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1. Introduction

We present a survey of some of the recent work done on the problem of
existence of bounded invariant measure for positive contractions defined on
LI-spaces.

2. Preliminaries

1. Positive linear forms on LX-spaces. Let (E, 5, ,u) be a fixed measure space
(with ,u a-finite). Sets in ff and real measurable functions defined on (E, 5) will
always be considered up to ,u-equivalence; hence, all equalities or inequalities
between measurable sets or functions are to be taken in the almost sure sense
with respect to Iu.
We will denote by f, g (with or without subscripts) elements of the Banach

space L1(E, 9, ,u) and by h elements of the Banach space Lx = L-(E, 5, ,u). The
space Lx is the strong dual of L1 for the bilinear form: (f, h) = fEfh d,u. Con-
sideration of the strong dual of LX, in which L1 is isometrically imbedded, has
often been helpful in analysis. We here recall the following lemma from the
theory of vectorial lattices, of which we sketch a proof out of completeness.
LEMMA 1. Let X be a positive linear form defined on L°; that is, let X E (L-)'+.

Then there exists a largest element g in L+ such that the form induced by it on Lx
verifies g < X. Moreover, the complement G = {g = O} of the support of g is the
largest set in Sf (up to equivalence) for which there exists an h E L+ such that
h > 0 on G and X(h) = 0; in particular, the following equivalences hold:

(a) g >0a.s.=X(h) > Oforeveryh eL , h # 0.
(b) g = 0 a.s. XX(h) = Ofor at least one h E LX such that h > 0 a.s.
PROOF. The class A = {f: f E L+, f < X on L+} is easily seen to be closed

under least upper bounds and increasing limits; hence, g = sup A belongs to A,
and is thus the largest element of A.

Given two linear forms v1, V2 on LX, it is known and easily checked that the
formula v(h) = inf {[vl(u) + v2(h - u)]; 0 < u < h} where h E L+, defines on
L+ a linear form v on LX, which is the g.l.b. of vi and V2. Now it follows from the
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maximality of g that 0 is the g.l.b. of X - g and fo, where fo is an arbitrarily
fixed strictly positive element of LI (which is considered here as a linear form
on L-); hence, by what precedes, one has
(1) inf (X(u) - (g, u) + (fo, h - u)) = 0

u:O <u<h

for every h in LI+.
For h = 1G where G = {g = 0}, the term (g, u) always vanishes in the last

formula; we have thus shown the existence of functions ur (m > 1) with the
following properties:

(2) 0 < Ur < 1iG, X(Um) + (fo, 1 - Ur) <2-r.

Then the vn = inffm>n u (n > 1) verify

(3) 0 .Vnl G, X(v.) = 0, (fo, 1G- Vn) < E 2-m= 2n
m>n

as follows from vn < ur (m > n) and lG - Vn < Em>n (1G -Ur). Finally, the
function h = .n1 2-nVn belongs to L+ and verifies X(h) = 0 since
(4) A (h) =E 2--X(vn) + X ( 2-v. . 2-vX() <-0 O as p -X00

n<p n>p

because X(v.) = 0 and F, >,2-v < 2-lG Moreover, one has h > 0 on G,
because by definition {h = O} = nf {v. = 0}, and because

n

(5=)OGfo d/ <|ffo(la - v.) dA < 2-- 0 as n -*oo.

We have proved the existence of h in L; such that X(h) = 0 and h > 0 on G.
Conversely, if h E L+ verifies X(h) = 0, it follows from 0 < f gh < X(h) that
{h > O} C G, and this concludes the proof of the lemma.

2. Conservative operators on Ll-spaces. Let T be a positive linear operator
defined on L1; we suppose that T has norm < 1 (that is, a contraction) or, what
is equivalent, that its dual operator T* defined on Lx verifies T*1 < 1.

If P = {P(x, F); x E E, F E 5) is a transition function defined on (E, 5), the
formula

(6) fF Tf dI = fEfP(- F) d,, (f E L', F E ;)

defines (with the aid of the Radon-Nikodym theorem) a positive linear opera-
tor T of norm 1 on LI, provided only that the measure f ,u(dx)P(x, -) is abso-
lutely continuous with respect to p. For the Markovian random sequence
{X"1, n > 0} of initial ,u-density f, (f 2 0, f f diA = 1), and transition prob-
ability P, sums of the form F,EM Tnf where M is a subset of the set
N = {0, 1, 2, * * *} of positive integers, can be interpreted as densities: indeed,
fF E_M Tnf is the expected number of times n such that n E M and X. e F.
This well-known fact gives probabilistic meaning to some of the conditions of
the sequel.
The operator T is said to be conservative if one of the following equivalent

conditions is satisfied:
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(a) E. 0 Tnf0 = oo, a.s., where fo is an arbitrarily fixed element of LI such
that fo > 0, a.s.;

(b) for any h E L+, the condition En>o T*nh < °o a.s. implies that h = 0;
(b') for any F e 5;, the condition En>O T*nAF < °o a.s. implies that F = q a.s.
(Once it has been deduced from Hopf's maximal ergodic lemma that (a) does

not depend on fo, the equivalence of these conditions is easily proven by an
argument similar to that of section 6 of the proof of theorem 1 below.)
The operator T is said to be dissipative if one of the following equivalent

conditions is satisfied:
(a) _n o Tnf0 < X a.s., withfo as above;
(b) En>o T*nh E LX holds for at least one h E L+ such that h > 0 a.s.
The preceding conditions are to be compared with those of theorems 1 and 2

below.
3. Banach limits. A Banach limit L is by definition a positive linear form

defined on 4X(N), which is normalized and invariant under translation, that is,
which verifies L({1}) - 1 and L({Xn+l, n E N}) = L(f{x, n e N}). Here 4X(N)
denotes as usual the Banach space of bounded sequences {Xn, n E N} of real
numbers provided with the norm 11{xn} 11 = SUpN lxnl. The following classical
lemma proves the existence of Banach limits as a corollary and gives the value
of SUPL L({xn}) as found by L. Sucheston [12] by another method.
LEMMA 2. If A is a subvectorial space of 4X(N) containing {1}, any linear

form L defined on A and positive (in the sense that it takes nonnegative values on
A n 4+(N)), can be extended to a linear positive form on P4(N). Moreover, for any
fixed {xn} E 4X(N), one has

(7) sup L({x,}) = inf [L({yn}); {Yn} E A and Yn 2 Xn (n E N)]
L

where L ranges in the first member over all positive linear extensions of L to 4X(N).
PROOF. The set of all linear positive forms defined on subvectorial spaces

of P4(N) and extending L is provided with an order by: L' C L", if L" is defined
and equal to L' on the domain of definition of L'; this order is clearly inductive.
Let us show that any element maximal for this order is necessarily defined on
the whole space 4X(N).

If L' is a positive linear form defined on a vectorial subspace A' of 4X(N) which
contains {1}, and if for a given sequence {xn} (E P(N), {y'} (resp. {y"}) is a
sequence in A' such that yn' 2 x, (n E N) (resp. xn 2 y" (n e N)), then
L'({y'}) 2 L'({y"}) because {y' - y"} E A' n 4+(N). Hence, it is possible to
choose a real number c such that

(8) inf L'({y'}) 2 c > sup L'({y"})
where {yn} (resp. {y'}) ranges among the sequences of A' such that y' 2 xn
for all n (resp. y"' < xn for all n). The formula

(9) L"({Yn + axn}) = L'({y.}) + ac, ({yn} c A', a E R)
then defines a positive linear extension of L' to the subspace generated by A'
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and {xn}. And since {x,,} can be arbitrarily chosen in P0(N), A' can only be
maximal if it is defined on the whole space f0(N).

This proves the first part of the lemma, and the second part is easily derived
from the preceding argument.
COROLLARY. Banach limits exist, and moreover, for every {xnl} c 0(N); the

following limit exists
1 P-1

(10) limsup- E Xm+npx- n >O P m= O

and is equal to SUPL L({xn}) where L ranges over all Banach limits.
PROOF. Let A be the subvectorial space of t-(N) generated by {1} and

by {yn+i - Yn, n E N}, where {yn} ranges over P(N). Define L on A by
L({c + Yn±+ - yn}) = c. Since for every c e R and every {yn} e P0(N), the
inequality c + yn+i - yn 2 0 (n E N) implies that c > 0 because of

1 n-1 1(11) 0 <-L (c + Ym+, - ym) = c+-(yn - yo)-c as n -oo,nmno n

the preceding definition of L is unambiguous (if c + yn+1 - y,, = 0 (n E N),
then c = 0), and L is a positive linear form defined on A.
The lemma proves the existence of Banach limits because these are exactly

the positive linear extensions of L to P0(N). It also shows that

(12) sup L({xn}) = inf [c: c + Yn+1 - yn 2 x. (n G N)]
L

where c ranges over R and {yn} over tP(N). Let I be the infimum of the 2d
member; it can be evaluated as follows.

First it follows from xn < c + Yn+, - yn by letting xni') = (1/p) ,'m Xm+n
that

(13) Xn - p (2n+p - Y.) < c + - || {yn} 11;

hence that, using the definition of I,

(14) lim sup sup xn,i) < I.
P-~ n

On the other hand, since xn- xli) is of the form {y,.+i - y,n} for a {yn} in tP(N),
it follows from

(15) Xn < sup xP + (Xn - x( )

that the inequality I < supn x4P) holds for every p 2 1. Hence, I = limp supn x(P.

3. Existence of invariant measures

The main part of the following theorem was proved in [2] by Hajian and
Iakutani in the particular case where the operator T is induced by a measurable
and nonsingular transformation of the space (E, 3F, ,u). It was then extended
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in [7] and [11], whereas its proof was at the same time simplified by the intro-
duction of Banach limits ([12]; see also [1]).
THEOREM 1. For any positive linear contraction T of a space LI (E, i, ,), the

following conditions are equivalent:
(a) there exists g E L1 such that Tg = g and g > 0, a.s.;
(bn) for any h E L+, the equality lim infn-- (T8fo, h) = 0 implies that h = 0

(here and in the following, fo denotes an arbitrary but fixed element of L1 such that
fo > 0, a.s.);

(bg) for any F e 5, the equality limp- SUPn 1/P TZ1-3 (Tm+nfo, 1F) = 0 implies
that F = 4;

(cn) for any h G L+, the a.s. convergence ,_ T*nih < Xo for an infinite sequence
O < nO < ni < ... of integers implies that h = 0;

(c8) for any F c 5, the a.s. inequality ,j T*n'lF < 1 + e for an infinite sequence
O = nO < ni < ... of integers starting with nO = 0 implies that F = 4 (here e

denotes an arbitrarily fixed strictly positive real number);
(d) Ei Tn'fo = oo holds a.s. for every infinite sequence 0 < no < ni < ... of

integers.
The preceding conditions imply that T is conservative. If T is conservative, then

these conditions are still equivalent to the following:
(e) for every h e LX such that h > 0, a.s., one has ,_ T*nih = oo, a.s. for every

infinite sequence 0 < nO < n1 < ... of integers;
(e') for every sequence {Fk, k > 1} of measurable subsets of E such that

E = UkFk, one has Uk {,iT*ni1F = °°} = E for every infinite sequence 0 < nO <
n1 < ... of integers;

(f) for any f E L+, the a.s. convergence ,i Tn"f < oo for an infinite sequence
O < nO < n1 < ... of integers implies that f = 0.
REMARK. In case T is induced by a measurable non-singular transformation 0

of (E, 5:, IA), that is, when T*h = hoO (h c L-), the condition (c8) may be restated
as follows (if e is chosen < 1): there exists no set F e 5, nonnegligible, such that
the 0-"i(F) are mutually d'sjoint for an infinite sequence 0 = no < ni < n2 < ...

of integers (namely, there exists no weakly wandering set in the sense of [2]).
PROOF OF THEOREM 1. The proof is long and will be divided in eight parts;

however, after the remark of alinea 1, only the reasoning of alinea 2 and 4 are
not "immediate."

1. The following remark makes the implication a X (bn) obvious and will be
also used in the sequel. For any fixed h E L+, the condition lim inf (Tnfo, h) = 0
where fo is a fixed strictly positive element of LI, implies that

(16) lim inf (Tnf, h) = 0

for every f E L1+
Indeed, the general inequality f < afo + (f - afo)+ implies that

(17) (Tnf, h) < a(Tnfo, h) + I(f - afo)+i IIh! ., (a E R)
because Tn is a contraction. Letting n -* oo, one gets the desired result because
(f - afo)+ J,0, a.s. and in LI, as a -> c, since fo is strictly positive.
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From this fact follows that the validity of lim inf (Tnfo, h) = 0 for a fixed
h e L+ is independent of the strictly positive fo chosen in Ll. Hence, condi-
tion (ba) does not depend on the chosenfo and is implied by condition (a), as is
readily seen by taking fo = g.

2. If L denotes a Banach limit (see preliminaries), the formula
(18) X(h) = L({(Tnf0, h), n E N}), (h G L-)
defines a positive linear form on LX such that X(T*h) = X(h) for every h E L-.
This invariance indeed follows from the invariance of L under translation and
the fact that (Tnfo, T*h) = (Tn+lfo, h). The largest element g in L+ bounded
above by X (see lemma 1 of preliminaries) is then invariant under T. Indeed,
on one hand,

(19) (Tg, h) = (g, T*h) < X(T*h) = X(h)
holds for every h e L+ by the definitions and shows that Tg < g; on the other
hand, it follows from
(20) X(T*1) = X(1), (X - g)(T*1) < (X -9)()
(the inequality holds because X - g 2 0 and T*1 < 1), that

(21) (Tg, 1) = (g, T*1) > (g, 1).
Hence Tg = g.

Suppose that (b.) holds; then X(h) > lim infn2, (Tnfo, h) > 0 holds for every
h E L+, h F= 0. By lemma 1, it follows that g > 0 a.s. and the implication
(b.) X (a) is so proved.

3. The use of Banach limits, as in the preceding alinea, also gives an easy
proof of the implication (b8) X (ce).

If F c : verifies

(22) -i T*n"1F E L-

for an infinite sequence 0 < no < ni < ... of integers, then for any form X
obtained from a Banach limit L, as in alinea 2, one has for every integer j > 1,

(23) X(_ T*nilp) > ( E T*n.1F) = jX(iF),

and since the first member is finite and independent of j, X(1F) = 0. On the
other hand, one has by the preliminaries (section 3),

1 P-l
(24) sup X(1F) = sup L({(Tnfo, 1F)}) = lim sup- E (Tm+nfo, 1F).

X L P-- n P m=0

Thus if F verifies the hypothesis of the beginning, this last member is 0, and if
(be) holds, F must then be a.s. equal to 0; that is, condition (c8) is implied by (b8).

4. Since the implication (be) =X (b8) is clear, the proof of the implication
(c8) =* (ba) will establish the equivalence of (b.), (be), and (cB). This proof rests
on the following generalization of a lemma of [2] given in [11].
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LEMMA 3. If for an h e LX such that 0 < h < 1, one has

(25) lim inf (Tnf0, h) = 0,
n--

then there existsfor each 5 > 0 an element ha e L+ such that ha < h, (fo, h - ha) <5
and ,i T*niha < 1 for a suitably chosen infinite sequence 0 = nO < n1 < ... of
integers (starting at nO = 0). Hence for every F E aF such that
(26) lim inf (Tnfo, 1F) = 0,

n-.

there exists for every E, E' > 0 a subset FE,E' of F such that (fo, 1F - 1F__,) < e' and
EYi T*nilF_t, < 1 + E for a suitably chosen infinite sequence 0 = nO < ni < ... of
integers.
PROOF OF LEMMA. Given an infinite sequence 0 = no < n, < ... of integers

we let
(27) h' = (h - E (T*)ni+,-nih)+

o<i<s
Obviously 0 < h' < h and h' e LX.
The sequence {n1} can be chosen so that (fo, h - h') < a for a given 5 > 0.

Indeed, it follows from

(28) h-h' < E E (T*)ni+1-nih = E (T*)ni+,-ni E (T*)ni-nh
.oji=o j>0 i=o

that

(29) (fo, h - h') < E (Tn'+'-nfn(i), h)
j>0

where we have let

(30) f(j) = Lx T8-nifo
i=0

when j > 0. Hence, the hypothesis lim infnx (Tifo, h) = 0 made on h, where
one may substitute fo by f(o) by the remark of alinea 1, makes it possible to
choose the nj+l by recurrence on j from no = 0, so that

(31) (Tni+i -nifW, h) < 2(- +1),
because f(i) only depends on no, - * *, nj.
The following inequality holds for every integer i> 0 and every integer k > 0,

as will be proved by recurrence on k,
i+k

(32) E (T*)n-inih' < 1.
j=i

Taking i = 0 and letting k -3 oo, we obtain that

(33) Esj (T*)nih' < 1;
namely, that h' has the properties stated for ha in the lemma. The above in-
equality is true for k = 0 since h' < h < 1 and (T*)nl < 1 for every n. Assuming
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that the inequality is true for every i > 0 and for the value k - 1 of the recur-
rence parameter, we deduce from

i+k /(i+l)+k-1\
(34) , (T*)ni-nih' = h' + (T*)ni+i-ni( E (T*)ni-ni+lh/)

j=i \ j=i+l

< h' + (T*)ni+l-nil

that on the set {h' = O}, the first member is bounded above by 1. On the other
hand, we have that on {h' > O},
(35) h' = h - E (T*)ni+1n-h,

O<i<j

and thus that
(36)
i+k i+k-1 i+k-1
EI (T*)ni-nih' = h' + , (T*)ni+1-nih' < h' + X (T*)ni+1-n-h < h < 1.
j=i j=i j=i

The recurrence is established.
Letting h = 1F in the preceding result and a = ee'/l + e,

(37) Fc,.' = {hs > 1/(1 + E)}
one obtains from
(38) lFf,f' < (1 + e)ha that L iT*"nil F,'.,< 1 + e

and from

(39) 1F-1F_,E < 1 + e/E(h-ha) that (fo, 1F-lF_,e) <
+

= e-

This concludes the proof of the lemma.
It is easy to deduce the implication (c8) =X (b.) from the preceding lemma.

Indeed, if h e L+ verifies lim inf (Tnfo, h) = 0, then 1F verifies a similar relation
if F = {h > a} and a is a strictly positive real number. The sets F.,., constructed
from F as above are negligible if (c8) is valid; hence, (fo, 1F) < e for every E > 0,
and F is itself negligible. Finally, h is 0, since a was arbitrary.

5. To conclude the proof of the. first part of the theorem, we show that
(b,j) == (d) =: (Cn) == (bn).

If 0 < no < ni < ... is an infinite sequence of integers, we let

(40) h = S(1 + E T-fo)-l
where t is a fixed strictly positive element of L1 n LY and with the convention
that (+X)-1 = 0. Then 0 < h < S so that h E L+ and h(Fi Tnifo) < :, a.s.
(with the convention 0.oo = 0) so that Fi (Tnfo, h) < oo; hence,

(41) lim inf (T-fo, h) = 0,
n--

and if (bn) is satisfied, h must be 0; that is, L Tn'fo = +oo, a.s. This shows that
(b.) * (d).
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If h E L+ verifies -i T*nih < oo, a.s. for an infinite sequence

(42) 0 < no < ni < ...

of integers, letf = t(1 + E T*nih)-l. Thenf > 0, a.s. andf < t so thatf EL'
from f(i T*nih) < t follows that f (_ T-nf)h dA < mo. But if (d) is verified,
E Tnif = co, a.s. so that h must be 0; hence (d) =X (cu).

Finally, if h G L+ verifies lim inf (Tnfo, h) = 0, select an infinite sequence
O < no <n1 <ni such that (Tnifo, h) < 2-i. Then

(43) f fo(E T*nih) dA = _ (Tnifo, h) < 00,
so that
(44) T*nih <0o, a.s.

If (c,,) is verified, it implies that h = 0; hence (ca) X (b.).
6. The existence of a strictly positive invariant element g in LI immediately

implies that T is conservative since _n>oTng = n0 g = 00; it also implies
the validity of condition (e).

Indeed, the formula T'f = g- T*(f/g) where f c LI is such that f/g E LX,
defines a positive linear contraction T' of L1 on the dense subspace

(45) {f: f c LI,f/g E LX}
of LI; T' is indeed linear and positive on this subspace, and since it verifies these

(46) f T'f di, = (g, T*(f/g)) = (Tg, f/g) = f f d,

it can be extended by continuity to the whole of Ll. Moreover, g is T'-invariant
since T*1 = 1. Hence, condition (d) of the theorem is verified by T', and this
implies that condition (e) is verified by T. Indeed, if h G Lx is strictly positive,
so is gh in LI and

(47) g (, T*nih) = E T'ni(gh) = 00

holds a.s. for every infinite sequence 0 < no < n1 < ... of integers.
7. We show next that (e) =* (cE) if T is conservative.
If the set F is such that -i T*nilF e Lx for an infinite sequence 0 < no < ni

< ... of integers, then h = n20o2-nT*n1F is an element of L+ such that:

(48) ,_T*nih = _2-n T*n(FT*n4iF E L;
in i

moreover, the set
(49) H ={h >0} = U {T*nlj > O}

n20

is, that E T*nih < 00 on {f > 0}; hence if (e) holds, f must be 0, that is, condi-
tion (f) holds. Conversely, if (f) holds and h e Lx is strictly positive, then
f = t(1 + E, T*nih)-l belongs to L+ and verifies

(50) f (F Tnf)h dA = ff(Y T*nih) d,u < f t d, < X .

Therefore, F_ Tnf < x0, a.s. and f must be 0, that is, Y_ T*n,h = oo, a.s.
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4. Strong conservativeness

The following theorem is a counterpart to theorem 1.
THEOREM 2. For any positive linear contraction T of a space Ll(e, 5;, ,t), the

following conditions are equivalent:
(a) the only g E L+ such that Tg = g is 0;
(b.) there exists an element h c LX such that h > 0, a.s. and

(51) lim inf (T"fo, h) = 0
nx-*0

(fo denotes an arbitrarily fixed element of L' such that fo > 0, a.s.);
(be) there exists an element h E LX such that h > 0, a.s. and

p-1
(52) lim sup 1/p E (Tm+nfo, h) = 0;

pv--x n m=O

(c) there exists an element h E LX such that h > 0, a.s. and ,_ T*nih < oo, a.s.
for a suitably chosen infinite sequence 0 < nO < n1 < ... of integers;

(d) Fj Tn'fo < X holds a.s. for at least an infinite sequence 0 < nO < ni < ...

of integers.
PROOF OF THEOREM 2. (1) To prove the implication (a) X (b.), consider the

construction in alinea 2 of the proof of theorem 1 of an invariant g E LI starting
from a Banach limit L. Since g = 0 by (a), lemma 1 of the preliminaries shows
the existence of a strictly positive h E Lx such that X(h) = 0. Then (b.) follows
from the inequality 0 < lim inf, ,. (Tnfo, h) < X(h).

Conversely, (b.) =X (a). The condition lim infn,o (TIfo, h) = 0 indeed implies
by a previous remark that lim infn, (Tnf, h) = 0 for any f E L+, hence, that
(g, h) = 0 if g is invariant. Since h > 0, a.s., this shows that 0 is the only invariant
element in L'+..

(2) To show that (bn) implies (c) and (d), choose an infinite sequence
0 < no < n1 < ... of integers such that (Tnifo, h) < 2-i. Then

(53) f fo(, T*nih) d, = J (, Tnhfo)h du < E 2- <00

implies that E Tnfo < 00 a.s. since h > 0 a.s., resp. that L T*nih < oo a.s.
since fo > 0 a.s.

Conversely, (c) =X (bn) and (d) X (bn), for letting, as in alinea 5,
(54) fo = t(1 + E T*nih)-1
in the first case and h = t(1 + EI Tnifo) in the second case, one obtains that

(55) 0 < lim inf (Tnfo, h) < limi (Tn,fo, h) = 0
n--o

since y_ (T.fo, h) < X holds in both cases. This proves the implications above,
because (b.) does not depend on the fo selected, as was previously noted.

(3) It is clear that (b5) X (bn). Conversely, if (bn) holds, it is possible by
lemma 3 to construct for each 5 > 0 an element ha E LX such that 0 < ha < h,
(fo, h - ha) < 5, and that Ei T*niha E LX for a suitably chosen infinite sequence
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0 < no < n1 < ... of integers. Then X(ha) = 0 holds whatever Banach limit L
has been chosen to define X, and it follows from the corollary to lemma 2 that

l p-l
(56) lim sup - E (T-+nfo, ha) = 0.

nx n P m=O
Letting h' = E 2-Ph2-p, one obtains an element h' s L+ such that

lp-l
(57) lim sup - E (Tm+nfo, h') = 0,

p-*+ n P m=O

which is, moreover, strictly positive since {h' > O} = U {h2, > 0} and
p

(58) L1h2-p=o} foh d,A < fff(h - h2p)d, < 2-P-o as p Tm.

Thus h' satisfies condition (b5).
We propose to call the set defined in the following theorem the strongly con-

servative set associated to T.
THEOREM 3. For any positive linear contraction T of a space L1(E, 5, ,u), there

exists a measurable subset C of E (defined up to an equivalence), which is charac-
terized by each of the following properties, the third one being valid only if T is
conservative.

(a) Every T-invariant element g E L1 is carried by C, namely, {g #d 0} C C.
Conversely, there exists a T-invariant element g E L+ such that {g > 0} = C.

(b) For any infinite sequence 0 < no < n, < ... of integers, one has
Ei T"'fo = oo on C, and there exists, conversely, an infinite sequence
(59) 0 < nO < nl < ...

such that {i Tfif = oo} = C (fo denotes a strictly positive, arbitrarily fixed
element of L1).

(c) For every strictly positive h E L- and every infinite sequence

(60) O < no < n, < ...

of integers, one has E T*nih = X on C. Conversely, there exists a strictly
positive Ai E Lx and an infinite sequence 0 < no < Ft < ... of integers such
that { T*fiih = -} = C.

Moreover, C is an invariant subset of the conservative part C of T.
PROOF OF THEOREM 3. Let G denote the set of all T-invariant g in L+ and

consider the essential supremum of the carriers {g > 0} (g e G). Let C be this
set. By a general property of essential suprema, there exists a sequence {g,}
in G such that C = U {gn> 0}. Letting g = En jg,nj-'12n9gn, we obtain an
element of G such that {g > 0} = C. Since Tg = g (g E Ll) implies Tlgl = lgl,
one has {g $ 0} = {9gl > 0} C C for every T-invariant g in Ll. The existence
and uniqueness of a set C with property (a) is thus proved.
Moreover, since C = {g > 0} = {n Tn = oo}, the set C is an invariant

subset of C (see [10]).
Applying theorem 1 to the restriction of T to C, which is a contraction of
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L1[C, C n s, ,(c n *)], with the restriction of g to C as invariant strictly posi-
tive element, we obtain that E2 Tn'fo = oo on C for every infinite sequence
0 < no < n1 < ... of integers provided that fo belongs to L+ and is strictly
positive on C (remark that the invariance of C implies that the powers of the
restriction of T to C are the restrictions to C of the powers of T). When applying
theorem 2 to the restriction of T to E - C, we obtain the existence of an infinite
sequence 0 < KO < Al < ... of integers such that Fj Tlifo < X holds on E - C.
This suffices to establish property (b).
When T is conservative, a reasoning similar to the preceding, but using condi-

tion (e) of theorem 1 and condition (c) of theorem 2, establishes the validity of
property (c) of theorem 3 and concludes its proof.
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