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1. Introduction

This paper is concerned with behavior of the Law of Iterated Logarithm
(LIL) type for sample ps-tiles, p,n > 0, when pn I 0. The results are all stated for
uniformly distributed random variables, from which they may easily be trans-
lated into results for general laws.

Let X1, X2, * * - be independent identically distributed random variables, uni-
formly distributed on [0, 1]. Let T"(x) = {number of Xi <x 1 _ i _ n}, so
that n-1Tn is the right continuous sample distribution function based on
X1, X2, * * *, X.. Define the sample ps-tile Z.(p.) as min {z: T (z) _ np4}. This
makes Zn(Pn) = npn-th order statistic when npn is a fixed integer. (When npn -+ oo
our results do not depend on the choice of definition of Zn (Pn) in cases of
ambiguity.)
The earliest nontrivial result in this area, due to Baxter [2], is that, for any

positive constant c,

(1.1) lim sup Tn(c/n) log log log n(log log n)1 = 1, wp 1.
n

On the other hand, it is trivial (and a consequence of Theorem 2 herein, with
k = 1) that
(1.2) lim inf T. (c/n) = 0, wp 1.

n

We thus no longer have the symmetry in asymptotic behavior of positive and
negative deviations of Tn(Irn) - ETn(7En) that prevails when irn is constant; in-
deed, why should we, when nTn(c/n) is asymptotically Poisson rather than
normal'?

This difference in behavior means we will have to state results for the two
directions of oscillations separately, and (since the analogue of (1.2) will not
always be so simple to state) dictates a choice of nomenclature which we had
best introduce at the outset: to eliminate possible confusion with reference to the
two directions of oscillation, we drop the usual "upper or lower class" LIL terms
completely, replacing these by "outer or inner class" for sequences {fn} beyond
which Tn (7rn) moves (in a direction away from ETn (irn)) finitely or infinitely often
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with probability one. Then, "top or bottom" bounds will refer to the most or
least positive oscillations of Tn(7it). Thus, for example. {f, } is a bound of top
inner class if f, > n7r, and T (7t) > f, i.o. with probability one. If {(1 + 8)gf}
gives top bounds of the two classes, we shall for brevity simply call {If. a top
bound. (If, as when 7c,, is constant, this yields too gross a result for T, we would
instead specify a top bound on T,1(7r) - nic,.) Thus, log log n/log log log n is a
top bound for Tn(c/n) in Baxter's case mentioned above. Bounds for Zn(Pn) are
described similarly. Of course, top bounds for Z,, are related to bottom bounds
for Tn and vice versa, by the well known relation

(1.3) Tn(n.) _ kn - Z.(k,/n) < 7rn,
which follows from the definitions.
The proofs of the present paper employ standard techniques and estimates of

binomial probabilities, and we have sometimes introduced inessential assump-
tions to maintain simplicity and brevity. The results are mainly about first order
deviations of Tn or Z,, from their expectations; while some "strong form" results
are known, with few exceptions (for example, Theorem 1) they entail much
longer proofs and I do not presently know the conclusions for the full spectrum
of sequences {i,n} considered herein. Theorems 1 and 2 cover the behavior of
Zn(k/n) with k fixed; Theorem 5 covers the domain of normal limiting behavior
and resulting classical LIL form for Tn(7tn), and Theorems 3 and 4 cover the
behavior in between these two extremes, including Baxter's case; Theorem 6
translates some of the conclusions for Tn into conclusions for Z,
We now mention work related to that of the present paper, other than that

of Baxter described above. Bahadur [2] used his relation between the Zn and T"
processes to obtain the LIL for Zn(P) with p fixed from the classical LIL for bino-
mial Tn(p). The same method can be used to obtain the strong form of inner and
outer classes [6]. While the classical techniques of Theorems 5 and 6 herein also
yield the LIL for Zn(P) (the main departure from the usual LIL proof for T"(p)
being that one is now led by (1.3) to the LIL for Tn(Pn) for varyingpn), Bahadur's
technique provides a great saving of effort when it comes to the strong form.

Eicker [4] obtained top outer bounds (analogous to (1.1)) for Tn(irn) when
7Cn 4 0 and n7rn/log log n - c, but not bottom outer bounds, and also obtained
both inner bounds. This is the domain treated in Theorem 5 of the present paper,
where the usual binomial-normal LIL form holds. Eicker's inner class proof
follows essentially the classical lines which are therefore sketched only in brief
outline herein; this proof applies also to certain cases where 7r, is bounded away
from zero and one. His top outer bound proof uses fine estimates of the prob-
ability that the Tn process exceeds certain polygonal bounds; our proof, while
much more routine, is considerably shorter, and treats also the bottom outer
bound.
Robbins and Siegmund [10] have just announced the use of an interpolating

process and the derivation of probability estimates for ever exceeding certain
bounds (in the spirit of their earlier work with sums of random variables), in
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obtaining strong top bounds for the first order statistics Zn(l/n). Our Theorem
2 with k = 1 states only the first order term of this strong form.

In [1]; [6], [7], and [8] relations between the Tn(p) and Zn(P) processes were
studied (with respect to varying p as well as n). For example, in the spirit of [1],
one thereby obtains in [8] (where some of the results of the present paper were
also described) the strong form for supo <, p c Zn(p) - p oscillations from the
corresponding sample of distribution function results of Chung [3]. Large de-
viations of either these processes or of their difference, over the domain
o < p < pn, 0. are related to the present results and will be treated elsewhere;
some such considerations have appeared in the work of Chibisov. LeCam. and
others. Also related are the numerous papers on weak laws for order statistics,
about which we mention only the appearance therein, not surprisingly, of the
"fundamental equation" (2.24) which arises below. (See, for example, [9].)

Section 2 contains definitions and relevant binomial tail probability esti-
mates. Statements of the main results are contained in Section 3, along with
proofs of the simple first two theorems. The remainder of the paper contains the
other proofs.

2. Preliminaries

We shall use i.o., f.o., and a.a.n. in their customary meaning of infinitely
often, finitely often, and for almost all (all but finitely many) n. We treat events
indexed by the natural numbers {n} or a subsequence {nj}, and the usual ex-
pressions of limiting behavior (-+, -) or of order (such as O(z(n)) or o(g(j)))
refer to behavior as n - + oo orj -j + oc. The symbols T 4 are used for mono-
tone, not strict, approach.
We let log1 denote the natural logarithm and logj+1 = log logj. Also,

log,x = (logjx)i. In summations and other appearances of such an expression
as logjn, the domain of n is understood to begin where the expression is meaning-
ful.
We shall try to reserve 7tn for the argument of Tn and Pn for that of Z,n with

kn > 0 being used for bounds on T,. We define Tf,,,n2 = Tn- Tn,, the observ-
ation counter based on X,, + 1, . Xn2. Limiting behavior will often be con-
veniently described in terms of

(2.1) hn = nxn/log2n, Hn = npn/log2n.
Either of the Borel-Cantelli lemmas is denoted by BC.
We use int {x} to denote the largest integer < x, and int + {x} for the smallest

integer > x.
When we consider a subsequence {nj} of the natural numbers, we write

(2.2) Ii = {n: nj < n . nj+ } and Ij = {n: nj < n < nj+ }.

We write mj = nj - nj-. The two subsequences {nj} we shall consider, with
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typical estimates they imply, are

nj - A' where A > 1, mj/nj - (A- 1)/A,

(2.3) log2 nj log j,
and, for a > 0,

ni - e'Jlogj mjlnj = 1 -0(j-"),
(2.4) log2 ni - logj.
Much of our treatment can be carried out in terms of very simple events,

essentially as employed in [2] for top bounds on Tn. Suppose nrn I 0 and kn T,
and let

(2.5) An= {Tn(7r) _ kn}
Let {nj} be any increasing sequence of natural numbers, and define

(2.6) B; = {Tnj nj + I (nj + X) _ knj + X

and

(2.7) Cj = {Tj+,(ni) < knj}
Then, since Tn(7r) is nondecreasing in n and xt, and irn 1, kn T'
(2.8) Cc {Tn(rn) < kn, n eIj},
and hence
(2.9) {C;, a.a.j} = {An f0o.}, wp 1.

In the other direction, obviously

(2.10) {B; i.o. = {An i.o.}, wp 1,

the events of (2.6) of course being useful because they are independent.
We shall see that, in the top outer class proofs ofTheorems 1 and 3, we can even

avoid the use of subsequences as employed in [2] and in "normal case" proofs
such as that of Theorem 5 below, and, as an alternative, work with the events

(2.11) An = {Xn-< irn, Tn-I(n) _ kn- 1}

As long as 1 _ kn T and 7rn 40, it is evident that

(2.12) {An i.o.} => {An i.o.}, wp 1.

Similarly, if nin 4 and kn T, for bottom outer bounds on Tn we use

(2.13) {Tnj(irnj+ ) < kj+ , f.o.} => {Tn(nn) < kn f.o.}, wp1.

The bottom inner bound treatment is only slightly less simple. If

Qj= {Tn,nj+X(rnj+l) _ knj+X - Yj},
(2.14) R = {Tnj(irnj) > Yjl,
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where the yj are arbitrary nonnegative values, then

(2.15) {Q; i.o.} n {Q;R; f.o.} = {Tj+1(Irnj+1) _ k"..1 i.o.}, wp 1.

In fact, in the simple first order proofs of Theorems 2 and 4 it suffices to take
Yj = 0, and to show P{R; f.o.} = 1 for the second half of the left side of (2.15).

In using the simple devices of (2.5) through (2.15) we require (in addition to
2nt I 0) knT. This is not always too convenient: as described below the statement
of Theorem 3, for given {irnl the natural formula for a bound kn in terms of r,,
in Theorems 3 and 4 may not yield a monotone kn. However, in such cases we
will be able to replace the nonmonotone {kn} by a sequence {k*} such that

(2.16) kT, kn = [1 + O(l)]k.,
and then use the appropriate device of (2.5) through (2.15) on kn; by virtue ofour
considerations being first order (so that we prove (1 + s)k' lies in the appropriate
class), {kn} is then by definition in the same class as {k*}.
The study of sequences {nn} for which rnn is not monotone, or for which the

technique of (2.16) fails, is more complex, requiring in place of (2.5) through
(2.15) calculations which are somewhat similar to those stemming from (4.18)
and (4.19) in the proof of Theorem 5. We omit such cases. It is obvious that
bounds for some {Inr, for which the departure from monotonicity is slight enough,
may be obtained from those of majorizing and minorizing monotone sequences
when corresponding bounds for the latter sequences coincide.
To give a little relief from the burden of memory or page turning, we shall

reserve further definitions until they are encountered in the proof of Theorem 5.
We now list our binomial estimates. In Theorems 1 and 2 we consider Zn(k/n)

with k fixed, and require only the following simple and familiar estimates ([5],
p. 140) for nonnegative integral k:

(2.17) lim sup nirn <k >
n

log P{Tn(7rn) _ k} - 0(1) = log P{Tn(n) = k}

and = klog (n7r) -n7rn-log(k9!) + o(1).
(2.18) {1rn = o(n112), lim inf n7in > k >

n

log P{TT(ir) _ k} - 0(1) = log P{TT(nrn) = kF
= klog (nrn) - n7rn - log (k!) + o(l).

In the domain of Theorems 3 and 4, we must take account of the fact that
kn xo. Writing N

b(z, N, P) = () PZ(1 - P)Nz, z integral,

(2.19) B(z, N, P) = E b(y, N, P),
ySz

B+(z, N, P) = Y b(y, N, P),
y2z
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we state the required binomial estimate as
LEMMA 1. Suppose NX ,PN °,ZN-~ + occ If

P o(N- 1/2) ZN = o(N 2).
(2.20) lim sup NPN/ZN < 1,

then

(2.21) log B (ZN, N. PN) = ZN[log (NPN/ZN) - (NPN/ZN) + 1 + 0(1)].
Moreover, (2.21) holds with B replacing B+, provided the last condition of (2.20)
is replaced by lim infN NPN/zN > 1; and the right side of (2.21) equals log
b(int+ ZN, N, PN) or log b(int ZN, N, P), even without any third condition of (2.20).

PROOF. The last condition of (2.20) implies that B + /b is bounded ([5], p.140).
Putting z' = int+ ZN and writing out log b(z', N, PN) and using Stirling's approxi-
mation, we see that the first condition of (2.20) allows us to neglect NPN +
log (1- PN)N, the second allows us to neglect log [Nz'IN(N - 1)... (N - Z' + 1)],
and the two together imply ZNPN = o(l) and thus allow us to neglect
z' log (1 - PN). Since ZN - Z' and also we can absorb log z' into the o(l)ZN
term, we obtain (2.21). The result for B is obtained in the same way.
We now specialize the parameter values in Lemma 1, as used in the proofs of

Theorems 3 and 4. Firstly, as we shall explain after Theorems 1 and 2 where k"
is bounded, we subsequently insure that ki, is unbounded by assuming

(2.22) lim inf [log (nnj)/1og2 n] > 0
n

in the top bound considerations for Tn(7t,) of Theorem 3, and

(2.23) lim inf [nit,/1g2 n] > 1
n

in the bottom bound considerations of Theorem 4.

Secondly, in the domain where (2.22) or (2.23) is satisfied and where also
7Cn = O(n- ' log2 n), the bounds on Tn(irn) are described in terms of the solutions
of a certain transcendental equation.

The fundamental equation. We consider the solutions, for c > 0, of the
equation

(2.24) ,B(logf, - 1) = (1 - c)/c.

The left side of (2.24) is convex in ,B > 0 and attains its minimum value - 1 at
,B = 1. Hence, (2.24) has a solution/3B > 1 if c > Oanda second positive solution
/3t < 1 if c > 1. For future reference we note that fl' is decreasing in c while
/c3lis increasing, and that

(2.25) c --->
°°
<= , o fc c-'/log c-' +x,c c,Bc - I/log c- 0;
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cII.3l" -l0 =1>,BC/ (c- 1)/log (c - 1)-. c,3 -.0;

Finally, on either part /B < 1 or ,B > 1 of (2.24), d(c/3)/dc = (/3 - 1)/log /3 > 0.
We now state the specialization of Lemma 1 used in proving Theorems 3 and

4. Recall the definition (2.1) of h,
LEMMA 2. Suppose n -. oo. irt, -O0. hn = 0(1), and that (2.22) is satisfied. Let

{p,,} and {dn} be sequences of positive values which are bounded away from 0 and
oo and for which npn is integral. Assume

(2.26) lim sup Pn/dnf/h < 1,
n

where 3,S is defined below (2.24). Then

(2.27) log P{Tnp,(7rn) > dnnhnfh log2 n}

= {- ddn + hn[d. - p,. - dn/3h, log (dn/pn)] + o(l)} log2 n;

moreover, log P{TnPn(7t1) = int+ [dn,hn#h3 log2 n]} satisfies the same relation.
If (2.22) and (2.26) are replaced in the above by (2.23) and

(2.28) lim inf Pn/dn#h/ > 1.
n

then

(2.29) log P{TnP(rn) _ dnhn#h'n log2 n}

= {- dn + hn[dn - Pn - dn#h3Jlog (dn/Pn)] + o()} log2 n.

PROOF. We shall demonstrate (2.27); the proof of (2.29) is almost identical.
We put N = npn, PN = 7tn. ZN = dnhn#hn/ log2 n in Lemma 1. Then ZN -*+±x
unless there is a sequence {nj} for which hn- 0 and h,Bh, = O(1/log2 ni),
which by the first line of (2.25) would entail 1/log h-j1 = 0(1/log2 nj); this last
is contradicted by the fact that (2.22) (with hn- 0) implies log h-1 = o(log2 ni);
we conclude that ZN - + oo. Next. hn = 0(1) implies the first condition of (2.20)
as well as ZN = O(log2 n) = O(log2 N), and this last yields the second condition
of (2.20). Also, NPN/ZN = Pnl/d,/h,, so that (2.26) implies the last condition of
(2.20). Thus, Lemma 1 applies, and substitution into (2.21) gives

(2.30) dnhnflh/ - log 3hn + 1 - l/llh + log (Pn/dn)
+ [1 - pn/dn//ln ± o(l )} log2 n.

Since the first three terms in braces in (2.30) sum to - l/hnflh by (2.24). and
since d,hn3hno(l) = o(l), we obtain (2.27).
When hn -. oc, the approximations of Lemma 2 are insufficient, and we need

the normal approximation instead. This tool is also well known: a careful reading
of Feller ([5], pp. 168-173, 178-181) shows that the development there actually
applies with only minor and obvious modifications when UrN -. 0 sufficiently
slowly, and we state this result as
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LEMMA 3. If XN = (kN - NtN) [N7EN(1 - tN)P"12, then

(2.31) {N -
, XNX + ± 00. XN[NAiN(lI -7tN)] -° O} >

B (kN, N, 7rN) = (2nt) 1/2xexp {-42[1 + o(l)]/2}.
(Feller's expression [5], p. 181, (6.11) for the 1o(1)xX2 term in (2.31) is also
correct under the present conditions: it is conveniently expressed as

(2.32) 4o(l)xN = 6(27tN - 1)XN7[AtN(l - 7UN)l / + O(XN [N7tN(1 - ltN)])

for use in other limit laws, but this will not be required herein.)
Finally, we shall also use the elementary faet that

(2.33) infB+(Nit - 1, N. 7r) > 0:
N,i

the "bad case" where the Nit - 1 is required rather than Ni is of course N -, 0.

Nit I 0. Similarly,

(2.34) infB(N ± 1,L N. it) > 0.
N, t

In each of these expressions we include zero in the domain of N: both prob-
abilities are then one, corresponding to the interpretation b(O. 0. it) = 1 which
is appropriate in the application.

It seems essential that the proofs, as carried out in the present paper. be
divided into the several cases as treated. For, the estimates of' Lemma 2 are
useless in the "normal" case of Theorem 5, just as those of Lemma 3 are useless
for proving Theorems 3 and 4. Again, the geometric {nj} of (2.3) is inadequate
in the inner class bottom bound proofs of Theorems 2 and 4. where (2.4) is used.
but the latter cannot be used in the corresponding outer class proofs: in Theorem
5 we again use geometric {nj} where, also, it is impossible to avoid using sub-
sequences by using (2.11) and (2.12) as in parts of Theorems 1 and 3. (For certain
strong form results, other sequences {nj} must of course be considered.)

3. Main results

The short proofs ofTheorems 1 and 2 will be given in this section, but proofs of
the other theorems stated in this section will be deferred in favor of discussion
here. For bounded top bounds on Tn(7t,) or corresponding bottom bounds on the
kth order statistic Zn(k/n) (k fixed), the situation is completely known [8]. and is
elementary to verify. We forego the artificial generality of bounded but varying
kni or oscillatory n7tn. and state the result simply as
THEOREM 1. If k is a positive integer and nitn 10, then

(3.1) P{Tn(ni) _ k i.o.}
P(Z(kn)< r, 10. =

00->o > nk-I 7k{Zn(k/n) _ it, i.o } = {I}En itn
(so 00 =

n

(so that log [nZn(k/n)] has
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(3.2) -k- {1og2 n + 1og3 n + + (1 + E) logj n}

as bottom outer or inner bound, depending on whether E > 0 or E . 0).
PROOF. Outer class. By (1.3) we are concerned with the events An of (2.5),

with kn = k. The geometric sequence {nj} of (2.3) can be used with (2.7) and (2.9)
to give a proof, in standard manner. However, we emphasize the simplicity of the
present case by giving a proof without a subsequence. using the events {An} of
(2.11) with kn = k and the relation (2.12). If the series of (3.1) converges., then
BC and the estimate (2.17) with k = k - l imply P{A' i.o.} = 1.

Inner class. Let nj = 2i. Since n7tn 4.0, divergence of the series of (3.1) implies
divergence of 1j(nj7tnj)k. The estimate (2.17) for P{Bj}. BC. and (2.10) complete
the proof of Theorem 1.

In view of Theorem 1, our further concern with top bounds kn on Tn(7 n) is
with the case k- + oc. Thus, 7tn should be such that the series of (3.1) diverges
for each fixed k. This is obviously the case if (2.22) holds, but not if lim supn
[log (n7r,)/log2 n] < 0. Hence, ignoring oscillatory behavior where neither of
these holds, we hereafter assume 7rn satisfies (2.22) in discussing these top bounds.
This condition is used in order to apply Lemma 2 in the proof of Theorem 3.

Even the first order lower bounds on Zn(k/n) in Theorem 1 depend on k. and
thereby exhibit quite a different behavior from the upper bounds, to which we
now turn.
THEOREM 2. If k is a positive integer, then

(3.3) P{nZn(k/n) > (1 + E) log2 n i.o.} = if e 0.

PROOF. Outer class. By BC, (1.3), and (2.13) with kn = k. it suffices to show
that, for d > 1, there is a A > 1 for which P{Tnj(dn +-i log2 nj+1) . k - 1} is
summable, where nj = int Ai. But, by (2.3) and (2.18) this probability is

(3.4) exp {(k- l)log [d2' logj] - dA' logj + O(1)},

which is summable if 1 < A < d.
Inner class. We now put nj = int {eoJlogi} with ot > 0. Then, by (2.4) and

(2.18),

(3.5) P{Tj,j,+1(n-+'i log2 nj+1) _ k - 1}
= exp {(k - 1) log3 nj+1 - [1 - O(j)] log2 nj+1 + O(1)},

whose sum diverges. By (2.14) and (2.15) with yj = 0 and kn, = k - 1, the proof
is completed upon computing, again from (2.4) and (2.18) (now with F = 0),

(3.6) P{T3j(n -+1 log2 nj+ 1) 1}
= 1 - exp {-O(1)j- log2 nj+1 + 0(1) = O(j-2 logj).

REMARKS. In (2.15), {Q' i.o. wp 1} is essentially automatic in this case, and
it is the event {Q*R* f.o. wp 1} for which geometric nj - Ai is inadequate. With
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nj as chosen in the proof and a > 1, not merely {Q;R f.o. wp 1}, but even
{R* f.o. wp 1} is satisfied: however, in strong form analogues one cannot always
be so cavalier.

In view of Theorem 2. our further investigation of bottom bounds kn on
Tn(7Et), with kn ` +±c. will be made under the assumption (analogous to (2.22))
that (2.23) holds. This will be discussed further, just after the statement of
Theorem 4.
We now turn to the domain of behavior between that of the kth order statistic

(fixed k) and that of "normal" LIL. This includes Baxter's case. We recall the
definition (2.1) of hn
THEOREM 3. Suppose 2t40I, (2.22) is satisfied, hn = 0(1), and that there is a

kn satisfying (2.16) for kn = hn,Bf& log2 n. Then

(3.7) lim sup Tn(7rn)lhnZ#hn log2 n = 1 wp 1.
n

In particular, if tn IO°, a top bound k* on Tn(irn) is given in various ranges of 7cn by:
(3.8) hn +c> 0= kknC=cflog2 n:

(3.9) hn -0 and log2 n/log h gn T +
° k* gn;

in particular,

kn = log2 n/log3 n if log (nzt) = o(log3 n),

(3.10) kn = log2 n/(B + 1) log3 n if 7, - An-' log-B n, B > -1,

kn = log2 n/log (nmn)V' if 10o2 n/log (n7rn) + ,

1og3 n/log (nmn) - 0.

The use of (2.16) here and in Theorem 4 is not as unnatural as it may first
appear. For example, with the positive constant c near zero in Theorem 3 or
near one in Theorem 4, and hn = c + (- 1 )/3n log n log2 n, we have 7n ,

hn- c (and, in the case of Theorem 4, even n7rn T); but the "natural" ki givenin
the denominator of (3.7) or (3.11) is not monotone, which of course kn=
cfic log2 n is, and the conclusion of each theorem is still valid. The particular
cases of (3.8), (3.9), (3.10) have been stated in terms of a simple increasing kn
rather than hn,fhn log2 n - log2 n/log hn-.
We also note that, in both Theorem 3 and Theorem 4, hn of exactly order one

does not imply that lim hn exists. One can obtain 1 < lim infn hn < lim sup, hn <
+ oc while 7Cn 1, nrnT, and even the "natural" kn t (discussed in the previous
paragraph), by letting h,+1 - hn take successive blocks of positive and negative
steps of size E/n log n log2 n with E sufficiently small.
THEOREM 4. Suppose 7rn 10, (2.23) is satisfied, hn = 0(1), and that there is a

k* satisfying (2.16) for kn = h,,fl3, log2 n. Then

(3.11) lim inf Tn(7rn)/hn#h,. log2 n = 1 wp 1.

In particular, if 7,n I°0,
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(3.12) h- c > I => kn =c C' 0log2 n
is a bottom bound on Tn(7)
By putting hn = 1 + 3 with 3 > 0 in (3.12), and then letting 3 -O 0 and using

the third line of (2.25), we obtain that (in a case where (2.23) is not satisfied)

(3.13) lim sup h, . 1 nlim inf T7(nX)log2 n = 0. wp 1.
n n

In fact. when hn=- 1 we can use (3.4) or (1.3) and (3.3) with k = I to obtain

(3.14) 7t, = n-' log2 n => lim inf T,(7in) = 0. wp 1.

Since we shall see that the behavior of cfl,as c -O Gin (2.25) yields the top bounds
(3.8), (3.9), (3.10) as h- 0. it is tempting to try to use the third line of (2.25) to
obtain seemingly analogous bottom bounds in terms of hn- 1 I.0 However, the
latter are less accurately viewed as first order results in hn- 1 than as second
order results in hn. which cannot be obtained from the behavior of cf3' as c I1
without more effort. because of the failure of (2.23). We do not have complete
results in this domain. and shall not discuss it further except to mention here, as
an example of what is involved in the subdomain of smallest values of hn- 1 of
interest. that the determination of which sequences hn- I of the particular form
L lg3 n/log2 n (L constant) continue to imply the conclusion of (3.14) when
hn 1 1. requires a more delicate argument than that used in proving Theorems 2
an(d 4. (Of course. the strong top bounds on Zn(1/n) [10] imply this second order
consequenee. but yield nothing about sequences hn- 1 which vanish more
slowly.)
We now turn to sequences {7} which vanish slowly enough that "normal"

LIL behavior prevails. Of course, we may write Irn(l - 7rn) - 7tn.
THEOREM 5. If 7r I0. hn +X and n7, t, then. for either choice of sign.

(3.15) lim sup ± [Tn(irn) - n7rj [2wEn log2 n] = 1. wp 1.
n

REMARKS. The assumption that n7rn is nondecreasing. although natural
enough, is not essential. but is used to simplify the outer class proofs. For
example, if nLt,n is increasing for any positive value L. it is only necessary to put
nj - (1 + £/3 )2j/(L+ 1) to use the same proof. However. if n7tn oseillates too inuch.
the right side of (4.14) need not be bounded away from zero. and a longer proof
is needed. It will be evident that only minor changes in the proof are required to
cover various other cases, for example, 7rt, I 7to > 0, in which case the coefficient
of log2 n in (3.15) must of course be altered to 2n7t0(1 - 7r0). It will be seen that
the inner class proof does not use monotonicity of 7rn or of n7r. Eicker points out
that his inner class results apply to more general sequences of sets than [0. 7rn]:
here, if Jn is a subset of [0, 1] of Lebesgue measure 7t,, we consider Tn(Jn) =

{number of Xi in Jn, 1 < i _ n}. One must note, however, that such inner bounds
on Tn(Jn) may not be sharp if Jn moves too rapidly, and may even give the wrong
order. One need only cite the familiar example of Jn chosen so that the random
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variables T"(J") are independent, in which case + [Tn(Jn)- nir] has [2nir,
log n]112 as top bound under our assumptions on ire.

In (3.1) equivalent Tn and Zn bounds were treated, and (3.14) gives a con-
sequence of Theorem 2 for T.. It remains to translate the results of Theorems 3
to 5 into conclusions for the sample quantiles Z"(p") beyond the domain of
Theorems 1 and 2. For each positive value v, we define c' to be the positive
value satisfying the pair of equations

(3.16) f,BC (log Xv - 1) = (1 -cv)/Cv, cvcv =v
with /B' > 1. We define c" by the analogue of (3.16) obtained by replacing ,B'
by /B" < 1. The existence and uniqueness of c' and c" follows from (2.25) and the
sentence following it. We recall the definition (2.1) of H".
THEOREM 6. Suppose p, 0. If H, T + °O, then, for either choice of sign,

(3.17) lim sup ± [Z.(P.) -P] [2P.n1 log2 n] = 1, wp 1.
n

If 0 < v < oo and Hn v, then

CV = lim sup nZn(Pn)/1og2 n, wp 1

(3.18) c' = lim infnZ"(pn)/log2 n, wp 1

If Hn -* 0 (and npn _ 1 to avoid trivialities), then

(3.19) lim sup nZ,(pn)/log2 n = 1, wp 1;
n

while if hn ,0 and npnT + oo, then

(3.20) lim inf H, log [nZn(pn)/log2 n] = -1, wp 1.
n

REMARKS. As in the case of Theorem 5, the assumption H, T is stronger
than needed, but it is made to simplify the proof. Also, ifPn 1PO > 0, essentially
the same proof yields (3.17) with 2p. replaced by 2po(I -po). (Compare the
remarks below Theorem 5.) In particular, when p, = po we obtain the LIL for
sample po-tiles, but not the strong form [6], which would require considerably
more effort using the present route. Part of (3.17) was stated in [8] under un-
necessary restrictions. More satisfactory forms than (3.19) and (3.20) are
obviously related to strong forms of Theorems 3 and 4. As they stand, (3.19) and
(3.20) are also correct for the case p. = k/n of Theorems 2 and 1, and the gross-
ness of (3.20) as a description for the latter is evident.

Proofs of Theorems 3 through 6

PROOF OF THEOREM 3. In each particular case of (3.8), (3.9), (3.10), the
assumptions preceding (3.7) as well as the correctness of the stated k*" follow
easily from the first line of (2.25) and from the validity of (3.7), and we tum to
the proof of the latter.
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Inner class. Let E > 0 be specified, E < 1. Let ni -i '. Then mj - (I -s)nj
by (2.3). Hence, we can compute

(4.1) log PIdTj hnfl'n- log2 n.}

by using (2.27) with p,, - d 1 - E and with n replaced by nj in (2.27); here dn
is chosen so that (2.16) is satisfied, where kn = (1 - s1 dnhn,#3 log2 n. Note
that (2.26) is satisfied because (2.24) and (2.25) and hn = O(1) imply

(4.2) lim inffl' > 1.

Also, h,fl' is bounded, by (2.25). Hence, from (2.27), the expression (4.1) equals
-(1 - e)[1 + o(l)] log2 nj, so (2.10) and BC yield the desired result. (The last
clause of Lemma 1 indicates that we do not need to verify (2.26) for the above
half of the proof, but (4.1) is needed below, anyway.)

Outer class. As in the case of Theorem 1, there is a proof using (2.7) to (2.9)
with the ni of (2.3), which we omit in order to demonstrate the simplicity of the
situation by working directly with (2.12) and the A' of (2.11) with k" replaced
there by

(4.3) kn = dnnhnpJ log2 n,

and d - 1 -Es, small and positive, with dn chosen so that k' T and k' is integral.
By (4.2), for small enough E and with Pn = 1, (2.26) is satisfied. Because of (2.26)
(as used in (2.20)) we have for the event of (2.11) with k' for kn,
(4.4) log P{A'} = log [7inB+(k' - 1, n - 1, itn)]

log [7rnb(k' - 1, n - 1, Xn)]
= log [kn- Ib(kn, n, nn)].

From the previously obtained boundedness of hn,#h3, we have log kn = o(log2 n).
Consequently, from (4.4) and (2.27),

(4.5) log P{A} = -logn + {- (1 + E)
+ hn[e - (1 + C)AB. log (1 + E)] + o(1)} log2 n.

By (4.2), the quantity in square brackets in (4.5) is negative for E sufficiently
small (and positive) and for all large n. This, (2.12), and BC complete the proof.
PROOF OF THEOREM 4. Equation (3.12) follows from (3.11).
Outer class. Given E, small and positive, let dn be chosen so that dnh,,fh'. log2 nT

and dn -* 1 - E. Put nj Ai. Because of (2.13), we compute, using (2.29) with n

replaced by nj+ , and Pnj+ t= nj/nj+ I -

(4.6) log P{Tnj(7rnj+) < dnj+ hnj+ hnj+h l'hj+,10o2nj+lI
= -(i - s) + hnj+ X[1 - E _ (I - oflh,
log(A(1 - E))] + o(l)} log2 nj+1,

provided (2.28) is satisfied. Write lim infn h. = h. Since h > 1 by (2.23), the
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structure (2.24)-(2.25) of the functional equation implies that 1 < 1 -h,B
log #L' = h(l -,B'). Moreover, by the comment following (2.25) and the fact
that (,B-1)/log ,B < 1 for 0 < ,B < 1, we conclude that h - hp" increases in h.
Hence, h,(I - fl") > 1 + 26 for some 4 > 0 and all large n. Now let A > 1 be
chosen so close to one that )Ld/h < 1 (which yields (2.28)) and such that 1- A <

bl/(1 + 265). Regarding the expression in braces on the right side of (4.6), other
than the o(1) term, as a function of s > 0, upon expanding it in powers of 8
and noting that log A = 1 - A-' + 0 (82) we obtain

(4.7) - (1 - s) + hhi+l[l - E -
- (I - )#h",j+ (_£ + I + i- + 0(£2)]

=- (1 - £) + h~j+1(j - #.j+,)(1 - i-1 _ 8) + 0(£2)

< - (1 - 8) + (1 + 245)(-8 + &5/(1 + 245)) + O(82)

<- 1 - 45 + 0(£2).

Thus, for s sufficiently small and positive, the probability of (4.6) is summable.
Inner class. As in the proof of Theorem 2, we now use the nj = int {ejlogJ}

with a > 0, of (2.4). Hence, choosing dn -1 £- 8 small and positive and such
that dnAhB#n log2 nt, we obtain from (2.29) with nj+I for n and p,,j = mj/nj =
1 -ou-a)
(4.8) log P TjX j+i(7n+ l) _dn. + 1 h l,Bj+h" log2 nj+ l}

{ (1 + 8) + hAn+1[8 - (1 + 8)fl log (1 + 8)]
+ O(1)}log2nj+1.

(While the last comment in the statement of Lemma 1 implies that this half of
the proof does not require (2.28), the latter is in fact satisfied provided
(1 + ) -1 > lim supn #h",,, the last quantity being less than one by (2.24) and
(2.25) since hn = 0(1).) As in the outer class proof, we again have hn(I - 3hn) >
1 + 26 for some 4 > 0 and all large n, and consequently the expression in braces
on the right side of (4.8) is greater than -1 + 4s5 for 8 sufficiently small and
positive and for all large n. Hence, the probabilities of (4.8) have divergent sum.
In view of (2.14) and (2.15), it remains to compute

(4.9) P{Tnj(1nj+d) . 1} = 1 - (1 -7nj+l)
- (nj/nj+ )h.j+ log2 nj+
= 0(j a log j),

which is summable if a > 1. This completes the proof of Theorem 4.
PROOF OF THEOREM 5. Outer class. Given 8 > 0, put nj - (1 + s/3)j and

modify the previous notation by writing

kn(8) = n7r + (1 + s)[2n7rn log2 n]"2,
(4.10) Dn(E) = {T.(7r) _ k.(s)}, D;(s) = U D"(£).

nEIj
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The desired outer top bound result is

(4.11) P{D"(i:) i.o.} = 0.

The first step is common in such proofs. If we show that

(4.12) lim infP{D.j,1(F,/3) 1D*(s) > °,

then P{D"(e) i.o.} = P{D;(e) i.o.} = 0, by BC if P{D"j+1 (e/3)} is summable,
which it is by Lemma 3.
For brevity, we hereafter write kn for k"(s) (never for k,(#/3)). For v e Ij, we

define

(4.13) Gv = {Tv(7j+,) > krv.+,/7rv- 1}.

If the event DV(e) of (4.10) occurs, define the random variable N* by N*j =
min {n: Dn(E) occurs, n e Ij}. Clearly,

(4.14) P{D+j. (E/33) I D*()} = EP{D.J+ , (s/3) I D* (s); N*j; TN* (7N*)}
> inf P{D+1j(E/3)jTv(7r) = z}.

Since z k,veIf

(4.15) P{Dn,+1(j/3)ITv(7rv) = Z} _ P{G,Dnj.js/3)jTv(7v) = Z}

= P{Dnj+ (E/3)1 Gv; T,(7rv) = z}

*P{GvITv(7rv) = z},

we obtain (4.12) from (4.14) if there is a 6 > 0 such that, for all large j and
v e Ij7
(4.16) inf P{Dn.+1(/l3)lGv; Tv(irv) = z} > 6

and
(4.17) inf P{GvITv(7rv) = z} > 6.

The conditional probability of (4.17) is clearly
(4.18) B + (kvEnj + 1/7v- 1, Z, rnj+ i/rv),
which is a minimum for z = int+ {kv}. This and (2.33) yield (4.17).

Since 7rnj+, 7r , the probability of Dnj+ I(s/3) conditioned on values of Tv(7tv)
and T,(7rnj+ ,) is the same as that conditioned only on the last. Hence abbreviating
int+ {kirnj+1/irv- 1} by ,u, we see that the left side of (4.16) is at least

(4.19) inf P{Dnj(+8(/3)1 Tv(7tnj+ d) = y; Tv(ir') = z}

= inf P{Dnj+js(63)Tv(7tnj+,) = Y}
y2tp

= inf P{TV,nj+1(7rnj+l) _ knj+1(e/3) -y

= B +(knj+1(/3) - int+ + - 1}, nj+1 - v, irn+,).



242 SIXTH BERKELEY SYMPOSIUM: KIEFER

By (2.33) and the fact that int + {x} _ x, we will thus establish (4.16) if we show
that

(4.20) k"j.1(e/3) - [kv(E)7r.j,/zV - 1] . (nj+- v)-j+l 1

for all large j and v E Ii. Dividing both sides of (4.20) by snJ+ l and using (4.10),
we obtain that (4.20) is equivalent to

(4.21) (1 + s/3)nj+ 1 [2(1og2 nj+1)/nj+ 17rfj+1] 1/2 + 2iC-'1
_ (1 + e)v[2(10g2 V)/V171v2.

The ratio of 2ir-+ l to the term preceding it approaches zero. Also, nj+ 1x";+ l >
v7tv and nj+1(log1/2 nj+1)/v logl/2 v < nj+1(log2/2 nj+ )/nj log'/2 nj - 1 + e/3.
We conclude that (4.21) is satisfied for all large j and v E I7, completing the
proof of (4.11).
The proof of the outer bottom result is very similar, so we shall merely list the

changes. In (4.10) we replace (1 + E) by -(1 + s) in the definition of kQ(8),
and _ by _ in the definition of D"(£), as well as in the domain of z in (4.14),
(4.16), and (4.17). The event 0, of (4.13) is replaced by

(4.22) {Tv(ir"+,) _ kv7r.j+l/ltv + 1};

also, int+ is replaced everywhere by int. The probability (4.18) is replaced by

(4.23) B(kvir,j+1/7rv + 1, z, 7"j+ /v),

whose minimum subject to z < k, is at z = int {kJ}; this minimum is bounded
away from zero, by (2.34). Finally, in (4.19) y becomes int {kvirj+ 1/7Ev + 1},
and the domain of the first infimum is {y _ z _ kv, y < Ml; when we replace
the resulting domain {y _ min (kv, y)} by {y < p}, we cannot increase the
infimum, and the analogues of last two expressions of (4.19) give, for a lower
bound on the analogue of (4.16),

(4.24) inf P{Tv,.j+ I(7nj+ l) < knj(+I(/3) - y}

= B(k-< lB (k/3) - int {kv7j+1/7rv + 1}, + - v, 7t + l).
By (2.34) and the fact that int {x} < x, we obtain as the analogue of (4.20),

(4.25) knj+l(E/3) - [kv7rnj+1/7E, + 1] _ (nj+l - v)ir,j+1 + 1.

Recalling that (1 + s) has been replaced by - (1 + s) in the definition (4.10) of
k,(E), we see that (4.25) is again equivalent to (4.21).

Inner class. The proof follows usual LIL lines and has been given by Eicker
[4] in essentially this form, so we only sketch it. For the top inner bound, one
shows, with nj - Ai, that

(4.26) P{T3j(7rnj) > njlrj + (1 - s)[2h,,j] 2 log2 nj i.o.} = 1,
by showing that
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(4.27) P{Tj (rr ) > [nj -4(1-[ /hj]1')nj_j]j
and + (1 - E)[2hj]112 1og2 nj i.o.} = 1,

(4.28) PtTj_,(7rnj) > (1 - [42/hnj]1/2)nj-1cnj, a.a.j} = 1.

Of these, (4.27) is a consequence of (2.31) and BC provided A is chosen so large
that [AI/( -_l)]1/2[(4/A)1/2 + (1 - E)21/2] < 21/2. The probability comple-
mentary to (4.28) is proved summable by using the standard Markov-Cramer
inequality with abbreviations T = T3j 1 (7rj), 3 = [42/hni]12, to obtain

(4.29) P{T _ (1 - 6)ET} = P{e-3T > e ( -6)}ET
. e(I -)5ET Ee -6 T

= exp {nj - 3)3
+ log (1 -7rn + 7trje -,)

< exp {-32 nj - 7rnj /3},

the last inequality for 3 and 7Kni sufficiently small. For the bottom inner bound,
replace > by <, (1 - E) by -(1 - e), and - [42/hnj]"12 by [42/hnj]12 in (4.26),
(4.27), (4.28); and replace (4.29) by

(4.30) P{T _ (1 + 3)ET} . e-(l+ETEeaT

with the same final estimate as in (4.29).
REMARK. The coefficient 3 of T and ET in the second expression of (4.29)

and (4.30) is not the usual minimizing value for exponential binomial bounds,
but is less cumbersome and is close enough to yield the desired conclusions.
PROOF OF THEOREM 6. If Hn T + oo and hn = Hn ± A(2Hn)/2 where 2 =

1 + E or 1 - 8, then h. T for large n. Applying Theorem 5 for these four possible
choices of h,. and noting that h, - A(2h )1/2 = H,, + 0(1), yields (3.17).
Similarly, (3.18) follows from Theorems 3 and 4. If H, -) 0, we obtain (3.19) from
Theorem 2 and from (3.18) for v small and positive; by (2.24) and (2.25),
lim,joc" = 1. Finally, (3.20) follows from (1.3) with kn = np,, and h, =
exp {-(1 ± E)Hn-'} upon invoking Theorem 3, the condition npn -+ +± of
the latter then being equivalent to (2.22).
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