarily closely by a periodic function, uniformly in n and
x1, x2, , which implies (3.12). Finally (3.2) follows from the information
inequality and an easy limiting argument as 0 -* oc, so Condition 3 is satisfied
and all the AMLE are strongly consistent. Note that since dominance g holds
this implies Condition 1 holds, but this would have been difficult to demonstrate
directly.
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In Example 4, conditions (a)., (b), (c) of Bahadur ([1], p. 320) are satisfied,
but this is not immediately evident. The difficulty arises when trying to find a
suitable compactification, for the obvious one-point compactification [0, oo]
is not adequate. We must adjoin to E) = [0, xc) an entire interval of length
2ir. say, I = [-27, 0). Any 0 in ED can be uniquely represented as 0 = 2rn + r
where m is an integer and - 2,z . r < 0. Then the topology in 0 = 0 u I must
bedefinedsothat if{0n}C( )andn EI. On 0 ifandonly if mn o and rn - 0.

However, it has been pointed out to the author by Professor Bahadur that if
in this example (or more generally in Example 1) we redefine 0(P) P and
o _ 9 and consider the topology of weak convergence in Y, then there is a
natural compactification of Y°. namely the closure of Y in the set of all measures
on (.T, a) with total mass . 1. This is in fact the natural parameterization and
topology to consider in Example 1 since we are interested primarily in estimating
the underlying probability distribution. Using this parameterization Bahadur's
conditions (a), (b), (c) are easily verified in Example 4.
A similar situation occurs in the context of' Example 1. where 0 = (,u. a) and

f(x. 0) is the density of the normal distribution N(., a2 ) discussed earlier. Here
it is again difficult to find a "suitable compactification'' of the space E = the
open half plane {a > 0}. If, however. the natural parameterization 0(P) = P and
the natural compactification described above are considered. Bahadur's con-
ditions (a) and (c) are readily verified. Condition (b) fails. but as pointed out
earlier it can be replaced by the assumption of dominance with k = 2.

4. Necessary and sufficient conditions for strong consistency of AMWE

We now add some mild local regularity assumptions to the underlying
assumptions introduced in Section 1 and show that in this case our sufficient
conditions become necessary as well. Recall that E) is a first countable Hausdorff
space.
LOCAL REGULARITY ASSUMPTIONS S.
(a) E) is locally compact. so wve can choose { '(0o )} to be a compact base for the

neighborhood system at each O :
(b)for every P0 in -. u(x. 0; 0o) is locally dominated on 0 with respect to PO:
(c)for every P0 in Y and 0'in E). u(x, 0 : 00) is upper semicontinuous at 0' except

for x in a PO-null set possibly depending on 0';
(d) for each 0' in 0 there exists a decreasing sequence of subsets {Gm} =

{Gm(0' )}forming a base for the neighborhood system at 0' such that SUPGrn Un(0: 00)
is measurable for a.a. m and a.a. n;

(e) for every PO in 4, supv, EouI (O:, 0) = Ofor a.a. r.
Assumptions (b). (c), and (d) already appeared in Theorem 2.4. Assumption (e)
is a very weak local identifiability condition. Note that supv, Eoul _ 0 in any
case since u1(00; 00) -0. In the case of maximum likelihood estimation
(Example 1) (e) is always satisfied because of the information inequality.
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THEOREM 4.1. If assumptions Y hold, then (1.7) is necessary as well as
sufficient for the strong consistency of all AMWE.

PROOF. From Theorem 2.4 it follows that if S° holds then for every PO and r

(4.1) APO[s) u (0; 00)-] = 1

so that SUPV, wn(0) is finite for almost all n with inner probability one and

(4.2) AP0 [lim sup sup u"(0; 00) < 0]
n - oo Qr

= *P0[lim sup {sup un(0; 0o) - sup un(0; Oo)} < 0]

nfoo Qr V,

Suppose that (1.7) is not satisfied. Then for some PO and r the first term in (4.2),
hence the last term, is < 1. Let 00 = 0(fo) and Qf = Qfp(O). Now for every
sample sequence (xI, x2, ) such that

(4.3) A = lim sup {sup wn(0) - sup wn(0)} _ 0

there exists a sequence of integers ni -- a such that

(4.4) sup Wni(0) - sup Wni(0) - 2 . 0 as i -se
O; VI

so there exists a sequence of points {0nj} c Q, such that (see (1.4)) H(supe Wni (0),
Wn(Oni)) - 0 as i - oo. Now choose an AMWE sequence {Tn(x,, -, x.)} in
such a way that Tn,(xl, * *, xni) = Oni for all sequences (xI, x2, ,) for which
A _ 0 (such a choice is always possible since we are not concerned with measura-
bility of Tn). Then {Tn} is not strongly consistent under PO since

(4.5) *PO[Tn in Vp a.a. n] . *PO[[ < 0] < 1.

Q.E.D.

This result therefore implies: if assumptions 9 and Y hold then Condition 1 is
necessary and sufficient for strong consistency of all AMWE, and if assumptions
1 and Y hold then Condition 3 is necessary and sufficient for strong consistency

of all AMWE.
These statements can be strengthened if we add the natural global

IDENTIFIABILITY ASSUMPTION X For every PO in , Eou1 (0; 00) < 0 if
0 6 00.

Clearly this is weaker than (3.2) and is therefore a necessary condition for
strong consistency of all AMWE. In the context of Example l it simply states that
if 0 + 00, then the two underlying distributions must be distinct. We now
show that the necessary and sufficient condition (1.7) can be weakened to:
for every PO there exists an rO = r(PO) such that

(1.7') *PO[lim sup sup un(0; Oo) < 0] = 1.
n-°°x
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THEOREM 4.2. If assumptions Y are satisfied then (1.7) holds if and only if
(1.7') and X' hold.
PROOF. Assume X and (1.7'). For any PO and r choose an open neighbor-

hood U of 00 such that U c Vr r Vro and let W = Vro - U. Then

(4.6) sup u (0; 00) _ max [sup u (O; So), sup un(O; 00)].
Now W is compact so by Theorem 2.4

(4.7) -P0[SUP un(0; Oo) -. sup Eou(0; 00)] = 1
w w

However Eou1(0; 00) is upper semicontinuous and thus achieves its maximum
over W so supwEoul(0; 00) < 0 (by J which implies (1.4)). The converse is
obvious. Q.E.D.

Therefore if assumptions Y and X hold, the phrase "for every PO in X and
every r _ 1" can be replaced by the phrase "for every PO in Y there exists an
rO = r(PO) such that" in assumptions -9, 1, Conditions 1, 2, 3, and (1.7), every-
where they appear in this paper.

Lastly, notice that if 9 holds and in addition 0 has a compact countable
base for its topology (another global assumption) so 9) is second countable,
then any open subset of 9 is a-compact, in particular each Qr. Using the ideas
of Theorem 3.2 this enables us to weaken slightly the uniformity assumption V:
the convergence in (3.12) is satisfied, so only the uniformity must be verified.

5. Relation to LeCam's condition for strong consistency

In Section 2 it was shown that the conditions of [1], [4], [7], [8], and [11],
based on compactification of E. all imply either Condition 1 or 2. The conditions
of LeCam ([9], pp. 302-304) are not based on compactification but rather on
a form of dominance by Bochner-integrable random variables. We generalize
LeCam's conditions slightly by introducing the following definitions. (The
notation is that introduced in Section 2.)

DEFINITION 3. Let B(F) denote the Banach space of all bounded real-valued
functions on F with the usual sup norm. We say y(x. 0) is Bochner-dominated on F
with respect to P if there is a positive integer j and a function v(O)
v(x1. , Xj,O) mapping a x axY into B(F) such that

(i) v is a strongly measurable mapping (with respect to the product a-field
x *.. x d),

(ii) || v supr Iv(O) I is integrable,
(iii) for all (x1, x) in a set of probability one, yj(0) < v(0) uniformly for

o in F.
lVe say y(x. 0) is Bochner-dominated by 0 on F if in addition

(iv) supr Ev(0) < 0.
Note that (i) and (ii) together are equivalent to Bochner-integrability of v. (For
a definition of the terms used here see [6], also [5] and [9].) Also note that v
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can be assumed to be a symmetric function of x1, * , xj (see the remark after
Definition 1). Further. notice that (ii) implies -o < supf- Ev(O).
DEFINITION 4. y(x. 0) is semi-Bochner-dominated (semi-Bochner-dominated

by 0) on F ?vith respect to P if there exists a function b(O) defined on F.
() < b(0) < oc. such that y(x. 0)/b(0) is Bochner-donminated (Bochner-doninated
by 0) on [ and infr b(0) > 0.
LeCam's conditions for strong consistency of AMWE, in generalized form.

are obtained from our Conditions 1 and 2 by replacing "dominated" by
*'Bochner-dominated"' throughout. The following result shows that these con-
ditions are in fact equivalent:
THEOREM 5.1. y(x, 0) is Bochner-dominated on F if and only if it is dominated

on F. Similarly. Bochner dominance by 0( domswinance by 0. sem.i-Bochner domin-
ance - esetnidoiinance. and semi-Bochner dominance by 0¢>.semidominance
by 0.

PROOF. WNe prove the second equivalence only: the other proofs are similar.
If y is dominated by 0 on F. let j = k and v(xl. . xj. 0) = s(x1. . Xk).
Clearly v is a strongly measurable mapping into B(F). Since s may be chosen
such that -o < Es < 0, (ii). (iii), and (iv) are satisfied, so y is Bochner-
dominated by 0. Next suppose that y is Bochner-dominated by 0 on r. Letting

I n-1
(5.1) v.(0) = - E V(xi,j+ I . (iX+. j, 0)n

it follows from the Strong Law of Large Numbers (SLLN) for Bochner-
integrable random variables taking values in a Banach space S that

(5.2) P[sup Iv,(0) - Ev(0)I 0] = 1.

(See Beck [2] or Hans [5]). In stating the SLLN they assume that the Banach
space S is separable. However, even if this is not the case-for example, if
S = B(I)-strong measurability implies that v is almost separably-valued
([6]. p. 72) so the range of v lies in a separable closed linear subspace of S.)
Therefore

(5.3) P[sup v(0) -+ sup Ev(0) < 0] = 1.
F r

(By Criterion 4 of Hang [5]. strong measurability implies that v"(0) is Borel
measurable so sup, vn(0), being a continuous function of v,(0), is also Borel
measurable, that is, a random variable.) However, we apply Theorem 2.2 (ii)
with yn(0) replaced by vn(0) to see that there is an integer m _ 1 such that
E supr vm(0) < 0. Thus Definition 1 is satisfied if we take k = mj and
(X1,!*'*Xk) = SUPrVm(0).

I wish to thank Professors R. R. Bahadur. Robert Berk. and Lucien LeCam
for helpful suggestions at various stages of this work.
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