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1. Introduction

Experimental and empirical studies appear to indicate the existence of large
numbers of polymorphisms in wild populations. It is desirable to formulate a
model which qualitatively explains the relative importance of the pressures of
selection, mutation and random drift in maintaining these polymorphisms. An
equivalent problem investigated by Fisher [3] concerned the rate of mutation
necessary in order to maintain a sufficient number of heterozygous loci which
thus contribute toward genetic variance.

In recent years there has been much interest in the related problem of deter-
mining the number of alleles (alternative gene types) that can be maintained by
mutation. It is this problem that the subsequent analysis is primarily aimed at;
however, it directly adds insight into the question of clarifying the reasons for
the large numbers of polymorphisms observed. Kimura and Crow [11] and
Ewens [2] have investigated quantitatively the situation when each mutant
form that arises is different from previous forms. Either due to selective dis-
advantages, mutation or migration pressures, or random sampling effects due
to finite population size, the resulting subpopulation generated by each mutant
form ultimately becomes extinct. The reasons for studying these models are set
forth in Kimura and Crow at length and are not repeated here. For further
bibliographic references on this subject we refer to Wright [14].
The model not formulated precisely but probably implicit in Kimura and

Crow [11] and explicit in Ewens [2] is of the following structure. The population
consists of 2N genes each capable of mutating in any generation with probability
v and thereby creating new allelic types. The fluctuations of the population
size of a particular allelic line is assumed to be governed by the classical Fisher-
Wright process. That is, if the number of representatives of the particular allele
is i, then the probability that the number of the allele in question changes to j
in the next generation is given by

(I.1) P (2N) [i(1 )]i [I i(1-2 )]2 i, j = 0,1, * , 2N,

where -iv is the expected decrease in i due to mutation to new alleles.
We expect oIn the average 2Nv new allelic types to arise per generation. At.
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equilibrium these new alleles must be balanced by a similar number of "old"
alleles being lost because of random sampling. If at equilibrium there are n
different alleles, on the average, and t is the mean number of generations that
an allele exists in the population before being lost then the required balance is
expressed by the relation

(1.2) 2Nv=

The quantity t is evaluated in [2] by using the standard diffusion approximation
to (1.1) valid only if N is large but Nv is not large. Ewens obtains the approx-
imate formula

(1.3) = 2 f2N)-l x1(1 - x)4N-1 dx.

The analysis for the case of selectively neutral alleles as described above is
partially extended with the aid of approximations derived from deterministic
theory to the case of multiallelic heterotic genes. In a separate publication we
shall discuss by the methods of this paper the possibility where some mutant
alleles may be advantageous in the heterozygous state.
We shall approach the problem of determining the number of mutant lines

maintained in a population by formulating two appropriate models. One model
treats a nonstationary situation with varying total population size. In the
second model we maintain a constant gene population size and study the equilib-
rium number of allelic types represented. The second model has several limita-
tions which are discussed in the concluding section of this paper. The first
model may be, perhaps, more pertinent in providing relevant insights into the
nature of the problem of ascertaining the numbers of allelic lines maintained
under the pressures of mutation, migration and selection.

In the first model (I) the creation of new allelic lines occur at random times
and usually we assume each new mutant form to be deleterious so that its line
of descendents will ultimately be lost. The combined population size of all
alleles is random and either achieves a stochastic equilibrium or modulo random
fluctuations grows to oo. In the second model (II), the total population size is
maintained at a constant level. Two variants in this model are treated. The
first is a random walk on a simplicial lattice [7] and embodies the effects of
birth, death and mutation. In the second model the population is transformed
each generation allowing the possibility that the offspring number per parent is
a random variable following a general distribution function. We will carefully
formulate these models in sections 2 and 3 and describe some of the results. It
will be clear that the Kimura and Crow version is a very special case of model I.
The connections of certain studies of Fisher concerning the maintenance of

genetic variance by a balance of mutation and selection are briefly discussed in
section 5. Section 4 presents a more detailed development of model II and some
proofs and calculations of various quantities of interest. The elaboration of the
structure and analysis of model I and its implications will be dealt with in a
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separate publication. At that time we will duly demonstrate the flexibility and
utility of model I with relevance to ecologic and genetic phenomena.

In section 6 we compare the results achieved in both cases and discuss some of
their contrasting features and summarize some pertinent conclusions. Here we
call attention to several important contributing factors for maintaining large
numbers of alleles which seem to have not sufficiently been stressed in the
previous literature of the subject.

2. The growth of mutant populations

There is a substantial literature dealing with stochastic processes describing
the growth of a single population arising by mutation from a normal population.
We refer to Bartlett [1], Kendall [10], and Harris ([4], chapter 5) and references
therein. The studies presented below are of a different nature and concern the
continued formation of new mutant populations. The principal variable of
interest is the number of these populations which exist at any given time.
Motivated by both ecologic and genetic phenomena, it is appropriate to set
up the model in a general framework.
The model of this section proposed to describe the fluctuation of the number

of mutant lines over time is composed from two processes:
(1) the stochastic process of formation of new allele (mutant) populations;
(2) the stochastic process which underlies the growth pattern of a particular

mutant population.
We assume that new mutant lines arise over time according to a general

stochastic process called the input process. (The origin of new lines may be
ascribed to either migration or mutation forces.) More precisely, let I(t) be the
number of mutant lines coming into existence during the time interval [0, t].
The following three examples of I(t) are of special interest.

(i) The number of mutants I(t) is a Poisson process with parameter v or, more
generally, a variable time (inhomogeneous) Poisson process of intensity param-
eter v(t). In this case, the probability of a new mutant line coming into existence
during the time interval (t, t + h) is v(t)h + o(h) while the probability of no
line being created is 1 -v(t)h + o(h). Moreover, the number of mutant lines
formed during disjoint time intervals are independent random variables. The
dependence of P(t) on the time variable reflects the possibility of changing
environmental conditions.

(ii) The number of mutants I(t) is a renewal process, that is, the times
between the successive starts of new mutant lines are independent positive
random variables with common distribution function G(t), 0 < t < oo. Thus,
the times of the creation of new mutant lines are taken to occur at

(2.1 ) t1,t1 + t2,t1 +42 + '''* *I1+ ''' +~. '''

,

where (,, 6, Z3 - - - are independent observations from the distribution law G(t).
In the case that G(t) is a degenerate distribution corresponding to the value
one then a new mutant line comes into existence each unit of time.
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(iii) The number of mutants I(t) is a general discrete time increasinig poinlt
process of which a special example would be a Yule process, that is, in the latter
case the times of the creation of new mutant lines coincide with the times of
events of a Yule process.
The above formulation postulates that at each eventt of I(t) a sinigle new

mutant line is formed. This could obviously be generalized such that the number
of mutant lines coming into existence at a given moment may be more than
one, in fact, possibly a random number. In this case the input process of example
(ii) becomes a compound renewal process.
The example treated by Ewens [2] and Kimura and Crow [11] is the special

case of (ii) where G(t) is a degenerate distribution and, on an average, 2Nv new
mutant lines are formed each generation (one unit of time). The actual number
is a binomial random variable with parameters (2N, v).
The input process concept provides the mechanism underlying the generation

of new mutant lines. The nature of the life of a specific mutant population is the
other facet of the growth process. The simplest assumption is that the fluctua-
tion of a specific mutant population follows the laws of a continuous time
Markov chain a, with tranisition probability functioln
(2.2) Pij(t), i, j = 0, 1, 2,

Thus, if at time 0 a giveni mutant type is represeilted i times, then at time t its
size is j with probability Pij(t). The 0 state is assumed to be absorbing which
means that the particular mutant form in question becomes extinct once state
0 is entered. We usually assume that absorption into state 0 is a certain event.
Examples of d' are as follows.
(a) Linear growth birth and death processes with individual infinitesimal

birth and death rates X and A, respectively. In this case we usually require
_ X so that extinction occurs with certainty. Then the expected extinction

time is finite if and only if ,u > X. More generally, P could be any continuous
time birth and death process where state 0 is a certain absorbing state.

(b) Continuous time branching processes whose infinitesimal expected mean
change of population size corresponding to an initial single parent is nonpositive.

If time is discrete, then the specific Markov chaini with transition probability
matrix (1.1) could be chosen for (2.2).
We have described the two phases underlyinig the general mutation growth

models. Some questions of interest to be investigated are of the following sort.
(1) Specifying an input process {I(t), t > 0} and the individual growing

process P for each mutant type, we should wish to determine the distribution
function of the number Nt of different mutant lines existing at time t. More
generally, what is the nature of the whole process Nt*, t> 0? Letting t -*
ordinarily leads to consideration of the random variable Nt under the conditioni
that an equilibrium or stationary situation has been achieved.

(2) Motivated by certain genetic considerations we are also interested in
determining the distribution function of the random variable Nt*(k), the number
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of mutant populations at time t consisting of exactly k members, that is, N7(k)
equals the number of mutant populations in state k at time t.

(3) We may also be interested in the random time required for all current
mutant populations to disappear.

In the case where the input process is Poisson as in example (i), the solution
of problem 2 is very simple and essentially classical. We have the following
theorem.
THEOREM 2.1. Let the input process be nonhomogeneous Poisson with intensity

parameter iv(t). Let 6P be a continuous time Markov chain with transition probability
matrix jlPij(t) II. Let N,'(k) denote the number of mutant populations existing at time
t of size k. Then the random processes N1 (k), k = 1, 2, * * * are independent non-
homogeneous Poisson processes with joint generating function

(2.3) 40(t, Zl, Z2, zl") = zZ2'Z2 * Pr{N*(i) = ri, i = 1, 2, * }

-x r~~~~~~~~t
= exp Z - 1) Plk(t - T)V(T) dT].

Subject to the hypothesis of the above theorem, it follows that

(2.4) E[N* (k)] = fo Plk(t - r)P(T) dT.

If v(t) = v is constant, the equilibrium distribution of Nt*(k), "N*(k) =limt
Nt*(k)," (convergence in law) is Poisson with parameter

(2.5) E[N*(k)] = V fO Plk(r) dT,
provided the integral exists which is certainly the case if 0 is an absorbing
state. The expected number of alleles N* in the stationary case is obviously

(2.6) E(N*) = v E Plk(r) dr = V [t - F(r)] dr,

where F(r) = 1 - k=l Plk() is the distribution function of the extinction
time for a particular mutant line generated by a single initial parent. Notice
that E(N*) is finite if and only if the distribution function F(t) has finite mean.
It is possible for E[N*(k)] to be finite while E(N*) is infinite. This situation is
of interest and we will discuss some aspects of this phenomenon later.
The formula (2.6) is also valid when the input process is a renewal process,

provided we interpreted v as the reciprocal of the mean interarrival time.
Higher moments of Nl (k) can be obtained easily by iterating certain recursion
relations. These calculations are also accessible when the iniput process is a
renewal process or generalized Poisson process.
The mathematics needed to establish the result of theorem 2.1 has mostly

been developed in the context of classical stochastic population growth models;
see Bartlett [1] and Kendall [10]. We need merely adapt their analysis with
minor modifications.
We next discuss briefly the situation where the input process is Poisson with
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parameter v and the growing process (P is such that each mutant type ultimately
becomes lost with probability 1 but the expected time until extinction is cc.
More specifically, we shall assume that the probability distribution F(t) of the
time until extinction (starting with a single initial parent) has the asymptotic
growth behavior

(2.7) 1 - F(t) = Plk(t) -

k=1 tl

as t oo, where 0 <a < 1, and C is a constant.
For example, if 6P is a classical birth and death process with infinitesimal

parameters X. = nX, p,. = nX, n > 0, then it is known [5] that

(2.8) 1 - F(t) - 1

as t -* oo. In this case we can easily determine the limiting growth behavior of
N'(k) and N* = ,k_ N:(k) as t -* o. Explicitly, we obtain that N,*(k) is
Poisson distributed with mean
(29) It (m.)k-l lX A1+X0) X ( Xt )k.(2.9) fd()-)X uk 1du = (- x)

Hence, as t -* oo,

(2.10) lim E[N,*(k)] = X

Thus, the number of populations with k members is of meaii size X/k.
What is more striking is the fact that the total number of existing mutanlt

types N, has an asymptotic normal distribution of mean log (1 + Xt) and
variance log (1 + Xt). A more general result is as follows.
THEOREM 2.2. If the input process is Poisson with parameter v and (P is a

continuous time Markov chain such that the distribution function F(t) of the time
until extinction of a newly created mutant satisfies

(2.11) 1 - F(t) - C

for t -> so (C is a constant) where 0 < a _ 1, then

(2.12) Nt= N* (k)
k=1

has an asymptotic Normal distribution (as t -X cc) with mean and variance

Cvtl-a t1C
(2.13) E(N*) 1-a' Var (Nt) ' 1 - ,

when 0 < a < 1 and

(2.14) E(Nt) - Cv log t, Var (Ne) - Cv log t

when a = 1.
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PROOF. By theorem 2.1 we see that N* is distributed as a Poisson variable
with mean and variance given by

fot tr(CVtl-a 0 < < 1,
(2.15) v, IPlk(1r) dr = [1 - FQr)] dr 1- a<<1

k=1 Lc log t, a = 1.

The asymptotic normality follows immediately since the mean parameter tends
toco ast-*oo.

It is of interest to record some conditions which guarantee the validity of
(2.11). Consider (P to be a birth and death process with infinitesimal birth and
death parameters X,n > O, An > 0, for n = 1, 2, * * o,Xo = 0 and define

(2.16) X1X2 * XI
2143 ... An+1

Suppose 7rn - DnY-' and I/Xn7r. En-' for -y and ,Bpositive where D and E
are constants. It can be shown that 1 - F(t) - C/ta where a = 3/(y + ,B). In
the special case of the linear growth birth and death process where Xn = nX
and n =(n-1 + a)X, forn = 1, 2, ** *,0 <a c < 1, then rn D/na and
1/Xn7rn En"-'. Therefore 1 - F(t) - Ct-a. It is frequently useful to replace
(2.11) by the asymptotic relation 1 - F(t) - (C/ta)L(t), for 0 < a < 1, where
L(t) is a slowly varying function. In this case we have

(2.17) E(Nt) = Var (Nt) Ct- L(t)

as t for 0 < a < 1.
It is worth interpreting and contrasting the nature of the results of theorems

2.1 and 2.2. Under the conditions of theorem 2.1, if E(N*) < oo, the number of
different mutant lines maintained in the population achieves, as t -* oo, a stable
state (in the stochastic sense) which is Poisson distributed. The limiting total
population size is random following a stationary distribution. On the other hand,
subject to the hypothesis of theorem 2.2 the expected number of alleles grows
to infinity owing to the fact that the average lifetime of each allelic type is
infinite even though each individual allele is ultimately lost with probability
one. This asserts, in particular, that even if the rate of formation of new alleles,
that is, the mutation rate, is exceedingly small the number of existing alleles
following an elapse of a sufficient duration of time is large and becomes infinite
unless deterrents imply the nonapplicability of the model. In other words, the
property that each specific mutant population possesses a long lifetime may be a
significant factor to account for the large number of alleles observed in nature. A
further discussion of the significance of this concept is given in section 6.

3. Model of mutant growth for a population of constant size

In the model described in section 2 the combined population size of all genes
was not fixed although a stationary distribution exists if the mean absorption
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time to state 0 for the process (P is finite. We now formulate a model describing
growth of different mutant types where the total population size of all genes
is kept constant.
Assume tentatively that there are r different mutant types that can exist in a

population consisting of N individuals where r is much larger than N. We can
describe the make up of the population by an r-tuple
(3.1) = (ml, M2, Mr),
where mi is the number of individuals of mutant type i. Thus, the mi are noln-
negative integers such that _l- mi = N.
We shall assume that the fluctuation of m is subject to the laws of some

specified stochastic process (P. A natural case of this in the spirit of the models
proposed by Moran [12] to study fluctuations of gene frequency is the following.

In each unit of time a single individual may change his type. (We could
equally well postulate that the events of changes of state occur continuously in
time at the events of a Poisson process with intensity parameter a function of
population size; see [7] for a more detailed exposition of this formulation.)
Thus, the following transitions are possible,
(3.2) mi = (ml, M2, * r) - (in, M(2, M, i- 1, * in, + 1, M,ir)
for all possibilities of i and j, i #6 j. We also permit the transition of mi into
itself, that is, no change of state. A transition is determined according to the
following mechanism. First an individual is chosen at random to die where all
possibilities are equally likely. Thus, an individual of type i is chosen to be
replaced with probability mi/N where mi represents the current size of the ith
type. If different mortality rates operate among the various types specified by
the vector of relative survival rates X = (XI, X2, * * X,), then in this case the
probability that the ith type individual is to be replaced would be

(3.3) mixi

E XkMk
k=l

The type of the new individual replacing the dead one is determined by selecting
an allele at random from the original population and duplicating its kind. The
probability of thereby creating a new jth type individual is mi/N. We could
treat fecundity differences by appropriately multiplying the mi by suitable
factors reflecting the relative fertilities similar to the manner of treating differing
viabilities as described above. To ease the discussion, we shall assume, in this
paper, no selection differences. However, we do permit the possibility of muta-
tion. The individual just born may change into a different type, subject to the
following probabilistic laws. Let ,3 denote the probability that an individual of
a given type changes into a specified different type. We postulate a symmetrical
situation in that the probability of mutation is independent of the types involved.
Then the probability of a chosen individual not changing his form is 1 - (r -
1),B. Combining the above effects we calculate the probability of the transition
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(3.2) as follows. The event described in (3.2) occurs if the chosen individual to
be replaced is of the ith type (probability mi/N), and the newly created individ-
ual is of type j. The last possibility happens either if a jth type individual is
born who does not mutate or a kth type is born who mutates into a jth type.
The probability of this event is

(3.4) mj [1 -(r -1),B] + (N - mi)

Thus, the transition (3.2) has probability

(3.5) m' (Mj [1 -(r -1)0] + (N-Nmj), 1= ro$mi (mj+ NOr)

The probability of a transition of im into itself is

(3.6) 1 _ (1 N2) mi (mj+ NIr).

Assuming an equilibrium state is attained (that is, assuming the process in
existence for a long time), we are interested in determining the distribution of
the number N* of alleles represented in the population. More generally, under
the same conditions of equilibrium, we shall evaluate the expected number of
alleles represented k times in the population. Thus, let N*(k) denote the number
of components in m for which mi = k. We find that as r -- oo

N
-v (k + 1)8

(3.7) E[N*(k)] = 1 Nv - 1

where v = rf is the probability of a mutation occurring per unit time. Similarly,
we obtain under conditions of equilibrium

(3.8) E(N*) = 1 j-)

as r -* o, where r stands for the usual Gamma function and rI its derivative.
The assumption of r -oo is reasonable and merely reflects the phenomenon

that the alternative number of mutant types possible in the population is
extremely large compared to actual population size; see Kimura and Crow [11]
for justification of this assumption.
The validations of formulas (3.7) and (3.8) are given in section 4.
In order to underscore the growth behavior of E(N*) qualitatively it is ap-

propriate to consider three principal cases. We summarize the results in tabular
form. The values are asymptotically correct as indicated. The proofs of the
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results asserted in table I are presented in section 4 and some discussion and
interpretation of these formulas are covered in section 6.

TABLE I

GROWTH BEHAVIOR OF E (N*)

Asymptotic
Orders of Distribution

Magnitude of of N* when
Case the Parameters E(N*) Var N* N is Large

1 NP- c
N log1 log-- Nv Probably Normal

NV -4 X, N -r r'(x)0
2 0 < X < - -L Xlog N - | log N Normal

X not too large I r(X)

3
NvlogN-C 1+C C

4. Mutation balance (continuation of model U)

We shall first compute the expected value of N*. Since all types behave sym-
metrically, we find immediately that

(4.1) E(N*) = r Pr{ml i 0}
To evaluate Pr{ml 0 0}, we can lump all types (excluding type 1) as a single
type and regard the process as that of a two type model with possible states
(m, N -m), m = 0, 1, 2, - - , N, where the first component denotes the num-
ber of type 1 individuals present. The possible transitions that may occur
take the form:

(m, N - m) -- (m + 1, N - m - 1) with probability

Pi (N m) {(N - ) +- [1-1(r-) ;

(m, N -m) - (m- 1, N -m + 1) with probability

P2 [N (r-1 + N (1 -,)]
(m, N - m) - (m, N - m) with probability 1 - Pl- P2-

This process is a random walk on the state space 0, 1, * , N and its stationary
distribution {7rm} m=o is readily determined [6]. Explicitly the equilibrium prob-
ability of being in state m is

(m4+.a2) -mN + (r-1)(a1+ 1)i-n1

(4-2) Xm = (N Nm() )J m = 0, 1,---N,
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where

(4.3) a+I NO= 1 Nv1 rf ri1-vp
since r3 = v. Thus,

_ (N+r 1 VN1)v

(4.4) E(N*) =r (N+1N -i

We introduce the function

r( N + x

(4.5) h(x) = (i )+

Now expressing (4.4) in terms of Gamma functions we have

(4.6) E(N*) = r[1 r1( v)].
h(O)

So as r -+oo (that is, the universe of alternative allelic types is extremely
large), we get

(4.7) E(N*) = 1-v h(O) N1-v |(1N)-(-v ')J

The growth behavior of E(N*) splits into three main cases.
Case 1. Nv -m co. We use the asymptotic formula r'(z)/r(z) - log z, z 00

in (4.7) which yields
Nv 1(4.8) E(N*) ' 1 _ v log -

Case 2. Nv X, 0 < X < oo, with X fixed, N large. For X > 0, equation (4.7)
becomes

(4.9) E(N*) - X log N-X F(X)

Case 3. Nv 0, N m-+0. Since r'(z)/r(z) has a simple pole at z = 0 with
residue -1, we find that

(4.10) E(N*) 1 + Nv log N.
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It is interesting to note that in the case that v is of order 1/N log N, then the
expected number of different mutant types is bounded. This means that few
types exist and those present are represented in large numbers.

It is important to divide case 3 into two further subcases according as

Case 3a: NvlogN c > 0, N -°o;
Case3b: NvlogN O,N--oo.

We shall later calculate the variance and higher moments of N*.
By using the same procedure we shall now compute E[N*(k)] (the expected

number of types consisting of k members) under the conditions of equilibrium
for r -x oo. Clearly (see (4.1)), we have

(4.11) E[N*(k)] = r Pr {ml = k}.

Consulting (4.2), we obtain

(+k)(r 1 )
(4.12) E[Nr(k)] = r +k N k

where a + 1 = (1/r)(Nv)/(1 - v). Letting r -4 co gives

1NiN _(k + 1)

(4.13) E[N*(k)] = N 1- k = 1, 2, 3,
k-1A

\ N /

The quantity (4.13) can be studied for the three cases Nv large, moderate, or
tending to zero. We shall not enter into this investigation here.

Every mutant type is represented in some population, and therefore,
N

(4.14) E kE[N*(k)] = N,
k=1

or equivalently,

/N _(k + 1)\
NvN

1 - k

(4.15) N-Vk- _ = N.
1-v
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The expected number of individuals belonging to a type represented k times
is obviously

N
(k + 1)

(4.16) kE[N*(k)] = 1-v ( -k

The chance, on the average, of selecting at random an individual belonging to
an allele with k representatives is then

(4.17) N{I-v (i N _ I)

We next compute the probability of homozygosity F, that is, the probability
that two genes (individuals) chosen at random are of the same type. The chance
that the first is from a type represented k times is

( N k-1

(4.18) 1-v (iNV I)

and for this contingency the chance of homozygosity is k/N. By the law of
total probabilities, we get

N k ;(~N _k-k)
(4.19) Pr{homozygosity} = F = klN 1-v ()

A simple calculation yields
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N k v'+ N k 1

(2kv N-i)k

(4.20) Nkl -v 1

N\

v ~~1-
\1VN/NN_1 + 1-v

N
Observe that for v 0 this is of the order

(4.21) F= N
1

which agrees with the classical formula (one must replace N by 2N which is the
usual gene population size associated with N diploid individuals and then
another factor of 2 enters arising from the fact that only one individual is
altered at a time).
We now return to the study of

N_v k

(4.22) E[N*(k)] = NkN-

(see (4.13)), for k and N large. Specifically, we shall consider k/N x, k = [Nx],
x fixed, and let vN = X, 0 < X < o, be fixed. Exploiting the asymptotic prop-
erties of the Gamma function, we obtain

(4.23) E[N*(k)] 1 Xr[N(l -x)+X] (N+ 1)
Nx r[N(l - x) + 1] r(N + X)

N
x (1 - x)-l = - (1-x)' dXNx x

( )11d

since dx - 1/N. Thus, the expected number of types whose frequency in the
population occurs between xi and x2 is approximately

(4.24) X (1 - x)- dx,

provided X = Nv is fixed and finite and N is large.



NUMBER OF MUTANTS MAINTAINED IN A POPULATION 429

Notice that for xi = 1/N and x2 = 1, the expression is approximately the
expected number of distinct types in the population and this is of the order

(4.25) X (1- x)x-l dx - Nv log N,

which agrees with (4.9) for Nv = X finite. We emphasize again that this relation
is valid provided Nv is not large.

Variance of N*. Our next task is to compute the variance of N*. Consider
the equilibrium population involving N genes (individuals). We define

(4.26) zj = {1 if the ith type is present,
(O otherwise.

Clearly,

(4.27) Zl + Z2 + + Z, = N*.

We have calculated the mean of N* in equation (4.7). We will now evaluate
E[(N*)2]. Thus,

(4.28) E[(N*)2] IrE(ZO + r(r - 1)E(Z1Z2).
Now (see (4.5) and (4.6)),

h(_1 Nv
(4.29) E(Z ) = E(Z1) = 1 h(0)

By virtue of the symmetry of the problem, we have

(4.30) E(Z1 Z2) = 1 - Pr{either ml = 0 or m2 = 0}
= 1 - 2 Pr{ml = 0} + Pr{ml =M2 = 0}-

In order to calculate Pr {ml =M2 = 0}, we can consider the first two types
identified and the other types all lumped together. This leads to a Moran type
mutation model (see Karlin and McGregor [6]) with mutation parameters a, =
(r - 2),, a2 = 2,B. Using the form of the stationary distribution analogous to
(4.2), we find that

(N+r-2 Nvph(2N

(4.31) Pr{~ml =Mi2 =0} =(+71 v i (~N~
(N + lN ) h(O)

Thus, (4.30) becomes

(4.32) E(ZlZ2) h() [h(O) - 2h (j ,Aj ) + h (_ Nv )]
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As r -- o, we get

(4.33) lim r(r -1) E(Z1Z2) = __v) h"(0)
Combining, we see that the second moment of N* is

(4.34) E[(Nr*)2] -(Nv)h"(O)( +N) v h (O),
and generally,
(435) = I~~~Nv\kh(k)(0) k-i ( Nv t ,h(')(0).

[ (- v) h(O) 1=1 (l-v) h(O)
Now as N -* co and Nv X-* o it is not difficult to see that

(4.36) h((0)) (log 1) +o(1)
where the o(1) term goes to zero provided Nv -+ a:. It follows that

(4-37) E --+ l,

as N -* oo, for every k = 1, 2, * . . This suggests the result

(4.38) N* 1 ,' 1
1 log -1-v v

with probability 1, which is certainly valid in probability owing to a standard
theorem.
The variance

(4.39) Var (N*) = klNv) {h(O))[h(O)] } + Nv h'(0)
is asymptotically AN as N x0, where

(4.40) a=lv [log -(1- v)]
which ensues as a consequence of the identity

(4.41) h(0) h(O) = r( N [r(

r( v) L r( v)J
(1 -V)2 1

v N
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since

(4.42) rP(z) [rY(z

as z --+ o. Therefore,

(4.43) VarN* .lNv [log 1-(1 - v)]

(Of course, log (l/v) - (1-v) > O for O < v < 1 as it should be.) This suggests
the validity of a central limit theorem. We shall explore this question in a
separate publication.

In the case that Nv -+ X, with 0 < X < oo, we have

h"(Om rh'(0) 2 1 - v _f"1)_r'Xll
(444) h(O) L h(O)]2I N r(x) Lr(x) 2JJ

An estimate of the variance of N* then reduces to

(4.45) Var N* XX2 { - r_(x) + [ (X)]2}

+ X {Iog N -r(X)} - X log N.

Case 4. If Nv log N-O as N - oo, v-O, then it is easy to verify that
E(N*) -+ 1 and Var N* O 0. This means that essentially all genes are of one
allelic type. In the case that Nv log N -÷ c > 0 a simple calculation establishes
that E(N*) -> 1 + c and Var (N*) -4 c.

5. Model II-case of general fertility

In this section we discuss the case of model II where the transition probability
matrix governing the changes of

(5.1) m-= (ml, M2, ... , iMr)
is that induced by conditioning a direct product branching process with off-
spring distribution generated by the probability generating function f(s) =

,k=o akSk, ak > 0, 1 = f(l). In this setup the full population of N individuals
may change in one transition. The interpretation of , and v = rf3 is the same as
before. We determine Pm,5 the transition probability matrix as follows. For the
states m = (mI, M2, * * *, m,) and n = (n1, n2, - *, nr) where mi, nj are non-
negative integers and EZ mi = nj = N, we have

(5.2) Pm,n =

coeff s4'42 . * sr" in flfrma{si ++ + sa3+sa[1 - (r- 1)01]+S+,#++ + r84}
a=1

coeff w'v infN(w)
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The rationale and scope of (5.2) are elaborated in Karlin and McGregor [9]
to which we refer the reader. The special case where f(s) = eX(8-1) leads to the
transition probability matrix

(53) P
!n*. n { ma) 1 + ma [1- (r )131Y

which is the binomial sampling model commonly employed in analyzing fluctua-
tion of gene frequency engendered by genetic drift (see Wright [12] and Fisher
[3]).
Under conditions of equilibrium and where r -- oo, we can determine for this

model the expected number of mutant types in the population and other related
quantities of interest.

Let {Irm} denote the stationary distribution of the process. We are interested
in computing E(N*), E[N*(k)] and other similar quantities. We will have to
distinguish two cases according as Nv is large, or Nv moderate.

Case 1. Nv oo. Clearly,
(5.4) E(N*) = r Pr {mi $ 0},
and therefore it suffices to evaluate Pr {ml # 0}. Because of symmetry, we
can lump all the other types together as a single type and regard the Markov
chain on the state space consisting of all pairs (m, N -m), m = 0,1, * , N,
with probability transition matrix

(5.5) Pnm
coeff smtN-m infm{[l - (r - 1)B]s + (r - 1)0t} fN m[0s + (1 - #)t]

coeff of wN in fN(w)
We denote the stationary distribution by {7rm} =o, that is, 1rm is the prob-

ability in an equilibrium state that the population consists of m individuals of
type 1, and N -m individuals of the other types. We would like to evaluate

(5.6) Pr {ml $ 0} = 7r1+ 7r2 + * * * + TN = 1- o-

Bounds for (5.5) can be achieved in terms of the successive moments of the
probability distribution {7rm} as follows. Let

N

(5.7) Uk= ,_ (m)k m, (m)k = m(m-1) * (m-k + 1),
m=k

denote the factorial moments of {rm} N=o. Plainly
(5.8) U1> 1 - 7ro.
Notice that

(5-9) U1 - 2U = 7r + 72 + E 1) - (2)]Tm < 7r1+ 7r2 < - O,

and generally

(5.10) Ul -2!+ 3 U I
k +

N I ()k+ )
kl M=?+ (k)l
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Observe that

(51)[E ( 1)+l m) 1__ )(m1) _ 0 for m > t + 1, t even,(5.11) J)+l(
Hence, we have the inequalities

(5.12) U1-U2 + U3 _U2

< 1 -ro < Ul - U2 + U3 U.+2-1<lO<U1~~2 T +(2,e -1)!
for all t = 1, 2,* -.
Now the factorial moments can be determined recursively. We illustrate the

method in the case of the first two moments and record the general formula.
We need the following transformation properties of P = IIP.mI1 (see Karlin

and McGregor [9])
N

(5.13) Yj Pjm' = n[l - (r - 1),] + (N -n),
m =0

(5.14) P.m(m- 1) = {n(n- 1)[1 - (r - 1)1]2
+ 2n(N - n)[1 - (r - 1)#]#
+ (N - n)(N - n -)2}X2
+ A2{n[l - (r -1),)]2 + (N -n)#2}

(515) ~2 = coeff WN-2 infN-2(W) [fI(W)]2 coeff wN2 infNl(w) f" (w),
(5- 5) X2 = coeff wN in fN(w) ' j2 coeff wN infN(w)
and generally,

(5.16) E Pftm(m)k = [Xk(l - P)k + I3bk,l + #2 bk,2 + ... + #bk,k](n)k
k-1

+ (1 - P)k X aki(n)k-i + Ck-1(3, n),

where aki are suitable coefficients that can be computed routinely, if necessary,
and

(5.17) )1k =coeff=-k in [(S)]Nk [' (S)] k = 2,3, N.(5.17) Xk= ~~~coeffe inLU(8)]N
The term Ck(f, n) is a polynomial of degree k - 1 in the variable n such that the
coefficient of nt has at least a factor ,V, t = 0, 1, * , k - 1.

Note, using (5.16), we see that
N N N N N

(5.18) Uk = E (m)k7rm = (m)k FI 7r. Pnm = i7rn F Pnm(m)k
m-0 m=0 m=0 m=0 m0

k
= Xk(1 - v)k Uk + (1 - V)k aki Uk-1 + C(O, U1, * Uk),

i=l

kI = 1, 2, anld C(13, U1, . , Uk)/,B tends to zero as r -Xo where rA= v is fixed.
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We use the relations (5.18) to evaluate lim rU,. Thus,
r-4

U1= U(1-v)±+NI3 or U1 =r
so that
(5.19) lim rUU = N.

r--

In a similar manner we deduce

(5.20) in rU2 (1-v)2NJU2
1 X2(l 2-

and generally,

(1 - V)k aki (lim rUk-i)
(5.21) lim rUk = (1- )( k

r--+ . ~1 -Xk(l -Vk

Combining (5.12), (5.19), and (5.20), we get the following estimates
lim rU2

(5.22) lim rU, - 2 < E(N*) _ lim rUl,

or, what is the same,

(5.23) N 2[1- 2(1-)2] < E(N*) _ N.

Improved estimates can be obtained by exploiting (5.12) and the evalua-
tions (5.21).

Case 2. Nv -+X for 0 < X < oo, N-* oo. We next discuss the case where
NY -+ X is moderate. We shall use the standard diffusion approximation to the
process which fits well for N large and X not too big. In this case the stationary
distribution {7rm} of the frequency state m/N can be approximated by

(5.24) 7rm _ CXl1+2N#fy(1 - X)-1+2N(,l),6/y dx, [Nx] = m,

where [h] denotes the greatest integer not exceeding h, while

(5.25) C= r'(2N(r/-y)r(2Nj3/-y)r(2N(r - 1)#3/,y)
and y = f"(1) provided the scaling is such that f'(1) = 1. In the case that
f'(1) # 1 then y has to be defined differently (see [8]). The quantity 1 -7ro is
therefore approximable by

(5.26) r(2Nv/ry>)1 X-1+2N/ry(1 - X)-1+2N1h dx

flIN x1(1 - X)-1+2NVI dx

as r -4 00. It follows that

(5.27) lim r Pr {ml 5d 01 = 2lyN X-'(1-x)-1+2NvI- dx = E(N*)
r-boIz1N
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which agrees with the formula (4.24) apart from the factor 1/-y. The factor 1/y
reflects the random nature of the fertility distribution and this is 1 in the case
when f(s) is Poisson.

In the case of isoheterotic alleles the approximate formula for E(N*) has to be
modified and takes the form

2N P
(5.28) E(N*) = I X-(1 -X)-1+2N(+±8)/ie2NSx/7 dx

where 1 + s is the selective advantage of any heterozygote relative to selective
coefficient 1 for homozygotes.

6. Connections to Fisher's theory of balance of mutation and genetic drift

Fisher [3] was interested in the problem of determining the rate of mutation
necessary in order to maintain a sufficient degree of heterozygosity which thus
contributes toward the genetic variance. More precisely, consider a fixed num-
ber L of loci, at each of which there is initially one mutant and 2N - 1 non-
mutant genes. Fisher implicitly assumes that the fluctuations of these specific
mutant populations, relative to a given locus, follow the laws of the Markov
chain on the states 0, 1, * , N, with transition probability matrix

(6.1) Pij (2N)(2N)i(1- N) 2N-j

Each locus will eventually become homozygous (that is, either lost or fixed)
due to random elimination if no further mutation occurs. Let L be chosen so
that on the average, one locus becomes homozygous per generation. To compen-
sate for this, at each generation a new locus is introduced having one mutant
and 2N - 1 nonmutants. The problem is to evaluate L and at equilibrium to
determine the mean number bi of loci having i, i = 1, 2, ... , 2N - 1, mutants.

It is convenient to alter the model as follows. Instead of feeding in one new
mutant each generation, we start each new locus with a random number of
mutants with possible values 1, 2, *-* , 2N - 1 whose probabilities are Cl, C2,
...*, cC2-1 where {cV}2i71 is the conditional limiting distribution of the state of
the Markov chain given fixation has not occurred. The vector c = {c,}I1 is
the left eigenvector associated with the eigenvalue X2 = 1 - 1/2N of the matrix
defined in (6.1) normalized so that _il = 1.
Approach to absorption for the Markov chain induced by the transition

probability matrix (5.5) occurs at a rate 1/2N, that is, in each generation on
the average 1/2N of the existing populations become fixed. We choose L = 2N,
and then because each new locus is started with a size following the distribution
law {c,}fin1 the expected number of loci becoming fixed in each generation
is one.
An essentially equivalent formulation is as follows. Consider a single locus

at which there is initially one mutant and thus 2N - 1 nonmutants. After a
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variable number of generations, fixation of either mutant or nonmutant occurs.
Let the mean number of generationis for this to happen be K and let the mean
number of generations for which the number of mutants is i be di. By definition
K = 571'- di and it is inot difficult to see by a staiidard ergodic argumenlt
that K = L, di = bi, also.
Now consider the setup of model I of creating one new mutant line each

generation where initially there are L = 2N mutant lines.
The computation of E[N*(k)], the expected number of mutant lines with k

representatives existing in statistical equilibrium starting initially with N lines,
is, of course, the same as evaluating the quantity bk. Fisher succeds in estimating
bk by passing to a related braniching process. He determines bk approximately to
be a/k (a is a suitable constant). This agrees with the result of theorem 2.2
particularly in reference to the example of linear growth (see (2.10)).

It is important to emphasize that the analysis of Fisher's problem after
appropriate identifications reduces to that of the analysis of model I. That is,
the problem of ascertaining the number of loci with k heterozygotes out of a
population of N individuals is mathematically equivalent to the p)roblem of
determining the number of different alleles maintained by a balance of mutation
and random elimination as set forth in model I.

7. Conclusions and discussion

The existence of excessive numbers of polymorphism in natural populations
is well established by empirical and laboratory tests. A large multiplicity of
alleles at a locus has been observed frequently for many different characteristics
in plant, insect, and human populations. The usual models involving the effects
of mutation rates alone fail to account for these polymorphisms. For example,
for populations of size 103 it would be necessary to ascribe a mutation rate as
high as 10-3 which is completely iniconsistent with known mutation rates. Much
discussion and controversy has evolved in recent years in attempting to explain
the reasons for the preponderance of multiallelic phenomena. We have for-
mulated two different models to study this problem and now we sum up sonmC
of the qualitative ideas and conclusions derived from them.

In the second model where population size is kept constant, we obtained
the estimate -(2Nv/-y) log N for the expected number E(N*) of different
alleles provided Nv = X is not excessively large, that is, X < 20, while N is
large, N > 103 (N is the total number of distinct genes in the population) and
-y is the square of the coefficient of variation of the number of offsprinig per
parent per generation. Under the above circumstances the numbers of different
alleles represented is approximately E(N*) - 2Xc log N where X = Nv and
c=1=/

Obviously E(N*) is large of the order of magnitude of log N if N is large
provided 2Xc is not too small. The variance of N* is also of the order Xc log N
and therefore the actual niumber of alleles at a given locus will fluctuate between



NUMBER OF MUTANTS MAINTAINED IN A POPULATION 437

(7.1) 2Xc log N i 2(Xc log N)1 2
with probability exceeding 0.95. Furthermore, since the number of different
characteristics of populations which are genetically controlled are very large, we
would expect some loci (not many) where the number of alleles is the order of
magnitude
(7.2) 2Xc log N + 2(Xc log N)12.
The above discussion points out that substantial numbers of alleles (of the

order log N) at a locus can occur if N is sufficiently large provided Nv = X
is not too small. This number is increased at some occasional loci due to random
fluctuations. The magnitude of the coefficient of variation of the number of
progeny per parent per generation contributes also an influencing factor.
The analysis of model I introduces a new and perhaps more basic set of ideas

emphasizing the important fact that the lifetime distribution of the population
of a given allele may be a significant factor in accounting for large numbers of
different alleles represented. Specifically, if the life of a specific allele in the
population is very long, then even with very small mutation (and/or migration)
rates the number of different alleles in existence becomes large if a long time
has elapsed.

Selection effects are reflected in the nature of the lifetime distribution as-
sociated with a specific allele population. A heterotic allele possesses a lifetime
distribution of large mean, while harmful alleles have relatively short expected
lifetimes.

It is plausible and readily established by analytic investigations of standard
models describing fluctuation of the numbers of rare mutants in plant and
insect population that the lifetime of each allele is usually very long (for all
practical purposes infinite mean lifetime) even for the case where ultimate
extinction of the particular allele in question is certain. This is definitely true
for selectively neutral alleles; a slight selective disadvantage of an allele would
imply a finite expected lifetime which usually is still of long duration. On the
other hand, a heterotic allele would entail a small positive probability of the
allele being permanently established and so its mean lifetime is infinite. For the
case of selectively neutral alleles where the expected lifetime of an allele is
infinite but ultimate extinction is a certain event, it is a consequence of the
results of model I that if the process is in effect a long time then even for excep-
tionally small mutation rates the expected number of alleles in existence is
large and is an increasing function of the length of time of the operation of the
process. A change of environmental conditions can occur invalidating the pre-
ceding model resulting in a substantial decrease of the population size of all
genes, whereas during the same time period the number of different alleles is
diminished by a much smaller factor owing to the long lifetime of each allele
typ)e.

Since cnvironmeintal conditions do constantly change, the study of stationary
or equilibrium models is unable to account for the large number of alleles. It is
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precisely the transient character of the process coupled with the long lifetime
distributioin of individual allele types that invalidate the usual postulate of an
equilibrium state. In many natural populations the population size is under-
going radical fluctuations and cannot be regarded as in an equilibrium situation.
For such a case model I seems to be a reasonable representation aild if the
process has been going on for a long time both E(N*) and Var (N*) are large,
which is in accordance with the observations.

Another contributing source of confusion in discussions of genetic phenomena
is the insistence of studying exclusively the changes in the frequencies of an
allele rather than actual population sizes. Generally, changes in frequencies
cannot be observed unless a sufficient number of generations have passed.
Because most available data does not reflect a sufficient lapse of time (or gen-
erations), it is difficult to assess when a polymorphism is indeed a polymorphism.
We further refer to Karlin and McGregor [7] where we have described the
significance and fundamental character of the time factor relevant to describing
variability of population size and frequencies of a given mutant type.
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