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1. Introduction

A number of improvements of the classical Chebyshev inequalities are known
that depend on various restrictions in addition to moment conditions. Most of
these results provide bounds on the distribution function P{X < t}. In this
paper, we consider bounds on P{s <X < t}, P{s < X < tlX < t} and on
P{s < X < tlX > s}. Bounds are also obtained on densities and hazard rates.
These bounds are obtained under a variety of restrictions, but a unified method
is used which yields all results as special cases of a single theorem.
The restrictions we impose yield quite striking improvements over what is

obtainable with moment conditions alone. Furthermore, at least some of the
conditions arise in practice and can be verified under the proper circumstances
by physical considerations. In all cases we assume that P{X > 0} = 1.
From a historical viewpoint, a natural condition to consider is that 1 - F(x) =

P{X > x} is convex on [0, oo). Bounds in this case were obtained by Gauss;
a number of extensions and related results have been summarized by Frechet [7].
Such bounds are often stated as inequalities on P {1 Y - ml > x} where Y is
unimodal with mode m. Of course this implies that X = Y - ml satisfies
P{X > 0} = 1 and P{X > x} is convex.

In recent papers (Barlow and Marshall [2], [3]) we considered the condition
that the distribution has a monotone hazard rate. If F has a density f, the ratio
q(x) = f(x)/[l - F(x)] is defined for F(x) < 1 and is called the hazard rate, or
sometimes the failure rate or force of mortality. Whether or not F has a density,
F is said to have an increasing (decreasing) hazard rate-denoted IHR (DHR)-
if log [1 - F(x)] is concave where finite (convex on [0, xc)). It is easily seen that
in case q exists, this property is equivalent to q increasing (decreasing). If F is
a life distribution, q(x) dx can be interpreted as the conditional probability of
death in [x, x + dx] given that death has not occurred before x. Because of
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this interpretation, the property of increasing hazard rate has great intuitive
appeal as a representation of "wear-out." However, distributions with decreasing
hazard rate also arise in reliability, particularly as mixtures of exponential
distributions, but also as a reflection of "work-hardening."
We also consider a stronger property than IHR, namely that F has a density f

which is a P61ya frequency function of order 2 (PF2); that is, f is logarithmically
concave. Such densities are also unimodal.

Another class of distributions for which bounds are obtained is the class of
distributions with increasing hazard rate average x-l fo q(z) dz. In general F is
said to have an increasing hazard rate average (IHRA) if F(O) = 0 and if
-log [1 - F(x)] is starshaped where finite. This condition means that

(1.1) -x-l log [1 - F(x)]

is increasing in x > 0, and when F has a hazard rate q, it is equivalent to
x-1 fo q(z) dz increasing in x > 0. This class properly contains the IHR distri-
butions. Its importance in reliability theory has been discussed by Z. W.
Birnbaum, J. D. Esary, and A. W. Marshall [6].

Various other restrictions have been imposed to obtain bounds on distribution
functions. We mention in particular the results of Mallows [9], [10] who, follow-
ing Markov and Kreln, has obtained inequalities on distributions whose first
s derivatives satisfy certain boundedness and sign change conditions. Such
restrictions are not considered here.
We believe that the bounds obtained for interval probabilities may be of

more practical interest than bounds obtained only on the distribution function.
However, there are actually few such bounds to be found in the literature. Most
cases which appear to be examples provide bounds for P{iX - EXI 2 t}, and
are more properly regarded as bounds on the distribution function of the positive
random variable IX - EXI. Perhaps the most notable example that cannot be
so regarded is the inequality of Selberg [13]. Much more general results can be
found, for example, in papers by Hoeffding [8] and Rustagi [12], but these are
quite inexplicit.

In reply to a question of Anscombe in the discussion on Mallows' paper [10],
Mallows describes a method very similar to ours for obtaining bounds on
densities. However, explicit bounds on densities seem not to be known. One
reason, perhaps, is that additional restrictions are required to force a density
to exist, and to suggest a natural version of it.

2. Extremal families

Let f be a class of distributions for which bounds are desired, and suppose
that F in 5f implies F(0-) = 0. For example, ff may be the class of IHR distri-
butions with first moment pi. For some 9, it is possible to define a class 9 of
"extremal" distributions and show that certain extremums over 5f are equal to
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the corresponding extremums over 9. When 9 is sufficiently simple, the extre-
mums may then be easily obtained.

This method has been used for obtaining Chebyshev-type inequalities, for
instance, by Mallows [10]. But it cannot really be called a standard method,
and it is not a very well defined one. In fact, a proper definition of "extremal
family" seems to depend on the problem at hand, and the definition given below
does not coincide with our previous one (Barlow and Marshall [3]).

Since we assume F(O-) = 0, it is often convenient to consider F(x) =
1 - F(x) in place of F(x). Note that F(t) - F(s) = F(s) - F(t), and that
f o' F(x) dx = f o x dF(x).
For the sake of definiteness, we assume throughout that distribution functions

are right continuous.
In the cases previously considered (Barlow and Marshall [3]), the crossing

points of distributions in an extremal family 9 with fixed F in 5 are shown to
be continuous in a parameter indexing 9. With the help of this fact, it is possible
to infer that the crossing points sweep out [0, oo). Thus there exists G in 9 such
that O(t-) 2 F(t) 2 G(t), and consequently,

(2.1) sup G(t-) 2 F(t) 2 inf C(t).
9 9

In this paper we consider more closely the intertwining of distributions 9
with a fixed F in 5. In particular, we require that for 0 < 8< t < oo, there
exists G, in 9 (G2 in 9) such that 01 (02) crosses F exactly once in (s, t], and this
crossing is from above (below). With this we have for each s < t a G1 and G2
such that

(2.2) 01(8-) 2 F(s) 2 G72(s), G72(t-) 2 F(t) 2 01(t).

0 x

FIGURE 2.1

It follows immediately that

(2.3) 72(S) - ?2(t-) < F(s) - F(t) < (-)- (t).
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Though we guarantee that G1 and G2 in 9 exist, we often cannot be more specific,
so that the bounds obtained are
(2.4) inf [G(s) - G(t-)] < (8s) - P(t) < sup [G(s-) -(t)].

9 9

From the relations between G1, G2, and F, we also have more. Let 0(y, z),
0 < y, z < 1, be a function increasing in y and decreasing in z. Then

(2.5) 0(?72(8), G72(t-)) < O(P(8), P(t)) < 01,s-,G(t)),
and hence,
(2.6) inf 0(0(s), G(t-)) < 'o(P(s), F(t)) < sup o(G(s-), G(t)).

9 9

The functions we consider in this paper are 01(y, z) = 1-z/y and O2(y, z) =
1 - (1 - y)/(l - z). We have

(2.7) P(r(8),F(t)) = [P(s) - P(t)]/F(s) = P{s < X tlX > s}
and

(2.8) 02(F(s), F(t)) = [F(t) - F(s)]/F(t) = P{s < X . tlX < t}.
The definition we give of "extremal family" is motivated partly by the

requirement that there exist G1 and G2 related properly with F. The details
of the definition are designed to aid in demonstrating that various explicit 9
that we later define are in fact extremal families. Because these details may
otherwise be obscure, we begin by considering as an example the class 5 of distri-
butions F satisfying (i) F has a PF2 density (logf(x) is concave where finite),
(ii) F(O) = 0, and for convenience, F(x) < 1, x > 0, (iii) fO t(x)f(x) dx = v
where t is an increasing function on [0, oo) such that t(0) > 0. Let w* =
and let

(2.9) (x) = {ea(w) X O< w <w*,

and
x < 0,

(2.10) Gw(x) = 1 - (1 - e bx)/(l - e-bw), 0 <x < w, w > W*,
tO, X > W,

where a and b are determined by the moment condition f' t(x) dGw(x) = v.
Let 9 = 91 U 92 where 91 = {Gw: 0 < w < w*} and 92 = {G&: w > w*}.

By log concavity of f, we can show that F and Gw in 91 cross at most twice;
by the moment condition they cross at least once. Label the crossing of P from
above by uw, and the crossing of F from below by vw; see figure 2.2.
When w = 0, there is exactly one crossing; this crossing is from below and

so is denoted by vo; see figure 2.3. By the methods of Barlow and Marshall ([3],
pp. 1267-1272), it can be shown that uw ranges through [0, uw* = w*] and v.
ranges through [vo, oo ] as w ranges through [0, w*].
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o ~~~~~~~~~~~~x( ~~wuw w VWx

FIGURE 2.2

1S ~~~~~~F(X)

\ FGO~~~5(X)

O vO ~~~~~~~~~~xo yo

FIGURE 2.3

Also from the log concavity of f, it follows that F and Gw in 92 cross at most
twice; see figure 2.4.

1

I ~~~~~~~x
FIGUW uW w

FIGURE 2.4
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It can be shown that u, ranges through [w*, oo ] and v,,, ranges through [0, vo]
as w ranges through [w*, oo ].
The above properties of extremal distributions corresponding to a family of

distributions with fixed expectation lead to the following definition.
DEFINITION 2.1. A family 9 = {G,: 0 < w < 00} is said to be extremal for 5f

if (1) G E 9 and F E El implies F and G cross at most twice. For fixed F in 5,
let [m, M] be the support of F (smallest closed interval of F-probability one). Let u.
be the crossing of Ffrom above by %,, if such a crossing exists; otherwise, let u. = m.
Let v. be the crossing of F from below by V,, if such a crossing exists; otherwise,
let v,, = M; (2) there exists w* such that:

(a) G,D* crosses F exactly once, and the crossing is from above; see figure 2.5

1 G W~~Gw (X)

\ < ~~~~~~~F(x)

x
0 UW

FIGURE 2.5

(b) As w decreases from w* to 0,
(i) u ranges continuously from u,* to m,
(ii) v ranges continuously from M to vo,
(iii) u < v;

see figure 2.2.
(c) At w = 0, C,,>-Xo crosses F at most once, and the crossing is from below

at vo. If no crossing exists, v = M; see figure 2.3.
(d) As w increases from w* to oo,

(iv) u ranges continuously from u.* to M,
(v) v ranges continuously from m to vo =v
(vi) u > v;

see figure 2.4.
REMARK. In the above definition we imply that crossings occur at well

defined points. However, for certain EY and 9 it can happen in very special cases
that a crossing "point" of F in El and isolated G,f, in 9 is in reality an interval
over which F and G. coincide. In such cases, we may want to speak of the
crossing as occurring anywhere in the interval of coincidence. The continuity
of crossing points is required only to insure that there are no "gaps" where a
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crossing from above or below cannot occur. In the case of coincidence over an
interval, for example, uw* = [a, b], then it is sufficient that

lim u% > a and lim u, < b,
(2.11) wtw* w iW*or lim uw < b and lim uw > a.

wtw* WSW*

More precisely, crossing points may be regarded as interval-valued functions,
and we require that they be upper semicontinuous (see Berge [5], p. 109).
THEOREM 2.2. If 9 is extremal for 9, F e 5F and 0 < s < t < x, there exists

GI and G2 in 9 such that
(2.12) GI(s-) < F(s) < G2(s),
(2.13) G2(t-) < F(t) < G1(t).
PROOF. Consider first the existence of Gi.
Case 1 (s < t < m). By (i), there exists w < w* such that uw = m. Then

F(t) S GU(t), and by (iii), F(s) = Gw(s) = 0.
Case 2 (s < m < t < uw* or m < s < t < uw*). By (i), there exists w < w*

such that u. = t. If F and Gw are continuous at t, F(t) = Gw(t), and always,
F(t) < G.(t+) = GU(t). By (iii), F(s) 2 Ge(s).

Case 3 (s < uv* < t). Take G, = G*.
Case 4 (uu,* < s < t). To avoid trivialities, assume s < M. By (iv), there

exists w > w* such that uw = s. If GU, is continuous at s, then F(s) = G,(s),
and always, G,(s-) < F(s). By (vi), F(t) < Gw(t).

Next, consider the existence of G2.
Case 1 (s < t < m). Take G2 = Gw*.
Case 2 (s < m < t < voor m < s < t < vo). By (v), there exists w > w*

such that vw = t. If F and G. are continuous at t, F(t) = Gw(t) and always,
GU(t-) < Gw(t) < F(t). By (vi), F(s) < Gw(s).

Case 3 (s < vo < t). Take G2 = Go.
Case 4 (vo < s < t). To avoid trivialities assume s < M. By (ii), there exists

w < w* such that v,, = s. If F and G. are continuous at s, take G2 = Gw. Other-
wise, by (i) and (ii), there exists w, such that u., < s < vw, < t. Take G2 = Gw1.

If 9 is an extremal family, we use the notation 9i = {Gw: 0 < w < w*} and
92 = {Gw: w > w*}.
THEOREM 2.3. Let 9 be extremalfor 5. If F e §,0 < s < t < co and if O(y, z)

is increasing in y and decreasing in z, then
F inf 0(G(s), G(t-)), s < t < vo,
IGE92

(2.14) T(F(s), F(t)) 2 W(Go(s), ?o(t-)), s < vo < t,
| inf 0(J(s), GJ(t-)), vo < s < t;

Fsup r(G(s-), 7(t)), s < t < uw*,
(2.15) 4KF(s), F(t)) < . ,y(aw*(s-),7I*(t)), s < Uw* < t,

sup U(G(s-), ,(t)), u,* < s < t.
LGEC2
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That inf9 0(G(s), G(t)) < O(F(s), F(t)) < sups 4(G(s), G(t)) follows directly
from theorem 2.2. The more detailed results of theorem 2.3 are easily obtained
from the proof of theorem 2.2. These detailed results are useful in case uw* or v0
are known; they are also useful even when only bounds on u.* or v0 are known.
Otherwise, explicit results can be obtained only by computing the extremum
over the whole class 9 = 91 U 92.
THEOREM 2.4. If 9 is extremal for ff and if G E 9 implies that there exists a

sequence {F"}^_o,Fn e 5, such that Fn -a G in distribution, then the inequalities
of theorem 2.3 are sharp.
Of course the conditions of this obvious theorem are met if 9 C ff. However,

in the special cases considered later where a: is the class of DHR distributions
or the class of distributions with decreasing densities with a fixed moment
fJ0 P(x) dF(x), 9 ¢j ff because the moment condition may be violated. In these
cases, theorem 2.4 applies to yield sharpness of the inequalities.

3. Bounds on probabilities of intervals

To apply theorem 2.3 in a special case, it is of course necessary first to obtain
the extremal family. Such families satisfying definition 2.1 do not always exist;
in fact, the requirement that G in 9 crosses F in 5: at most twice is geared to
families 5: of distributions satisfying only a single moment condition. We offer
no guide for determining whether an extremal family exists, and no guide for
finding it when it does exist.

Before discussing more interesting examples, we mention the case that ff is
restricted by F(O-) = 0 and a moment condition fro t(x) dF(x) = v, r strictly
monotone and nonnegative. In this case, G. in gi is degenerate at w < Cl(v),
and G, in 92 places mass [v- (0)]/[r(w) - ()] = p at w 2 C'(v) and mass
1 - p at the origin. Here, most bounds of theorem 2.3 are trivially 0 or 1. With
t(x) = x, v = ,u < s, one also obtains that P{s < X < tlX < t} < ,u/s and
P{s < X < t} < ,u/s. Both of these bounds are immediate from the original
results of Chebyshev.
The remainder of this section is devoted to examples that are not quite as

trivial as this classical case.
In order to give explicit results at points of discontinuity of a bound, we

assume in the remainder of this paper that F is right continuous.
3.1. Decreasing densities. Let 5: be the class of distributions F such that

F(O-) = 0, Fr(x) is convex on [0, oo) and fro t(x) dF(x) = v < oo where r is
a nonnegative strictly monotone function on [0, oo). In this case, w* is defined by

(3.1) f_(x) dx = w*v,

(3.2) 91={GW: O < w < w*},

where
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r1, x < 0,
(3.3) = x/w, O< x < w,

-1$- X> W,

and 2 = {Gw: w > w*}, where

x < 0,
(3.4) Gw(x) = a(l-xlw), O < x <w,

IO, x > w.

The constant a is determined by the moment condition f0 P(x) dGW(x) = v.

In this case, u,w* depends on F and vo = M.

11WSGW(X)

~~(x)~

0 uW W <w*
FIGURE 3.1.1

a

Gw(x)

0x
o VW UW W tW*

FIGURE 3.1.2

Using theorem 2.3, it is straightforward to obtain explicit results when
P(x) = xr. In this case we denote v = ,Ur and obtain the following theorem.
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THEOREM 3.1.1. If F(O-) = 0, F(x) is convex on [0, co) and f _ xr' dF(x) =
,u, then for all 0 < s < t,

([r/(r + 1)s]rA,x w* = [(r + l)ArlI/r < (r + 1)s/r < t
(3.5) F(t)-F(s) < | (r + 1)r(t -8)/tr+l, w* < t < (r + 1)s/r

t 1-s[(r + 1)uri1/r (r + 1)s/r < w* < t
I - slt, t < w*.

The special case obtained from this theorem by letting t -oo has been given
by Frechet [7]; for further comments, see example 2.2 of Barlow and Marshall
[2]. Other bounds obtainable from theorem 2.3 are trivial (0 or 1) with the
exception of the upper bound for [F(t) - F(s)]/F(t). The upper bound for this
conditional probability coincides with the upper bound for F(t) - F(s) given
in the above theorem.

3.2. Increasing hazard rates. Consider now the class iF of distributions F such
that F(O-) = 0, F is IHR, and fro ¢(x) dF(x) = v < o, where r is a non-
negative strictly monotone function on [0, oo). In this case, w* = P-1(v), 91 =
{G,: 0 < w < w*} where G, is given by (2.9), and S2 = {Gw: w > w*} where
(3.6) {°(x)eo, 0 < x < w,

and b is determined by the moment condition fro t(x) dG,(x) = v. It is not
difficult to see that for all w > w*, there exists b satisfying this condition.
The continuity of crossing points u. and v. can be checked using arguments

similar to those of Barlow and Marshall ([3], p. 1269).
Since G.* is degenerate at w*, it follows that u,* = w* = Cl(v) and the details

of theorem 2.3 are useful in computing upper bounds.
It is clear from the definition of Gw that w < u, < vwO when w < w* and

vw, < w = u. when w > w*. Using these facts, one can examine the proof of
theorem 2.2 to obtain the following refinement of theorem 2.3: if 0(y, z) is
increasing in y and decreasing in z, then

sup 0(0,(s), Uw(t)), s < t < uW* = Cl(v)
<t

(3.7) O(P(,), Fr(t)) < (61u*(s), ?7,(t)) = 0(1, O), s < C1'(V) < t
0(?7,(s-), O), P-'(v) < s < t.

Although vo depends on F, it is known (Barlow and Marshall [2], lemmas
3.1 and 3.2) that in case r(x) is increasing and convex, then vo 2 v. This is useful
in computing lower bounds, since t < v implies t < vO.
Because of their importance in reliability applications, we give a number of

inequalities for IHR distributions. Since our main interest is in t(x) = xr, we
state the results for this case unless there is no loss of simplicity in stating more
general results.
THEOREM 3.2.1. If F(O) = 0, F is IHR and fo xr dF(x) = ur (r > 1), then

, 0ro < t < ,,/r or _,t/r < S < t(3.8) F(t) -F(s) >fO,t/>t"' b -s<tblT <oirr < t

where b satisfies r fO x-le-bx dx = ,ur and X,r = ,r/F(r + 1).
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PROOF. The lower bound of 0 is attained by the degenerate distribution,
which by assumption is right continuous. Suppose that s < ,lr' < t, and let
w = t so that Gw E 92. If P(s) 2 Pt(s),

1 ~~~F (x)

A~~~~Gt (x)
1 1

FIGURE 3.2.1

Gt(x~~

o ~ S
O s t t

FIGURE 3.2.2

then since Ue(t-) 2 P(t) (figure 3.2.1),

(3.9) F(t) - F(s) 2 Gt(t-) - Gt(s).
Next suppose F(s) < Vt(s) (figure 3.2.2). Since r> ], xt is convex, and it

follows that vo 2 ,2r ; but v ranges monotonically through [0, vo] as w ranges
through [,urlr, oo]. Hence there exists w > t such that v. = s, and we conclude
that
(3.10) F(t) - F(s) > inf (e-bs - e-bt)

'Wt

where b satisfies r f xS-le-bZ dx = I,U. Since extremal distributions satisfy the
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moment condition, they must cross at least once, and we conclude that b is a
monotone increasing function of w. Differentiating with respect to b, we see
that e-b8- e-b is increasing for b < (t - s)-1 log t/s and decreasing otherwise.
Hence, the infimum is attained for w = t or w = .
The above theorem can be stated with the more general condition that

fO' (x) dF(x) = v where ¢(x) > 0 is convex and strictly increasing. The crucial
fact used in the proof is that vo > t-1(v).
THEOREM 3.2.2. If F(O) = 0, F is IHR and rO t(x) dF(x) = v < oo where

r is a strictly monotone nonnegative function on [0, 0 ), then

(3.11a) F(t) - F(s) . max { sup [e-a(8-w) - e-a(t-w)], sup [1 - e-a(t-w)]}
O<W<8 8<W<t

if s < t < r1(v),
and

(3.11b) F(t) -F(s) < 1 s < r(v)< < t,
fe-bs~ ~~ (v) . s < t

where a satisfies fr t(x)ae-a(x-w) dx v and b satisfies f (x)be-bx dx + P(s)e-b8 = v.
If t(x) = x so that v = jul, then we have more explicitly that

(3.12) F(t) - F(s) < 1 -e-t -8)/p1-8) S < t < gi.

FROOF. Suppose s < t < P-'(v). Then there exists w such that w < t =
uw < P-'(v) (see figure 3.2.3), since uw > w ranges continuously through

0 wt=uw VW
FIGURE 3.2.3

[0, t-1(v)] as w ranges over the same interval. Hence,
(3.13) F(t) - F(s) < sup [Gw(t) -G(s)],

O<w<t

and we have the first bound.
In case ¢(x) = x and v = = 1, we have a = 1/(1 - w). If w < s, then

(3.14) (1 - w)2 d [G.(t)- Gw(s)]
= 1 - s)e-(8-w) /(l-w) - (1 t)e-(t-w) /(l-w) > 0,
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since s < t and the supremum over 0 < w < s is achieved with w = s. If
s <w < t, then

(3.15) (1 -w)2 d[1 - e(t-w)(1-w)] = (t -w)e-(t-w)I(1-w) < 0
dw

and again the supremum is attained with w = s.
The bound for s < C' (v) < t is attained by the distribution degenerate

at rl(v).
If t-'(v) < s < t, then since G8(s-) = e-b8 > F(s) and G8(s+) = 0, the last

bound is immediate.
THEOREM 3.2.3. If F(O) = 0, F is IHR and fO Xr dF(x) = U (r > 1), then

(3.16) F(t) -F(s) > ° /r < s < t,
F(t) l[ee8/xr"' -et/xrl'j/[1 _ et/XT"], s < /r

where Xr = /Ir/r(r + 1).
PROOF. For ,/r < s < t, the bound is attained with Gw e 92 and w = s.
Suppose s < MB/r. Since r > 1, we know that vo > Au1'. Hence, by theorem 2.3

we need consider only 92. It is easily seen that [Gw(t) - G,(s)]/G.(t) is decreasing
in w, AV/r < w < t, and hence
(3.17) [F(t) - F(s)]/F(t) > inf [G,(t) -G(s)]IG.(t);
that is, we want w > t to maximize Gw(s)/Gw(t) = (1 e-b8)/(1 - e-bt), where
b satisfies r f ' x-le-bx dx = ,.. Since b is an increasing function of w, we max-
imize with respect to b > 0. Now d/(G.(s)/G.(t)) db > 0 if and only if teb8 -
sebt < t - s. Since t > s, d/(tebs- sebt) db < 0, and we have that tebs - sebt <
teb8 - sebtb=o t - s. Letting w -- oo, we obtain b rl/X , and hence the sec-
ond bound.
As in the case of theorem 3.2.1, we could obtain similar bounds if r > 0 is

convex and increasing, by using the fact that vo > P-1(P).
THEOREM 3.2.4. If F(O) = 0, F is IHR and fo' P(x) dF(x) = v < oo where
> 0 is a strictly monotone function on [0, oo), then

(3.18) F(t) -F(s) -1=, s < C'(v)

where b satisfies f' (x)be-bx dx + ¢(s)e-b8 = v.
PROOF. The bound for s < '(v) is attained by G,1 in 91, s < w < t. For

s > t-'(v) we need consider only 92, and by the monotonicity obtained in the
proof of theorem 3.2.3, the result follows.11
THEOREM 3.2.5. If F(O) = 0, F is IHR and fo Xr dF(x) = ,Lr, then

(3.19) FF(t) - F(s) > f0, s < t < A,u
1 - F(s) - - eb(8) t >r

where b satisfies r f0 xr-le-bx dx = Mr.
PROOF. The proof parallels the proof of theorem 3.2.1 to a certain extent.
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Clearly, if t <PtA," the bound is attained with Gt E gi. Suppose t > ,4/r and
s < vo. If F(s) 2 ?t(s) (see figure 3.2.1), then

(3.20) F(t) (s) = 1 _-J(t) > 1 _ Z,(t-) = G,(t-) - Gt(s)
F(s) F(s) - 0ag(s) Gts

If F(s) < Vj(s) (see figure 3.2.2) and s < vo, choose w > t so that v,', = s. In
this case

(3.21) F(t)- F(s) > G,,(t) -G~,,(s) - e1-bet-)
F(s) - Gm(s)

where b satisfies r fo x-le-bx dx = ,ur-. Since b increases with w and 1 -e-b(-
increases with b, the minimum is attained with w = t as before.
N.ow suppose s > vo. Choose G, e 91 (0 < w <,<A") so that Ow(s) = F(s),

that is, v. = s (see figure 3.2.4).

F (x)

Gw(x)
I
I

x
0 w VO S=VW

FIGURE 3.2.4

Clearly,
(3.22) F(t) - F(s) > G.(t) - Gm(s) - 1- (t- )(3.22) F(s) >- wse
But e-a(t-s) is maximized for w = 0, since a is increasing with w. Now Go =G,
so we have already found that
(3.23) 1 - e-b(t-) 1 -
where a and b satisfy

(3.24) r f0 xr-e-b dx = u, = Xae'' dX.||

THEOREM 3.2.6. If F(O) = 0, F is IHR and fO r(x) dF(x) = v < 00 where
>2 0 is a strictly increasing function on [0, co), then

F(t) - F(s) sup e-ea(tw), K t K< 1(v)
(3.25) 1 - F(s) 1, tW< .

1'(),
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where a is determined by

(3.26) | ¢(x)ae-a(-) dx = v

If t(x) = x so that v = ,ul, then we have more explicitly that

(3.27) F(t)- F(s) < 1-e(i8)/(,8), s < t < p1.
1 - F(s) -

PROOF. First suppose s < t < l'(v). Choose w < t such that uw = t (see
figure 3.2.3). Then F(t) = Vw(t) and F(s) < Ow(s). Hence,

(3.28) F(t) -F(s)1 (t) <1 G_ (t) _ f 1 - eGCte) w < s

1-F(s) F(s) yw(s) 1 - eatw) w> s

where a is determined by

(3.29) i (x)ae-a(-w) dx = f P(x + w)ae-ax dx = v.

Since r is increasing, a is increasing with w; furthermore, 1 - e-a(t-8) is increasing
in a, and we conclude that maxw <. 1 - e-a(t-8) occurs at w = s.

Clearly, the bound for t > rl(v) is attained by any G, with P-'(v) < w < t.II
Note that using theorems 3.2.5 and 3.2.6, we have also obtained bounds on

P{X > tlX > s} = [1 - F(t)]/[1 - F(s)], since
(3.30) 1 - F(t) 1- (t) - F (s)

1 - F(s) 1 - F(s)
3.3. PF2 densities. Let f denote the class of distributions F(t) = f(x) dx

such that F(O) = 0, f is PF2 on [0, o), and f('(x) dF(x) = v < o where r > 0
is a strictly monotone function on [0, oo). The extremals for this case have
been introduced in (2.9) and (2.10).

Using theorem 2.3 together with information on the extremals for PF2 densi-
ties given by Barlow and Marshall ([3], pp. 1268-1269), we obtain
THEOREM 3.3.1. If F(O) = 0, f is PF2 on [0, oo) and fr r(x)f(x) dx = v < oo

where r > 0 is strictly monotone on [0, co), then

FI 0 < s < t < l(v) = w* or rl(v) < s < t,
(3.31) F(t) - F(s) > inf be-lx dx/[1 - e-bw], s < rl(v) < t,

(3.32a)

F(t) - F(s) < max 4 sup [e-a(8-w) - e-a(t-w)], sup [1e-a(-w)],
LO<W<8 8<W<t

if s < t < ¢-1(v)

and

(3.32b) F(t) - F(S < .(s) < t,
(3.32b) F(t) -F(s) < u tbe-bx dxl[l1-e bw], 1(P) < s < t,
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where a and b are chosen to satisfy

(3-33) f '(x)be-b dx/[1 -e-bw] = fX P(x)ae-a(c-w) dx =

In section 4, we obtain explicit bounds in special cases utilizing bounds on
the density.

PROOF. To show the lower bound, suppose first t > vo and s < w*
Clearly, F(t) - F(s) > Go(t) - Go(s) = e-b - C-bt where fo' ¢(x)be-bx dx = v.
If s < w* < t < vo, choose Gw in 92 such that v,,, = t (see figure 3.3.1). This is

X r(X)X
Gw(x)

0 t=x W

FIGURE 3.3.1

possible, since vw ranges through [0, vo] as w ranges through [w*, x]. Clearly
F(t) - F(s) > G,(t) - Fm(s). The remaining lower bound is attained by the
degenerate distribution.
The upper bounds in case s < t-'(v) are given in theorem 3.2.2. Suppose that

t-'(v) < s < t. There exists a unique crossing of f from below by the density g",
of Gw, w > w* (see Barlow and Marshall [3], p. 1269); denote this crossing
by x*w. If s > x*, the bound is clear (see figure 3.3.2). If s < x*, there exists w
such that x*W = s (see figure 3.3.3). Barlow and Marshall [3] show that for this w,

1 (x)

y goo(xV~~~~~~cox

S
x

FcU s t

FIGURE 3.3.2
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J~~~~~~~~~~f(X)

x
0 X *=S W0 w~~~

FIGURE 3.3.3

fi f(x) dx < fr be-lx dx/[1 - e-bw], and since be-bx > f(x) for s < x < w, we

easily see that f8f(x) dx < ft be-bx dx/[l -e-bw] for all t > s > t-1(v).Jj
3.4. Decreasing hazard rates. Let ar be the class of distributions F such that

F(O-) = 0, F is DHR, and f0 t(x) dF(x) = v < oo, where >- 0 is a strictly
increasing function on [0, oo). Let w* be defined by f0 P(x)e-x/w* dx = w*v,
and let 9i = {G.: 0 < w < w*} where

(3.34) OW(x) = 3;x < 0,

let 92 = {Gw: w > w*} where

(3.35) fW(x) x < 0,
= ale-xlw, x> O,

and a is determined by f0 t(x) dGw(x) = P. It can be shown that 9 =
{G.: 0 < w < oo} is extremal for Y, vo = Go, and uw* is the unique positive cross-
ing point of F and G.* (which depends on F).

In this case, 9 ¢ a because fo &(x) dGw(x) 9Iv for w < w*. However, it is
easily seen that Gw can be approximated by distributions in 5J that are piecewise
exponential, with two pieces.
THEOREM 3.4.1. Let F be DHR, F(O-) = 0, and .f xT dF(x) = u,. Denote

[t,,/r(r + 1)]1/r by 0 and t/s by p. If 0 < s < t, then

(3.36)
P-8/(t-8) - p-tl(t-8) (t - s)/0 < log p,

0 < F(t) - F(s) < e-81- e-tl6, log p < (t - s)/0 < log [(rO - t)/(rO -s)],
przr(e-8z - e-z), log [(rO - t)/(rO - s)] < (t -)/0,

where z is defined by log [(r - tz)/(r - sz)] = (t - s)z.
PROOF. The lower bound is easily obtained since lim, -. G,(t) - G,(s) = 0

when s > 0. To obtain the upper bound, first consider

(3.37) sup [G(t) - G(s)] = max [e-81w -e-tlw
91 w <W*

where w* is determined by Iuw* = fI xre-z/w* dx = r(r + 1)w*r+l, or w* = 6.
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Therefore maxw<w,,* [e-81w -e-'/w] = maxz>o-, [e-8z - e-tz]. By differentiating
e-zt-a-'z, we see that this quantity has a maximum at z = log p/(t - s). Hence,

(3.38) max[ez-8Z _e-tz_ fP8$/-8)-p-t/(t-8), log p/(t - s) 2 0-1,
(3.38 max e e e-8/ - e-Io, log p/(t - s) < 0-.

Next, consider

(3.39) sup [G(t) -G(s)] = max a[e-8/w -e-t/w]
St W>2

where a is determined by

(3.40) /.r = fo x' dGw(x) = r fO x-lae-/w dx = awrI(r + 1),

or a = (0/w),. Thus

(3.41) max a[e-8/w -e-tw] = max (Oz)r[esz -e-'z].
to>O X<0-1

We compute

(3.42) d zr[e-8z - e_tz] = ztl({e-8z(r - sz) - e-tz(r - tz)}.

To investigate this derivative, consider e-xz(r - xz) as a function of x. The
derivative (d/dz)e-xz(r - xz) = ze-z[xz - (r + 1)] is < 0 for x < (r + 1)/z
and = Ofor x = (r + 1)/z, and > 0 for x > (r + 1)/z.

e-XZ (r-x z)

r r+1
\Z zI

-e-+)-------
FIGURE 3.4.1

Suppose that exp {-t0} (r - W') 2 exp {-s01} (r - s01). Then it is clear
from figure 3.4.1 with z = O' that t > (r + 1)0. Since exz(r - xz) is symmetric
in x and z, its graph for fixed x as a function of z is as in figure 3.4.1 with x and
z interchanged. By decreasing z from 0' to (r + 1)/t, we see from such a fig-
ure with x = t and using t > (r + 1)0 that e-tz(r - tz) decreases to -e-(r+l)
from exp {-t-1} (r - t-'). Similarly, from figure 3.4.1 with x and z inter-
changed, and x = s we see that e-8z(r - sz) moves to e-(r+')8/s[r - (r + 1)s/t] >
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-e-("+') from exp {-sO-'} (r - sVi). Thus by continuity, there exists
zo e [(r + 1)/t, 0-1] such that e-tz(r - tzo) = e-8z(r - szo).

Next, suppose that exp {- t/I-'} (r - t-) < exp {- so-1} (r - sO-'). Then if
a solution zo to the equation e-8z(r - sz) = e-'z(r - tz) exists in [0, 0-1],
s < (r + 1)/zo < t by figure 3.4.1. As z decreases from 0-' to (r + 1)/t,
exp {-tX-1} (r - tX-) decreases and exp {sX-l} (r - s-') increases so that no
solution exists, and in fact e-sz(r - sz) > e-'z(r - tz), 0 < z < 01. In this
case, maxz<e-i Xz(e-z -e-ez) occurs at z = 0-', and equals e-19 -e-t/1. Refer-
ring to the results for supg, [G(t) - G(s)] we see that e-8/ -e-le1 < p-8/(t-8)-
p-1(&-8). Hence, if (t - s)/log p < 0, then

(3.43a) sup [G(t) - G(s)] = p-8/(t-8) - p-t/(-8).
9

If (t - s)/log p > 0 and exp {-t6-'} (r - tO-') < exp {-s0-1} (r - sO-'), then

(3.43b) sup [G(t) - G(s)] = e-11 -e-18.
9

If exp {-tX-} (r - tO-') 2 exp {-sX-} (r - so-'), then

(3.43c) sup [G(t) - G(s)] = Xz(e-8z - e-tZ)
9

where z in ((r + 1)/t, X-1) uniquely satisfies e-tz(r - tz) = e-82(r - sz). Since
exp {-tO-'} (r - tO-') > exp {-sV'} (r - so-') implies s > r/V' (see figure 3.4.1
with z = VI), exp {-to-'}(r - to-') > exp {-so-1}(r - so-') if and only if
(r - to-')/(r - so') < exp {o0-} (t - s) if and only if

(3.44) (t - s)0-1 > log [(r - to-')/(r -s5-1)].

The condition log p < (t - s)/0 < log (ro - t)/(rO - s) is nonvacuous when
s > rO; otherwise, log p > log (rO - t)/(rO - s).

3.5. Increasing hazard rate averages. Let 5 be the class of distributions F such
that F(O) = 0, F is IHRA and f_ t(x) dF(x) = v < o, where r 2 0 is a
monotone function on [0, co). Let w* = t-(v), and let 9, = {G.: 0 < w < w*}
where

(3.45) rW(X) x < w,
= e-a, x>w

and b is determined by the moment condition fro r(x) dGw(x) = v. Let
92 = {Gw: w > w*} where Ow is given by (3.6).
Note that 92, w* and uw,* are the same as in the IHR case; this means that the

upper bounds for O(P(s), F(t)) obtained from theorem 2.3 with t > uu,* are the
same as in the IHR case.

Contrary to the IHR case, it is possible that F in 0F and G in 9 coincide over
an interval where 0 < F(x) = G(x) < 1. Thus, crossing "points" may actually
be intervals; in particular, vo may be an interval. To avoid notational complica-
tions, we write the proofs below as though crossing points are well-defined; by
s = vo we mean s is in the crossing interval vo, and by s < vo (s > vo) we mean
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that s lies to the left (right) of each point in the interval. (See the remark
following definition 2.1.)
THEOREM 3.5.1. If F(O) = 0, F is IHRA and f0 Xr dF(x) = Pr (r > 0), then

(3.46) F(t) - F(s) > sO5< t <p/r or A

(min [e-b. - e-b.t, e-b"s - e-bat r < r < t

where b8 is determined by sr(l - eba) + f,s xrbe-bex dx = I,u and bi is determined
by r fO x-le-bx dx =

PROOF. The lower bound of 0 is attained by the degenerate distribution.
Suppose that s < Yr < t, and let w = t so that Gw Ee 92. If F(s) 2 Vg(s), then
since Zt(t-) 2 F(t) (see figure 3.2.1),
(3.47) F(t) - F(s) 2 Gt(t-) - G,(s) = e-ba -e-b,.
If F(s) < Vt(8), and if s < vo (see figure 3.2.2), then there exists w > t such
that v. = s, and we conclude that
(3.48) F(t) - F(s) 2 inf [ebs - ebt]

w>t

where b satisfies

(3.49) r | xr-le-b dx =

If, on the other hand, s > vo, then there exists w < s such that vw = s (fig-
ure 3.5.1).

X F~~(x)

G w (x~~w()
1

0 w VW=S
FIGURE 3.5.1

Then ?7w(t) 2 F(t), and we conclude that

(3.50) F(t) - F(s) 2 inf [ebs - ebt]
W<S

where b satisfies

(3.51) w'(1 - e-bw) + J x'be-bx dx = ur.
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Now Gw(t) - Gm(s) = e-6 -e-bt both for G,1, in 91 and Gw in 92; also in both
cases, b is an increasing function of w (two extremal distributions must cross to
have r-th moment lir). Hence,

(3.52) inf [e-bs - e-btl] = inf [e-b-s - e-bt1]
w >t bg <b. <b,,

where b = b. is determined by (3.49), and

(3.53) inf [e-b - e-btl] = inf [e-b-8 - e-but]
w<s bo <b.<b.

where b = bw is determined by (3.51). Since bo = b., we conclude that

(3.54) min { inf [e-b8 - e-bt], inf [e-b -e-bt]} = inf [e-bs- e-bt].
W<8 W>t b.<b <b.

Now e-b - e-bt is increasing in b < (t - s)-' log (t/s) and decreasing ill
b > (t - s)-1 log (t/s). Hence, infb.<b<b. [eb - e-bt] occurs at an endpoint.11
THEOREM 3.5.2. If F(O) = 0, F is IHRA and fO' P(x) dF(x) = v < o where

r is a strictly monotone nonnegative function on [0, oo ), then

1 - e-bgt, s < t < r1(v)
(3.55) F(t) - F(s) < s < 4-1(v) < t,

te-Ns t-1(v) < s < t,

where bs is determined by f' P(x)be-bx dx + t(s)e b8 = P and bt is determined by
(t)[1 - e-bt] + fI t(x)be-bx dx = v
PROOF. If s < t < t-'(v), then Gt(s) > F(s) and G,(t+) < F(t); otherwise

F and Gt would not cross (see figure 3.5.1 with w = t). In case t > t-1(v), the
bounds follow from theorem 3.2.2 and the remark preceding theorem 3.5.1.11

3.6. Bounds on integrals. Bounds were obtained by Barlow [1] on integrals
of the form fo F(x) dx, assuming that F c 5Y is IHR, with specified mean and
variance. In this case, the extremals Gw e 9 were piecewise exponentials; these
extremals can cross F e 5f at most three times, but are not extremal in the
sense of definition 2.1. However, Fl*(x) = fJ F(u) du and G*(x) = fI 01(x) dx
can cross at most twice, since they agree at x = 0. Hence, we can show that
9* = {Gu*: Gw e 9} is extremal in the sense of definition 2.1 for V* = {F*: F E 5},
and theorem 2.3 can be applied. Hence, for example,

(3.56) inf ft Gw(x) dx < ft F(x) dx < sup f w(x) dx.

From another point of view, if we let fi(x) = F(x)/M11, then we have actually
obtained bounds for the class of distributions having decreasing PF2 densities,
constrained at the origin with specified mean.

4. Bounds on densities and hazard rates

Generally speaking, bounds on densities do not exist, even under restric-
tions which guarantee that the densities exist; a density f need only satisfy
P{X E A} = fA f(x) dx for measurable A, so can be arbitrarily defined at a
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fixed point to violate any nontrivial bound. However, when F is differentiable,
the most natural version of the density is f(t) = F'(t), and this often can be
bounded nontrivially.

If ¶ is extremal for 9, then for each t > 0 and each F E 5§, there exists G E ¶
such that'Ia crosses F from above at t. If F'(t) = f(t) and G'(t) = g(t) exist, then
clearly f(t) < g(t). Similarly, there exists G in ¶ such that a crosses F from
below at t; if F'(t) = f(t) and G'(t) = g(t) exist, then f(t) 2 g(t). Hence, barring
differentiability problems, we conclude that if ¶ is extremal for 5, then

(4.1) inf g(t) < f(t) < sup g(t).
9 9

Even though F is not differentiable at t, both the right and the left derivates
f+(t) = limAs o [F(t + A) - F(t)]/A andf_(t) = limA lo [F(t) - F(t - A)]/A may
exist at least for some t. In this case, we consider bounds valid for any version f(t)
of the density lying between f+(t) and f_(t). Similarly, G E ¶ need not be differ-
entiable at t; we use max (g+(t), g_(t)) for the upper bound and min (g+(t), g_(t))
for the lower bound. With these conventions, (4.1) still holds.

Of course if there exists G in ¶ discontinuous at t, then no upper bound exists
for F in f at t. Similarly, if there exists G in ¶ such that G(t) = 0 or 1, then the
lower bound for f(t) is 0.
From the definition of an extremal family and the location of t with respect

to uw* and vo, one can easily ascertain whether the extremizing g is in 91 or ¶2.
Bounds on interval probabilities yield bounds on densities via limiting argu-

ments in an obvious way, and similarly, bounds on the conditional probability
P{s < X < tlX > s} yield bounds on the hazard rate q. We do not give a proof
that such bounds are automatically sharp, even if the bounds on interval prob-
abilities are sharp. However, in each case that we apply this method, it is not
difficult to verify that the inequality obtained is sharp.

4.1. Decreasing densities. If F(O-) = 0 and F(x) is convex in x> 0, then
the right and left derivates of F exist finitely except possibly at 0. Let f be a
version of the density bounded by these quantities. Then by passing to the
limit in (3.5), we obtain

4(r + 1)ii,/tr+l, t < [(r + A,1)s7]"
(4.2) f(t) . ltt1, t > [(r + 1/rlt

Lower bounds for f(t) are trivial except when t = 0. In this case, we obtain from
(3.5) with t = oo that F(s) 2 s[(r + J),.r]-1/r, and hence that

(4.3) f(O) 2 [(r + 1)Lr1
4.2. IHR distributions. If F is IHR, then Marshall and Proschan [11] have

shown that F is absolutely continuous, except possibly for a jump at the right-
hand endpoint of its support. Thus q(x) = f(x)/F(x) exists for all x such that
F(x) < 1, and there exists a version of f for which q is increasing. The following
bounds apply to any such version, which, since q is increasing, must satisfy
f_(t) < f(t) < f+(t)-
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THEOREM 4.2.1. Let F be IHR, and F(O) = 0. If frOx dF(x) = jAj, then
(44) 4.',,' ',,~~~~ ~. fl/(uI - t), t < Al,44) f(t) < q(t) < {1(U -!) t > JAI.

If fO x2 dF(x) = ,u2, then

5) f(t) < q(t) <{[t + (2M2 - t2)112]/(M2 - t2), t < 2/2'(4.5) f(t) < ..o) 10t> A212.
Equation (4.4) easily follows from theorems 3.2.2 and 3.2.6. Equation (4.5)

follows from theorem 4.2.3 below.
Explicit sharp bounds for general r-th moment given do not seem to be ob-

tainable. The following theorem gives explicit bounds that are sharp only for
r = 1 or t = 0.
THEOREM 4.2.2. If F is IHR, F(O) = 0, and fr xr dF(x) = IAr (r > 1), then

(4.6) f(t) < q(t) < [r(r + 1)]1/r/( 4r/ - t), 0 < t < i.4"b/
PROOF. Since q(x) is increasing in x, for t < jIA4l it follows that

(4.7) q(t)(W1/r - t) < f I/

q(z) dz.

The right-hand inequality in statement (4.6) follows from this and the bound
F(,~r _) 2 exp {-[r(r + 1)]1/r} (see Barlow and Marshall [2], p. 1242). 1

Equality is attained in (4.6) with t = 0 by the exponential distribution; with
r = 1, the result coincides with (4.4).-1
The method of proof we illustrate in the following theorems easily admits a

generalization of the IHR property; we assume that for some given @(x) 2 0,
a(x) - (x)q(x) is increasing in x > 0. A special case of interest is @(x) = 0,
x < xO, 0(x) = 1, x > xo, in which case the hypothesis that a(x) is increasing
becomes the hypothesis that q(x) is increasing in x > xo. Thus, q is allowed
to be initially decreasing. In this case, nontrivial upper bounds for the density
are obtainable.

In order to state these results, we fix t, suppose that @(x) > 0 for x > w,
and let

(4.8) (x; a) e { d/()} x>w.

In case 0(x) > 0 for all x < w, let

(4.9) lI.(x; a) = fexp {-a 0 dz/0(z)}, 0 <x <w,
O, x > w.

REMARK. If 1/0(x) is finitely integrable over all intervals and if a is deter-
mined by the moment condition fo r(x) dGw(x; a) = fO r(x) dH,(x; a) = v,
then distributions of the form G. and H,w, form an extremal family for the
distributions to be considered in theorems 4.2.3 and 4.2.4. The case that 1/0(x)
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is not finitely integrable over all intervals is more complex. However, in proving
the following theorems, we do not adopt this point of view.
THEOREM 4.2.3. Let r 2 0 be a strictly monotone function on [0, oo) such that

fr ¢(x) dF(x) = v <00. Let 0 be such that fx dz/I(z) < oo for all finite x > t. If
a(x) is increasing in x > 0, there exists a unique solution a, of v = fr' ¢(x) dGt(x; a,)
whenever t < P-'(v). Furthermore,
(4-10) fA(t) < q (t) < 1 00 ( t > Cl(v).

THEOREM 4.2.4. Let r 2 0 be a strictly monotone function on [0, oo) such that
fr ¢(x) dF(x) = v < oo. Let 0 be such that fO dz/I(z) < oo for all x < t. If a(x)
is increasing in x > 0, there exists a unique solution a2 of V = rO (x( dH.(x; a2)
whenever t > -'(v). Furthermore,

a2/Ot) t > r-(v),(4.11) q ( ) {°f t <-C(v
and f(t) > 0.
The proofs of these two theorems depend upon the fact that if F(x) ?7(x)

for all x, and r(x) is increasing in x> 0, then

(4.12) i0 ¢(x) dF(x) (>) |O P(x) dG(x).

If a(x) is increasing in x > 0, then

(4.13) a(x) < {at x > t', and a(x) > {°t) x

so that

(4.14) q(x) {a(t)/0(x) x and q(x) 2
0

( x < t.foo, x > t, an fa(t)/O(x),x > t.
Hence,

(4.15) Q(X)-0 q(z) dz < {f a(t) dz/(z), x > t,
and

f0, x < t,
(4.16) Q(x) 2 a(t) fI dz/O(z), x > t,
or

(4.17) ]7t(x; a(t)) < F(x) < ?7t(x; a(t)).
PROOF OF THEOREM 4.2.3. Assume that t(x) is increasing in x, so that by

(4.12) and (4.17),

(4.18) f= 10 P(x) dF(x) < f (x) dG,(x; a(t)) =- 1(a(t)).

Clearly, 01(a) is strictly decreasing and continuous in a, lima-o +1(a) = limx-°
¢(x) >V, lima- +1(a) = t(t).
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Thus, if v > t(t), there exists a unique solution a, of 41(al) = v; furthermore,
a, 2 a(t) yields theorem 4.2.3. The proof for decreasing r is analogous.!1
PROOF OF THEOREM 4.2.4. Again assume t(x) is increasing, in which case it

follows from (4.12) and (4.17) that

(4.19) V = f (x) dF(x) 2 f| (x) dHa(t)(x)-*.2(a(t)).

Clearly, +2(a) is strictly decreasing and continuous in a, lima-o 42(a) =
limaO +2(a) = ¢(0) < v. Thus, if P(t) > v, there exists a unique solution a2 of
+2(a) = v; furthermore, a2 < a(t), and this yields theorem 4.2.4.1I

It is true that the inequalities of theorems 4.2.3 and 4.2.4 are sharp, but we
omit the proof.

4.3. PF2 densities. Bounds on PF2 densities can be obtained from theorem
3.3.1 using limiting arguments. However, we assume that ¢(x) = x7 and obtain
more explicit results by different methods.
THEOREM 4.3.1. Iff is PF2 on [0, oo ), f(x) = Ofor x < 0 and fro xrf(x) dx = ,

(r > 1), then

(a,, t < p
(4.20) f(t) < , t = r

Lbe bt/[1 - e-bt], t >

olr
(4.21) f(t) . [( lr
(4-21) ~~{[L'(r + 1)/up]1/re-tr(r+l)]l', t lIT

where a, is the unique solution to

(4.22) 10 xrale-al(z-t) dx = ,

and b is the unique solution to

(4.23) f0j xrbe-lx dx/(1-ebt)- e r

Both inequalities are sharp.
From the bound onf( r4/T) we can obtain an explicit lower bound on f'1i,f(x) dx,

thus complementing the sharp but nonexplicit results of theorem 3.3.1. From
(4.21),

(4.24) | ,f(x) dx f2i|, g(x) dx

for t -i,U sufficiently small, where

(4.25) g(x) = [r(r + 1)/,uA]I/r exp {-[r(r + 1)/rlh/rx}.
Since f crosses g from above and exactly once to the right of p4"', a strict reversal
of (4.24) for some t would imply that

(4.26) f,f(x) dx < | ,, g(x) dx,
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which contradicts theorem 3.8 of Barlow and Marshall [2]. Hence (4.24) holds
for all t > m1/r.
PROOF OF (4.20). The inequality for t < AVl'/ follows from theorem 4.2.3. For

t > j4/r, let
(4.27) {~~~~~~be-lxl(l - e-bt) O < X < t(4.27) g,(x) = {bex/( - x> t,

and suppose that f p gt. Since logf(x) is concave and log gi(x) is linear in
x e [0, t], there are at most two crossings of f by gi. Since f and gt are densities
with r-th moment Pr, they cross at least twice. Hence f and gt cross exactly
twice in [0, t); moreover, the second crossing of f by g, must be from below,
and we conclude that f(t) < gt(t) as asserted. Of course, equality in (4.20) for
t > A,4/ is attained by gi. 11
To prove (4.21), we need the following lemma and theorem.
LEMMA 4.3.2. If f 4(x)f1(x) dx = f (x)f2(x) dx <0, and if the support of

f, is contained in the support of f2, then

(4.28) f 0(x)fi(x) log [fi(x)/f2(x)] dx > 0.

PROOF. We have

(4.29) f 0(x)fi(x) log [fl(x)/f2(&)] dx = -J '(x)fi(x) log [f2(x)/fl(x)] dx

>f O(x)fi(x)[1 - f2(x)/fl(x)] dx

-fJ(x)fi(x) dx - f 4(x)f2(x) dx

-0.

The inequality follows directly from log z < z - 1, z > 0.11
REMARK. With +(x) -1, this is the well-known "information inequality."
THEOREM 4.3.3. Let e be a nonnegative function and X be a number such that

(4.30a) 0 <flo (x)f(x) dx = f (x)Xe-xz dx < X .

Iff is PF2 and f(x) = 0, x < 0, then f(a) > Xe-Xa where

(4.30b) a = (f xo(x)f(x) dx)/(f O(x)f(x) dx).

REMARK. In general, X satisfying fJ ck(x)f(x) dx = fo0 (x)Xe-Xx dx does not
necessarily exist. However, if 0 is monotone, then such a X always exists.
PROOF. Since f is log concave, logf(x) lies below its tangent at a, that is,

(x - a)f'(x)/f(a) + logf(a) 2 logf(x). If +(x) > 0,
(4.31) +(x)(x - a)f'(a)/f(a) + ,(x) logf(a) > +(x) logf(x),

and upon integrating, we obtain



RESTRICTED FAMILIES 255

(4.32) ff((a)) O(x)(x - a)f(x) dx + log f(a) A O(x)f(x) dxf(a)o
> f 0 (x)f(x) log f(x) dx

> f k(x)f(x) [log X - Xx] dx

= (log X - aX) 1O00 6(x)f(x) dx.

The second inequality follows from lemma 4.3.2. By the definition of a, the first
term on the left of this inequality is zero, and we havell
(4.33) log f(a) f 0 O(x)f(x) dx > (log X - aX) f|0 4(x)f(x) dx.11
PROOF OF (4.21). If r = 1, the result follows from theorem 4.3.3 with
(x) = 1. If r > 1, let +(x) = xr + (Yr±+ - -r)/(4/r - i) Then since /S

is increasing in s > 0, it follows that +(x) > 0. By straightforward algebra,
a = ,4l/. Thus X = [F(r + 1)/Prl r, and (4.21) follows.11
The bound of (4.21) for r = 1 was originally communicated to us by Samuel

Karlin.
THEOREM 4.3.4. If f is PF2, f(x) = 0, x < 0, and r is a function continuous

and strictly monotone on [0, o) such that fo' r(x)f(x) dx = v exists finitely, then

(4.34) 2(t) < a0,, t < C(v),
Y0 t < t-(v),

(4.35) q(t) 2 l inf gm(t)/fm gm(x) dx, t > r-'(v),
where gm(x) is defined in (4.27) with b uniquely determined by f0' ¢(x)gm(x) dx = v,
and a1 is determined by fr t(x)ae-Cx(-T) dx = v.
PROOF. The upper bound follows from theorem 4.2.3. To show the lower

bound, let x*(m) be the unique point where g9 crosses f from below, and suppose
first that t < x*(oo). Then there exists mO > t such that f(t) = g,,,O(t) (the proof
of this in case r is increasing is given by Barlow and Marshall [3] in the proof
of theorem 5.1; the modifications necessary in case ¢ is decreasing are obvious
and not extensive). But f(t) = g",^(t) together with l - F(t) < fr7 g,,O(x) dx
(again, see [3], proof of theorem 5.1) yields the desired result.

It remains to consider the case that t > x*(o) E x*. Then by an argument
identical with the case t < x*, we obtain

(4.36) q(x*) > g.(x*)/f g00(x) dx,

which together with q increasing yields the lower bound in this case.11
4.4. DHR distributions. If F is DHR, then F is absolutely continuous except

possibly for mass at the origin (Marshall and Proschan [11]). The following
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bounds apply to any version f of the density satisfying f_(t) > f(t) > f+(t), inl
which case q(x) = f(x)/I(x) is decreasing.
THEOREM 4.4.1. If F is DHR and r > 0 is a monotone function on [0, oo)

such that f_0 (x) dF(x) = v < , then

(4.37) f(t) < max [ sup aaeat, sup bebt],
O<a<l b>a*

where for each a, a-a(a) satisfies

(4.38) aafj t(x)e-ax dx + (1- a) (0) = v,

and a* = a(1) is determined by a* f0'(x)e-a*x dx = P.
PROOF. We have supq, g(t) = SUpb>a* be-bt and supS, g(t) = supo<,i<j aae-,

where 91 and g2 are defined in section 3.4. The result thus follows from the
remarks at the beginning of section 4. 11
COROLLARY 4.4.2. If F is DHR and fO x' dF(x) = Ir < XX then

r (te)-1, t < XYr,
(4.39) f(t) < 1Xl/relt/)'l',/r < t < (r + I)X'/,

L (r + 1)r+le-(r+l) t > (r + 1)XA/r

where Xr = /Ar/r(r + 1).
This result can be obtained from theorem 4.4.1 or from theorem 3.4.1.
THEOREM 4.4.3. If F is DHR, ur = fO Xr dF(x), then

(4.40) f(r) = q(O) > r
PROOF. Since Q(x) = -log (1 -F(x)) is concave, Q(x)/x is decreasing in x,

and q(O) = limzO Q(x)/x > Q(1A/D)/,./r. But 1i- F('lTr) < e-[r(r+1)]lit (Barlow
and Marshall [2]), and the result follows.11
Upper bounds for q similar to the results of theorems 4.2.3 and 4.2.4 have

been obtained by Barlow and Marshall [4] for cases that ¢(x) is decreasing and
t(x) is increasing but bounded, JO dz/O(z) < X0 for all x > 0, and a(x) is
decreasing. The impossibility of nontrivial lower bounds at t > 0 is also
demonstrated.
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