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1. Introduction

It is common knowledge that the existence of weakly wandering sets for
ergodic transformations T in spaces of infinite measure excludes the existence of
strongly mixing transformations in such spaces if this concept is defined by
requiring the "mixing equation" (2.2) below to be true, with some sequence p.,
for all measurable sets A and B of finite measure. However, Hopf's famous
example of a transformation in the plane ([19], p. 67) shows that (2.2) may hold
for all bounded sets A and B whose boundary has measure 0. This and the desire
to put the so-called "individual" or "strong" ratio limit property of Markov
chains into the general framework of measure preserving transformations might
motivate the present attempt to treat mixing in topological measure spaces, and
to restrict the attention to almost everywhere continuous transformations.
The second section describes the measure spaces and the class of their admis-

sible isomorphisms. These isomorphisms, too, are required to be almost every-
where continuous, and thus leave invariant the concept of a mixing and, more
generally, of a quasi-mixing transformation as defined here. What is involved is,
essentially, a particular kind of weak convergence of functions of two sets which
are sigma-finite measures in each variable.
One of the basic tools is the construction of mixing transformations in

Euclidean spaces from the shift in the sample space of Markov chains via an
isomorphism between these two measure spaces; this isomorphism is given in
section 3. The next section describes the relation between the strong ratio limit
property and the quasi-mixing and mixing property of the shift. Section 5 treats
some examples, and the final one contains, without proofs, category theorems
which can be obtained by exploiting these methods systematically.
The present paper owes much to oral and written discussions with F.

Papanghelou, much more, indeed, than will be apparent from the references
given below. In particular, he drew my attention to the papers [14], [16], [18],
and [21].
This work was done while the author was a visiting professor at Columbia University.
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2. Mixing transformations

Let X be a completely regular topological space and a the sigma-algebra of its
Borel sets, that is, the sigma-algebra generated by its open sets. A sigma-finite
measure ,u defined on 5Y is called tight if every Borel set A can be written as
A = Uk'=i Ck U N where each set Ck is compact, N e 5i, and Au(N) = 0. We
may assume that ,I(Ck) < +oo. In fact, there are Borel sets Dk, with finite
measure such that Ck = UI=, Dk,, and compact sets Cklm and Borel null sets
Nk, such that Dkl = Um=1 Ckim U Nkl-

If , is tight and v is ,u-continuous, v is also tight. In the case of a finite measure,
tightness as defined here means the same as "regularity and tightness" as studied
by Le Cam [15], Prohorov [17], Varadarajan [20], Hildenbrand [8], and others;
Bochner [2] and Kappos [12] use the term "strictly topological measure." In
the general case, ,u being sigma-finite, it can be represented as ;I = El'= Ilsi
where each ;LI is a finite measure on 5, and since ul is IA-continuous, it is tight if
,u is. Conversely, the sum of countably many tight measures /.l, if it is sigma-
finite, is tight, because A = Uk Ckl U N, with ,l(NL) = 0, 1 = 1, 2, * implies
A = Ukl Ck, U N withN = n( N1, hence ,u(N) = 0.

Consider another completely regular space X' and the sigma-algebra V'
of its Borel sets. Let V stand for the domain of the completion of ,u; for
the sake of simplicity, this completion will again be denoted by ,u. Let S
be a mapping from X into X' which is ,u-almost everywhere continuous. By
this we mean that the set M of the points of X where S is discontinuous belongs
to Wf* and Iu(M) = 0. Then S is measurable between V* and V', that is,
S-1' C V. To prove this, note that we may write X = D U L where D, L c 5,
D n L = 0, u(L) = 0, and M C L; in particular, S is continuous on D. If
A' E V', we have D n S-1A' e 5f and L n S-1A' E i* with IAu(L n S-1A') = 0;
therefore, S-1A' e V* and 1.(S-'A') = ,u(D n S-1A').
The image ,u' of ,u under S is, then, the measure given on 5' by ,u'(A') =

jA(D n S-A') where D n S-1A' C 9 for every A' E 5'. We are going to show that,
if ,u is tight, so is ,u'. In fact, given a set A' E i', write D n S-1A' = Uk Ck U N
with compact sets Ck and Iu(N) = 0. Since S is continuous on D and Ck C D, the
sets Ct = SCk are compact, and Ck C S-1A' implies Ck C SS-'A' C A'. Set
N' = A' - UkCk. Then we have Ck C S-1SCk = S-'Ck, hence S-1N' is equal to
S-1A' - UkS-CkS C S-1A' - UkCk which gives ,u'(N') = ,u(D n S-'N') <
A(D n (S-'A' - UkCk)) <, (N) = 0.

Given any two measure spaces (X, 5, IA) and (X', V', ju') of the type con-
sidered here, a mapping S from X into X' is called a homomorphism of the
former into the latter if it is u-almost everywhere continuous, and ,u' is the image
of ,u under S. Thus, tightness is preserved by homomorphisms. If S is such a
homomorphism, and if S' is one from (X', V', Iu') into a third measure space
(X", s", ,u"), the composition S' - S is a homomorphism of (X, 5;, ,u) into
(X", 5;", ,uA"). In particular, if f' is a ,u'-almost everywhere continuous real-valued
function, the function f' o S is ,u-almost everywhere continuous. A subset A of X
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is called A-almost clopen if its indicator function 1A is A-almost everywhere con-
tinuous, that is, if the boundary of A has measure 0; this implies A e V*. Apply-
ing the preceding remark, we see that the inverse image S-'A' of a ,'-almost
clopen set A' under a homomorphism S is ii-almost clopen, since 1S-lA' = 1A' S.
By an isomorphism of (X, J, ,u) onto (X', 5', ,u'), we mean a homomorphism S

of (X, 5, ,u) into (X', V', ,u') with the following property: there exists a homo-
morphism S' of (X', 5', ,u') into (X, 5, ,u) such that S'Sx = x for A-almost all
x e X and SS'x' = x' for ,'-almost all x' E X'. It will be assumed in the re-
mainder of the paper that all the measures occurring there are tight.

Consider now a homomorphism T of (X, 5f, ,u) into itself, or endomorphism, in
short. In other words, this is a measure preserving transformation which is
defined and continuous almost everywhere. The homomorphism T is called
strongly quasi-mixing if there exists a sequence of almost clopen sets Hk, k =
1, 2, ... , a sequence of positive numbers p., n = 1, 2, ... , and a function p
on 3Y X 0F such that the following is true: 0 < sO(Hk) < +°°; Hk C Hk+l;
(X- UkHk) = 0; 9 is a sigma-finite tight measure in each variable if the

other one is fixed; p(A, B) > 0 whenever A and B are almost clopen, and
,(A) > 0 and ii(B) > 0; and finally

(2.1) lim PnA(A n T-nB) = p(A, B) < +°o
n--

for any two almost clopen sets A and B included in some Hk. If for some choice
of Hk and Pn the function s has the particular form so(A, B) = u(A)M(B), that is,

(2.2) lim PnA(A n T-nB) = A(A)A(B),

we say that T is strongly mixing.
For continuous, but not necessarily measure preserving transformations in a

space of finite measure, strong mixing was defined by Jacobs [10]. It would now
be easy to define strong mixing for general positive contractions in L1(A) which
preserve almost everywhere continuous functions so as to embrace both the
situation studied by Jacobs and that considered here.
Weaker concepts could be obtained by understanding (2.1) or (2.2) in the

sense of Cesaro convergence or strong Cesaro convergence. In the latter case we
would have to speak about weak quasi-mixing and weak mixing, but we will not
use these concepts here, and we will abandon the adverb "strongly" in the sequel.

In a sense, Pn and so are independent of the choice of the sequence Hk, and p
is, up to a positive factor, determined by its values (2.1) for almost clopen sets
A and B included in some Hk. In fact, suppose that we have other sequences
H'k and pn and another function so' with analogous properties. Then there are
indices k and 1 such that p(Hk n HI) > 0. Upon applying the "mixing equations"
(2.1) to Ao = Bo = Hk n HI, we find that the finite and positive limit

(2.3) a = lim Pn =
p (A0, Bo)

n -x Pn sp(Ao, Bo)
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exists; that is, p,, and p' are asymptotically equal up to a positive factor. It
follows that ep'(A, B) = a(o(A, B) whenever A and B are almost clopen and
included in some Hk as well as in some Hi. Since s and sp' are tight in each
variable, an argument similar to those employed in [1] and [8] shows that
so'(A, B) = aso(A, B) if A, B E a and A, B C Hk n H' for some k and 1, and
this finally implies that so' = mp. In the case of a mixing transformation, upon
normalizing so and sp' by (2.2), pn and p' become asymptotically equal.
As an immediate consequence of the definitions, quasi-mixing and mixing are

invariant under isomorphisms: if T' is an endomorphism of (X', 5', ,u') and S an
isomorphism of (X, 5, ,I) onto (X', W', ju') such that T' a S = S a T holds ,u-almost
everywhere, then T is quasi-mixing if and only if T' is, and the same sequence
Pn serves both for T and T'.

Let us look first at the case u(X) < +00, and suppose that T is quasi-mixing.
Then there is a k such that js(Hk) > IsA(X); hence, IA(Hk n T-nHk) > 13A(X) for
all n, and therefore lim SUpn,- Pn 3,p(Hk, Hk)/1(X). Thus the sequence
Pn is bounded by some constant a. By (2.1) this implies 0 < so(A, B) <
a min (M(A), IA(B)) for almost clopen sets A and B contained in an Hk, and hence
for all A, B E W. On account of the complete regularity of X, the class of all
almost clopen sets included in some Hk is dense in 5F for the metric Iu(. + *)
where + stands for the symmetric difference. The usual approximation argument
shows now that (2.1) holds for all A, B E i. It follows that limn, Pn =
,o(X, X)/,u(X); hence,
(2.4) lim-,u(A n T-nB) = s(A, B),u(X)/p(X, X).

n--+

If T is mixing, we find that T is mixing in the classical sense ([9], p. 36 and [6],
p. 37). Upon normalizing so by (o(X, X) = M(X)2, we have limnx Pn = iA(X) and
(2.2), and we can satisfy (2.2) with Pn = su(X) for all n.
Suppose next that ,u(X) = +oo, and T is mixing. Then

(2.5) ,u(Hk)2 = lim pnu(Hk n T-nHk) < lim inf PnI.S(Hk),
n--),-o n-a:-ol

and therefore, u(Hk) < lim infn,- Pn for all k, hence limnl b Pn = +00.
Given an endomorphism T, a sequence of numbers pn, and a fixed set A E 5*

with ,u(A) < +oo, the class B of all sets B e T* of finite measure such that the
limit (2.1) exists and is finite, is obviously stable against unions of finitely many
disjoint sets, and differences B2 - B1 with B1 C B2. If (p(A, *) is defined on 3
by (2.1), 6B is also stable against completion relative to (p(A, *) in the following
sense: if B e 5* has the property that, for every positive e, there are sets B1 and
B2 in B such that B1 C B C B2 and so(A, B2) - (p(A, B1) < E, then B E (B. The
same remarks apply to the class of all B which satisfy (2.2); in this case, com-
pletion relative to (o(A, *) means the same as completion relative to ,u if .p(A) > 0.

Various sufficient criteria for quasi-mixing or mixing follow easily. In
view of a later application, we mention an example. Suppose that to a
certain sequence p. there exists a class e of sets with the following prop-
erties: every set of e is almost clopen and has finite measure; X is,
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up to a null set, the union of countably many sets of e; the class e
is stable against finite intersections; e is a basis for the topology of X,
that is, given any open set G and any x e G there is a set E of e such that
E C G and x is an interior point of E; the equation (2.2) holds for all A, B c e.
Then T is mixing with the given sequence (pn). In fact, (2.2) holds for all A and
B in the smallest class D over e which is stable against finite unions of disjoint
sets, and against differences of sets where one of them includes the other one.
As e is stable against finite intersections, 5) turns out to be the ring generated
by e ([5], p. 27), and since the class of all almost clopen sets with finite measure is
a ring, every set in 5D is almost clopen with finite measure. We can then write
X = UkHk U N with HkEGO, IA(N) = 0, and Hk C Hk+l. Let A be an almost
clopen subset of Hk and Ao its interior. The measure ,u being tight, we have A(A) =
sup {,u(C); C C Ao, C compact}, and since e is a basis for the topology of X, there
exists for each compact subset C of Ao a finite union D of sets of e such that
C C D C Ao; note that D E 5). Applying the same argument to Hk- A instead
of A, we find that A belongs to the completion of D relative to IA, which finishes
the proof.

There is, of course, a corresponding sufficient criterion for quasi-mixing if the
function so defined by (2.1) for A, B e e admits an extension to 9 X a which is
a tight measure in each variable, the other one being fixed, and such that, for
almost clopen sets A and B, the relation V(A, B) =0 implies g(A) = 0 or
(B) = 0.
Conversely, we remark that, given a sequence Hk as in the definition of

quasi-mixing, the class of all clopen sets included in some Hk has the properties
required of the class e of the preceding criteria, since X is completely regular.

It may often be convenient to restate the definition (2.1) or (2.2) in a "func-
tional" form. We show that, given the sequences Hk and pn, the equation (2.2)
holds for all almost clopen sets A and B included in some Hk if and only if the
relation
(2.6) lim p.,p(f(g o Tn)) = A(f)u(g)

where ,u(f) = fx f d,u, is true for any two bounded and almost everywhere con-
tinuous function f and g whose carrier is part of some Hk. In fact, (2.6) implies
(2.2) upon taking indicator functions. Conversely, (2.2) entails (2.6) for finite
linear combinations f and g of indicator functions of almost clopen sets contained
in an Hk. Suppose now that f is such a linear combination with f 2 0, whereas
g is of the general type described above. As shown in [1] and [8], given e > 0,
there is a finite linear combination g* of indicator functions of almost clopen sets
included in some Hk such that g < g* and IA(g*) < p(g) + e; hence

(2.7) lim sup pnM(f(g 0 Tn)) < lim sup p.A(f(g* o Tn))
n-o n--

= M(f)MA(g*) < (f)(A(g) + E),

and therefore lim supn-0 PnIA(f(g 0 Tn)) < ,u(f),u(g). In the same way we obtain
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IA(f)A(g) < lim inf., p.jA(f (g o Tn)), that is, (2.6). The extension to a "step"
function f of arbitrary sign, and from there to the case where f is also of the
general type, is now immediate.
As with the criterion before, quasi-mixing may be treated in a similar manner.

Given Hk, pn, and so with the properties listed in the definition, equation (2.1)
holds for all A and B admitted there if and only if

(2.8) lim p.A(f (g ° Tn)) = fff(x)g(y),p(dx, dy)

is true with all bounded and almost everywhere continuous functions f and g
which are carried by some Hk-

Let r be a natural number, Xr = Xx ... xX the product space with r factors
provided with the product topology, V0 the class of the Borel sets in Xr which
is also the product sigma-algebra of the sigma-algebra 9 in each factor, ,4(r) the
product measure of ,u on each factor, and T(r) the endomorphism defined by
T(r)(xi, * * *, xr) = (Tx,, * * *, Tx,) for (xi, * * *, x,) E Xr. It is easy to see that,
if T is quasi-mixing, T(r) also is, and that the corresponding sequence p(T) and
function (p(r) are determined by n = pn and p(r) (Aix ... xAr; Bix ... xBr) =
,p(Ai, B1) ... p(Ar, Br). A similar remark applies to a product of different spaces.
Let T be a quasi-mixing endomorphism of (X, 9, A) and Ao an invariant al-

most clopen set. Then Ai(Ao) = 0 or 1L(X - Ao) = 0. In fact, in the opposite case,
setting Bo = X - Ao, we could choose k in such a way that A = Ao n Hk and
B = Bo n Hk have positive measure. Since IA(A n T-nB) = 0 for all n, we would
have <(A, B) = 0 by (2.1); hence, ,u(A) = ,u(B) = 0 which would contradict
the choice of A and B.
However, a mixing transformation is, in general, not ergodic if ,(X) = +co

as we will see in section 5. For a later reference we recall here the definition of
the ergodic index of T. We note first that the ergodicity of T(,+l) implies that of
Tr. The ergodic index of T is, then, the largest integer r such that T(r) is ergodic;
it is 0 if T is not ergodic and oo if every T(r) is. The ergodic index is, of course,
invariant under isomorphisms.

3. An isomorphism between Markovian and Lebesguian measure

Let I stand for the set of all integers, and let Z, the set of "states," be some
nonempty subset of I. We consider a stochastic matrix 7r = (7r(i, j))i,jEz, thus
7r(i, j) 2 0 and ,j 7r(i, j) = 1; for all facts about Markov chains used here we
refer to [3]. We assume that 7r admits a nonvanishing invariant measure, that is,
a vector X = (X(j))iez such that X $ 0, X > 0, and X = Mir; more explicitly,
X(j) > 0 and X(j) = E i X(i)7r(i, j) for all j e Z. We pick one such X and keep it
fixed. We form the set X = Z' of the possible sample paths of bilateral Markov
chains with transition matrix 7r; its elements are sequences x = (x.),ei where
xce Z for every n. The topology in X will be the product of the discrete
topologies in the factor spaces Z; a basis is given by the class of the elementary
cylinders
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(3.1) A = {x: xn, = il, * * *,x= ik}
with n, < n2 < ... < nk and il e Z, 1 = 1, * - , k. This basis, together with
the empty set, is stable against finite intersections and consists of clopen sets.
Since it is also countable, it generates the same sigma-algebra 5F as the open sets.
It is easy to provide X with a metric under which it becomes complete; thus X,
being separable, is a Polish space.

Let 7r = (7rn(i, j))i,jeI be the matrix of the n-step transition probabilities. A
measure ,u will be defined for cylinders of the type (3.1) in the usual way [7], [11],
by
(3.2) us(A) = X(i1)>r2-n,(i, i2) ... 7rnk-nk-i(ik.1, ik)
and then extended to all of ff. It is tight because X is a Polish space ([5], p. 40,
(10)). Setting Xi = {x: xo = i} we find that Xi n Xj = 0 for i 0 j, Ui Xi = X,
and M(Xi) = X(i) < +oo; hence 1u is sigma-finite with ,(X) = Ei X(i). If
X(i) = 0 for some i, then ,u{x: x. = i for at least one n} = 0; thus by discarding
such states i, we may, and will, assume that X(i) > 0 for every i.
With the measure ,u and the product topology, the shift T((x.)neI) = (Xn+l)nEI

is a measure preserving homeomorphism of X onto X with a measurable inverse;
in particular, it is an automorphism in our sense.
The topological space X is, of course, not locally compact. Assuming that for

everyx = (xn)neIwehavepu{y: yn = xn forn > 0} = f{y: y. = xn forn < 0} =

0, we will now construct an isomorphism S of (X, i, Iu) onto a measure space
(X', 5', ,') where X' is an elementary closed subset of the plane, V' the sigma-
algebra of the Borel subsets of X', and ,u' the two-dimensional Lebesgue measure
on V'. To do so, let us take a sequence of mutually disjoint closed rectangles Xi
of height X(i) and width 1, i E Z, and set X' = Us Xl. Let x = (xn)nGI be a
point of X. Its image Sx is determined in the following way. To begin with,
we stipulate that Sx E X'. Next we divide X', into closed vertical strips of
width 7r(xo, i), i E Z, arranged according to the natural ordering of the states i
as integers, and let Sx fall into the strip indexed by i = xi. In the third step we
subdivide the strip into vertical closed strips of width 7r(xo, xl)7r(x1, i), i E Z, and
select the strip with i = x2 as the one to contain Sx, and so on. Our assumptions
imply that
(3.3) X(xo)2r(xo, xi) .. .*r(Xkl, Xk)

=A {y:yO = XO, yk = Xk} -+i{ Y. = Xn forn >0}
=0

for k -+ oo; thus the intersection of the closed strips just constructed is a vertical
segment which determines the abscissa of Sx. In a similar way, we obtain its
ordinate: we divide X,' into horizontal strips of height X(i)7r(i, xo), making use
of the fact that these numbers add up to X(xo), and require Sx to fall into the
strip indexed by i = x-1. This strip will then be subdivided into horizontal
strips of height X(i)7r(i, x_.)r(x_i, xo) and the strip with i = x-2 selected, and so
on.
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The mapping S of X into X' thus defined is everywhere continuous. In fact,
if y, = xi, i = - k, *- -, k, then the abscissas of Sx and Sy differ by
at most X(xo)7r(xo, xi) ... 7r(Xkl, Xk) and their ordinates by at most
X(x_k)lr(xk, X-k+1) . .. 7r(x-i, xo), and both quantities go to 0 for k -+X . The
construction of S shows that the equation 1/'(A') = ,u(S-WA) holds whenever A'
is the intersection of a vertical and a horizontal strip of the type described above;
hence, it holds for every set A' e W'; that is, S is a homomorphism. Since every
vertical or horizontal segment in one of the rectangles Xi' is the intersection of at
least one sequence of our vertical or horizontal strips, respectively, S maps X
onto X'. Therefore, a mapping S' from X' into X satisfying S(S'(x')) = x' for
all x' E X' exists and shall be kept fixed in the sequel. If Sx = Sy but x = y,
there are either two adjacent vertical or two adjacent horizontal strips which
both contain Sx. Denoting the union of boundary segments of strips by N',
we have 1L(N') = 0 since there are only countably many such segments. Let
N = S-'N', thus I.(N) = 0. The restriction of S to X - N is a bijective map-
ping of X - N onto X' - N', and S'Sx = x for every x e X - N. Moreover,
S' is continuous in every point of X - N', and is therefore a homomorphism of
(X', fY', Iu') into (X, 5, ,u); hence S is an isomorphism of (X, 5, ,) onto (X', W', ,u').
In view of a later application, we remark that if ,u(X) = +oo, every bounded

subset of X' is included in the union of a finite number of rectangles Xi, that is,
in the image of a finite number of elementary cylinders Xi.

It is pretty obvious how the space X', the sigma-algebra 5' and the measure
,u' have to be modified when points x with, say, a = ,u{y: Yn = xn for n > 0} > 0
occur. Roughly speaking, if ,{y: yn = xn for n < 0} = 0 still holds, the set
{y: yn = xn for n > 0} will be mapped onto a horizontal segment of length a,
endowed with one-dimensional Lebesgue measure instead of a two-dimensional
set, whereas in the case where lu{y: Yn = xn for n < 0} is positive, too, that is,
where ,u{x} > 0, we have to incorporate an atom into our measure space
(X', 9', ,A') which is then going to correspond to the point x.
The mapping T' = S o T o S-1 represents an automorphism of (X', V', ,u')

which is continuous everywhere on X' - N'. It is of a fairly elementary nature.
For example, the image of a rectangle Xf is the union of "horizontal" strips of
width 1 and height X(i)r(i, j), j E Z, where the strip indexed by j is the one
included in X; as constructed above. Similarly, the inverse image of Xt is the
union of vertical strips of height X(j) and width 7r(j, i), the one indexed by j
being the one included in Xj. A vertical strip of width 7r(i, j) and height X(i)
included in Xi is mapped by T' onto the horizontal strip of width 1 and height
X(i)r(i, j) included in Xj. The transformation T' becomes especially simple if
each row and each column of 7r contains only a finite number of elements different
from 0. Examples will be given in section 5.
We remark that if we consider the unilateral sequence space ZI' with I+ =

{0, 1, 2, * . } instead of ZI, an isomorphism S of the kind described here will be,
of course, onto a union of intervals instead of rectangles, endowed with one-
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dimensional Lebesgue measure, and mappings of the type S o T o S-i will furnish
a large class of noninvertible endomorphisms of subsets of the line.

Finally, examples of this kind as well as the invertible transformations T' in
the plane treated before yield examples of transformations in unions of k-di-
mensional intervals. In fact, the following familiar mapping Sk of the closed unit
interval onto the closed k-dimensional cube, based on dyadic expansions, is an
isomorphism of the one-dimensional Lebesgue measure space onto the k-dimen-
sional one:

Xn jo/ Xn;k Xnk+l Xnk+k-1)
. - n-O 2n nsO 2n+ n-O 2n+1 n-O 2

where xn = 0, 1, and xn = 1 for infinitely many n, or xn = 0 for all n. This map-
ping is continuous at every nondyadic point of [0, 1] and has an inverse Skwhich
is continuous at every point with nondyadic coordinates.

4. Mixing of Markov chains

Given the stochastic matrix r and the invariant measure X as in the preceding
section, we consider two elementary cylinders
(4.1) A = {x: xf = il, ... , xk =ik}, B = {x: xm= ji, .,m l=jl}
where n1 < ... < nkand ml < ... < ml. Then
(4.2) T-nB = {x: Xm,+n = jl, *-- , Xmi+n =

For n > nk- mi, it follows from (3.2) that

(4-3) jA(A n T-nB) = A(A),u(B) rm -nk+n(ik jl)
In particular, we find that

(4.4) p(Xi n T-nXj) = s(Xi),(Xj) X(j)

for all n > 0. Hence if there exists a sequence Pn such that
(4.5) lim inf Pn,u(Xi n T-nX;) > 0

for all i, j E Z, any Markov chain with transition matrix 7r is irreducible and
aperiodic; these two assumptions will always be made in the sequel.
The matrix ir is said to have the strong ratio limit property in the sense of

Pruitt [18] if there exist positive numbers y, T(i), and K(i), i E Z, such that

(4.6) lim 7rn+m(i, j) m T(i)K(j)
n--+x 7rn(#lo, jo) T (io) K(jo0)

for all m e I and i, j, io, jo e Z. Assuming this to be true, we select two states,
io and jo, to be kept fixed and set

(4.7) PnT='r(io)K( jo)7r0(io, jo)
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Then (4.6) imespli

(4.8) lim pnIr"+ l(i, j) 'YT(i)K(j)

and
(4.9) lim p.vr(i, j) = r(i)K(j)

n--

for all states i and j, and it follows that

(4.1Qa) E_ K(i)r(ij) < YK(j), E7(iZj)T(j) < 'Yr(i)

for all i, j e Z. We will now also assume that we have equality in these inequali-
ties, that is,
(4.11) F_ K(i)1r(i,j) = YK(j),

(4.12) E Xr(i,j)rT(j) = y'r(i).jZ

By (4.8) and (4.9), a sufficient condition for (4.11) is that for everyj there is only
a finite number of states i with 7r(i, j) > 0, and similarly for (4.12); a deeper
condition will be discussed below.
The relations (4.3)-(4.7) entail

(4.13) lim p.IA(A n T-nB) = s(A, B)
n-*0

with

(4.14) po(A, B) = A(A)A(B)ymy-nkT('k) -(ji)
if A and B are given by (4.1). Let us now keep B fixed, and consider the sigma-
algebra 5M.. ..,, of the sets of 5 determined by conditions on x,,, ... I, x,Ik that is,
the atomic sigma-algebra whose atoms are the elementary cylinders A given by
(4.1). The function p'(., B) defined for such elementary cylinders A by (4.14)
admits a unique sigma-additive extension to 5.,. . n,. A simple computation shows
that the relations (4.12) are equivalent to the compatibility of these measures
on the various sigma-algebras ¢m thus giving rise to a nonnegative function
y($., B) defined on 9 =Um <... <nk *ni. n,whose restriction to every 5Fmn . . is
sigma-additive and sigma-finite. Similarly, the relations (4.11) ensure the com-
patibility of the measures obtained by extending s(A, *) to the sigma-algebras
5m,...m, if A has the form (4.1), and these compatibility conditions are then still
satisfied by the corresponding extensions of po(A, *) to the various Fmi -in if
A e 9; in fact, this amounts to interchanging the order of summation in a doubly
infinite series with positive terms.

Next, an adaptation of some proof of Kolmogorov's extension theorem ([5],
p. 212) shows that sp admits one and only one extension to ff X 5 which is a
sigma-finite measure in each variable, the other one being fixed. Since X is a
Polish space, these measures are then tight. We keep the letter so to denote the
extension to 5f X W. If Ao and Bo are almost clopen sets with positive measure,
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there exist elementary cylinders A and B such that A C Ao and B C Bo; hence
sp(A, B) > 0 by (4.14), and therefore p(Ao, Bo) > 0. Upon applying the criterion
for quasi-mixing deduced in the first section, where e consists of the empty set
and the elementary cylinders, we find that the shift T is quasi-mixing, with pn
and so given by (4.7) and (4.14).

In some cases the sequence pn can be found directly. The formula (4.7) gives
then, up to a factor, the asymptotic behavior of 7rn(io, jo), and the criteria es-
tablished by Kakutani and Parry [11] lead to a way of determining the ergodic
index of T: the index is r if 5n'= Pn-r = +oo, but _n:=I pnT-l' < +X; it is 00 if
En_I pn,r = +c0 for every r. Roughly speaking, a high ergodic index corresponds
to a sequence Pn which increases slowly, that is, a slowly quasi-mixing transfor-
mation. Also, T is ergodic if and only if Tn'= pn 1 = +-0.

Let us now look at the case of a so-called R-recurrent chain. According to
Vere-Jones [21], wr is called R-recurrent if R is the radius of convergence of the
power series En =1 7"(i, j)zn, and n Irn(i, j)Rn = +X; both statements do not
depend on i and j. We assume 7r to be R-recurrent, but for a while it need not
have the strong ratio limit property. We set -y = R-1; thus 0 < -y < 1. It was
shown in [21] that the equations (4.11) and (4.12) have nontrivial positive solu-
tions K= (K(i))jez and f = (f(i))iEz, respectively, which are unique up to a
factor, and

n

(4.15) lim rn0
n- Tm(jn foR - (io) R(jo)

m=O

for all i, j, io, jo e Z.
On the other hand, let us assume that 7r has the strong ratio limit property

and that (4.6) holds. Upon setting i = io, j = jo, and m = 1, we find that
R = y-1 is the radius of convergence of the power series _n= 1 7rn(i, j)Zn and that
0 < y < 1. If, in addition, 7r is R-current and K and f are determined as before,
it follows from (4.6), (4.13), and ,n=I rn(io, jo)Rn = +oo that X = af and
K = #R with some positive constants a and A.
The chain 7r is recurrent, that is, En 1irn(i, j) = +oo, if and only if it is

1-recurrent. In this case the vector f described above as the solution of (4.12)
with -y = 1 is constant, that is, f(i) = f(io) for all i and io, and K is an invariant
measure X, which is unique up to a positive factor. Hence, if 7r is recurrent and
has the strong ratio limit property, we obtain

(4.16) lim 7rn+m(ij) - X(j)
n ~7rn(iO, jo) X(jo)

for every m E I and all i, j, io, jo E Z.
However, even if 7r is not R-recurrent, it may happen that for some invariant

measure X the equation (4.16) is true. In this case we will say that the couple
(7r, X) has the strong ratio limit property in the sense of Orey, although Orey
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considered only recurrent chains [16]. If (7r, X) has this property, it follows from
our remarks above that T is mixing and satisfies (2.2) with

(4.17) Pn = nj) -7rn(to, jo)
Examples will be given in the next section.

5. Examples

We start with a finite measure space: let Z = {0, 1} and 7r(i, j) = 2 for all i
and j. An invariant measure is given by X(O) = X(1) = 2, and IA is thus the
product measure of the measure X on each factor Z. The set X', being the union
of two rectangles of width 1 and height 4, may be thought of as the unit
square [0, 1] X [0, 1]. Then S is the familiar mapping of the bilateral sequence
space of zeros and ones onto the unit square ([6], p. 9) which sends the point
(xn)nEi into the point

(5.1) X U n) = 2In+1 nO2n )

Therefore, T' is the baker's transformation: T'x' = (20- (x,/2), (o1l2) + (xl/2))
whose mixing property is well known. The mapping S2 - T' o S2, where S2 and S2
were defined at the end of section 3, represents a simple example of an invertible
mixing transformation of the unit interval with only countably many discon-
tinuities. (This was suggested by F. Papanghelou. Other examples had been
constructed by J. von Neumann and S. Kakutani (oral communication by S.
Kakutani).) It would be interesting to know if there is a mixing, or weakly mix-
ing, invertible transformation of the unit interval with a finite number of dis-
continuities.

Let us now consider irreducible, aperiodic and recurrent chains. Orey [16] and
Kingman and Orey [14] showed that each of the following conditions is sufficient
for the strong ratio limit property.

(i) The chain is reversible; that is, there exists a vector (Xj(i))iez such that
X(i)ir(i, j) = X(j)r(j, i) for all i, j e Z. (It follows immediately that X is an
invariant measure.)

(ii) There exists an index k such that infiez _n= 1 7rn(i, i) > 0.
The symmetric random walk on the set Z = I+ = {0, 1, 2, * } with the

reflecting and absorbing barrier 0 of the type 7r(0, 1) = 7r(i, i + 1) = p,
7r(0, 0) = 7r(i, i - 1) = q for i > 0, where 0 < p, q and p + q = 1, was studied
by Karlin and McGregor [13]. It is reversible with X(i) = (p/q)i. The recurrent
random walks are obtained for p < 4, and any of the criteria (i) and (ii) implies
then that T is mixing. The measure X is infinite for p 2 4; thus we will look only
at the case p = 2 where wr is also doubly stochastic and X(i) = 1 for all i. The
transformation T' is mixing, and the mixing equation (2.6) with T' holds for all
Riemann integrable functions f and g defined on X'. Now it turns out that T' is,
up to a trivial modification, Hopf's example of a mixing transformation of a set
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with infinite measure ([9], p. 67). It consists of the baker's transformation per-
formed in each component square of X' plus a simple permutation of the hori-
zontal half-squares making up those components. Hopf proved that we may
take

(5.2) P (wfl) .

It seems that the question of whether T' is ergodic had still been unanswered.
However, on account of (5.2), the criterion by Kakutani and Parry in the form
given to it in section 4 shows that T, and therefore T', has ergodic index 2; in
particular, T is ergodic.
Next we discuss a class of examples studied by Kakutani and Parry [11], the

centrally biased random walks on the even integers. Let -1 < e < 1, and let
w = (w(i, j))i,jeI be the following transition matrix: w(O, -1) = w(O, 1) = - and
wo(i, i- 1) =2(1 + (e/i)), cow(i, i + 1) = 4(1 - (eli)) if i $ 0. We consider the
state space Z = {0, i2, ±4, *--} and define 7r to be the restriction of X to
Z X Z; this is again a stochastic matrix. The sequence

(5.3) v(0) = 1, v(i) = v(-i) = r( -e)ir(i+1 +e) if i>O

satisfies v(i)w(i, j) = V(j)w(j, i) for all i and j, and therefore v(i)w2(i, j) =
v(j)w2(j, i). Hence 7r is reversible, and an invariant measure X which fulfills
X(i)7r(i, j) = X(j)ir(j, i) for all i, j c Z is given by the restriction of v to Z. This
measure is infinite if and only if e < 4. Markov chains with transition matrix 7r
are irreducible and aperiodic. They are transient if e < and recurrent if
-4 < e. We will assume from now on that -4 <e < 4. Then T is mixing, and
the ergodic index of T equals r if

(5.4) < E <(*) ~~~~~2r < <2 r + 1
More precisely, (5.4) implies the existence of positive constants a and 3 and of
numbers r' and r" such that

(5.5) r'- 1 < r" < r < r', anl/r"+l < pn < f3nl/r'

where Pn = (7n(O, 0))-1. Thus for large r we obtain examples of transformations
T which, in a sense, mix very slowly, since Pn increases slowly.
In the particular case of the classical symmetric random walk on the even

integers, that is, e = 0, we have 7rn(0, 0) = 2-n (2n) which shows that we may
take
(5.6) Pn = (irn)1/2
to satisfy the mixing equation (2.2). Therefore T and T' have ergodic index 2.
Incidentally, the strong ratio limit property in this case follows also from the
results of Chung and Erdos [4] since we are dealing here with a process with
independent increments centered at 0.
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In the following example, let r be a positive integer and Zr the set of all
r-tuples (i1, * * *, ir) where each is is an even integer. We consider on Zr the tran-
sition matrix r(r)(ij, * - - X ir; 1l, - -, jr) = 7r(ii, ji) * 7r(ir, jr) where 7r stands
for the transition matrix of the preceding example, that is, the classical random
walk on Z. Then the uniform distribution X(r)(ij, - * *, ir) = 1 is invariant. The
resulting measure space is, up to a trivial isomorphism, the product space
(Xr, 5;(r), u(r)) considered in the first section, where (X, 5, u) denotes the space
of the classical random walk on the even integers; the shift becomes the trans-
formation T(r). The strong ratio limit property of (7r(r), X(r)) in the sense of Orey
follows immediately from that of (7r, X). Hence, the radius of convergence of the
power series n=1 7(r)n(ilj ir; ji, * jr)Z" equals one. By (5.6) the shift is
mixing with

(5.7) Pn = (jrn)rI2
For r = 2 we get a recurrent chain, and TO2) has ergodic index one. For r > 2,
however, T(r) is not ergodic and 7r(r) is transient, and therefore not R-recurrent.
For large r the transformations T(r) yield simple examples of automorphisms of
a union of countably many squares which mix very fast as expressed by (5.7).
In this geometrical form they had been proposed by F. Papanghelou. Their
mixing property with (5.6) and (5.7) can be proved directly by reasoning as in
[9]; the example obtained if r = 1 is a little simpler than the one given by Hopf.
The transformation of the next example will be quasi-mixing but not mixing.

Let Z = I and 7r(i, i - 1) = 1, 7r(i, i) = 7r(i, i + 1) 4. It is easy to verify
inductively that

(5.8) 7rn(j, j) 32n (n 2i - 1

for n -> o . Therefore, 7r has the strong ratio limit property with -y = 8 T(i) = 2-i,
and K(i) = 2i. Since 7r is the matrix of processes with independent increments, the
uniform distribution X(i) = 1 is an invariant measure. Hence, the shift T is
quasi-mixing with Pn = (9)n and

(5.9) <(A, B) = A(A)M(B)(8)mi-nk2j-ik
if A and B are given by (4.1). It also follows from (5.8) that 7r is R-recurrent
where R = 9. By taking the measure space (X, i, A) and the shift T of the
present example and passing to Xr, 5(r) A,r), and T(r) with r > 2 as we did before,
we obtain examples of quasi-mixing but not mixing transformations where 7r is
not R-recurrent.

In order to investigate further the set function so given by (4.7), let us assign to
each point x = (xn)nCI the sequence of sets Dm(x) = {y: y, = xi for ill < m},
m = 1, 2, *--. The images SDm(x) under the isomorphism S constructed in
section 3 constitute for fixed x a sequence of rectangles which "converges" to Sx
and for fixed m a partition of X' which is a subpartition of the preceding one.
Hence, we may use the Dm(x) to compute derivatives of set functions on 5.
Keeping B fixed, as given by (4.1), we get
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(5.10) =>(Dm(X), B) = (98) 2-rIL(Dm(x)) k8

with a certain positive number a. By the strong law of large numbers,
limmx xm/m = 3 for ,i-almost all points x. Since log 9/log 2 < 1, we have
limm~(m log 9 - xm log 2) =-oo and therefore, by (5.10),

(5.11) lim so'p(Dm(x),B)-)
for I-almost all x. Thus the measures so(, B) and z are mutually singular. This is,
then, still true if B E 9, since every set in 9 is the union of countably many
elementary cylinders. Finally, the class of all B e 3Y such that wp(-, B) and jA are
mutually singular is monotone, and therefore coincides with 5Y ([5], p. 27). In
the same way, we find that for fixed A in 5 the measures so(A, *) and ,u are
mutually singular.
For recent criteria for the strong ratio limit property in the case of chains with

independent increments we refer to [19].

6. Category theorems

Using the various examples of mixing transformations obtained in the form
T' = S o T ° S-i where T is the shift in the sample space of a Markov chain and
S the isomorphism described in section 3, we are in a position to derive category
theorems similar to those in the case of a finite measure ([6], pp. 77-78); however,
the proofs will be published elsewhere.

Let X be a separable manifold and ,u an atomless infinite Radon measure on X.
We denote by 3 the set of all measure preserving transformations of X; thus the
elements of 3 need be neither invertible nor almost everywhere continuous. We
endow 3 with the usual weak topology ([6], p. 62): a net (Ta) in 3 converges
weakly to a transformation T from 3 if lima ,u(If o Ta - f o TI) = 0 for every
integrable function f. This makes 3 into a Polish space; hence category state-
ments have their customary meaning. Let fz be the set of all mixing endo-
morphisms. Then MflZ is a set of the first category in 3 under the weak topology.
Note that m comprises all mixing transformations with all possible sequences
pn, and not necessarily invertible. On the other hand, given a particular sequence
of positive numbers pn, let 'YOA(pP) stand for the set of all mixing automorphisms
which satisfy the mixing equation (2.2) with just this sequence pn. Then the
following is true. Given positive numbers q and q' there exist sequences pn and
p' such that MO°(p.) and M¶O(p') are weakly dense in 3, and pn = O(n") and
n,'= 0(pn') for n-CO.



446 FIFTH BERKELEY SYMPOSIUM: KRICKEBERG

REFERENCES

[1] A. D. ALEXANDROV, "Additive set-functions in abstract spaces," Mat. Sb. (n.s.), Vol. 13
(1943), pp. 169-238.

[2] S. BOCHNER, Harmonic Analysis and the Theory of Probability, Berkeley and Los Angeles,
University of California Press, 1955.

[3] KAI LAI CHUNG, Markov Chains with Stationary Transition Probabilities, Berlin-
Gottingen-Heidelberg, Springer, 1960.

[4] KAI LAI CHUNG and P. ERDOS, "Probability limit theorems assuming only the first
moment," Mem. Amer. Math. Soc., No. 6 (1951), pp. 1-19.

[5] P. R. HALMOS, Measure Theory, New York, Van Nostrand, 1950
[6] , Lectures on Ergodic Theory, The Mathematical Society of Japan, 1956.
[7] T. E. HARRis and H. ROBBINS, "Ergodic theory of Markov chains admitting an infinite

invariant measure," Proc. Nat. Acad. Sci. U.S.A., Vol. 39 (1953), pp. 860-864.
[8] W. HILDENBRAND, Weak convergence of measures. Seminar notes. Heidelberg, 1965.
[9] E. HoPF, Ergodentheorie, Berlin, Springer, 1937.

[10] K. JACOBS, "On Poincar6's recurrence theorem," Proceedings of the Fifth Berkeley Sym-
posium on Mathematical Statistics and Probability, Berkeley and Los Angeles, University
of California Press, 1966, Vol. I, Part II, pp. 375-404.

[11] S. KAKUTANI and W. PARRY, "Infinite measure preserving transformations with
'mixing'," Bull. Amer. Math. Soc., Vol. 69 (1963), pp. 752-756.

[12] D. A. KAPPOS, Strukturtheorie der Wahrscheinlichkeitsfelder und -rdume, Berlin-Gottingen-
Heidelberg, Springer, 1960.

[13] S. KARLIN and J. McGREGOR, "Random walks," Illinois J. Math., Vol. 3 (1959), pp.
66-81.

[14] J. F. C. KINGMAN and S. OREY, "Ratio limit theorems for Markov chains," Proc. Amer.
Math. Soc., Vol. 15 (1964), pp. 907-910.

[15] L. LE CAM, "Convergence in distribution of stochastic processes," Univ. California Publ.
Statist., Vol. 2 (1957), pp. 207-236.

[16] S. OREY, "Strong ratio limit property," Bull. Amer. Math. Soc., Vol. 67 (1961), pp.
571-574.

[17] Yu. V. PROHOROV, "The method of characteristic functionals," Proceedings of the Fourth
Berkeley Symposium on Mathematical Statistics and Probability, Berkeley and Los Angeles,
University of California Press, 1961, Vol. 2, pp. 401-419.

[18] W. E. PRUiTr, "Strong ratio limit property for R-recurrent Markov chains," Proc. Amer.
Math. Soc., Vol. 16 (1965), pp. 196-200.

[19] C. J. STONE, "On local and ratio limit theorems," Proceedings of the Fifth Berkeley Sympo-
sium on Mathematical Statistics and Probability, Berkeley and Los Angeles, University of
California Press, 1967, Vol. II, Part II, pp. 217-224.

[20] V. S. VARADARAJAN, "Measures on topological spaces," Mat. Sb. (n.s.), Vol. 55 (1961),
pp. 35-100. (In Russian.)

[21] D. VERE-JONES, "Geometric ergodicity in denumerable Markov chains," Quart. J. Math.
Oxford Ser. 2, Vol. 13 (1962), pD. 7-28.


