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1. Introduction

Let T be a continuous mapping of a Polish space a into itself. Assume that
some randomness is introduced into Q2 by a normalized measure m. Then we may
distinguish between macroscopic and microscopic properties of the system; the
macroscopic properties concern the behavior of m, whereas the microscopic
properties concern the behavior of the individual points of Q, under the action
of T.

Poincar6's classical recurrence theorem (see, for example, Jacobs [6], p. 49, ff.)
says, roughly speaking, that macroscopic stationarity implies microscopic re-
currence. Here the statement concerning the behavior of the system is weakened
in passing from the macroscopic hypothesis to the microscopic conclusion of the
theorem. Imagine a sequence of systems, each governing by its microscopic
behavior (of one of its points) the macroscopic behavior of the subsequent one.
If in the first system T is the identity mapping, then the second one will be
macroscopically stationary, hence (according to Poincare) the third system will
be 'macroscopically recurrent.' Poincare's theorem does not say what the third
system will do microscopically. Theorem 3.1 of the present paper asserts that
also the third system will be microscopically recurrent, and that recurrence will
never get lost throughout the whole dynasty of systems linked in the indicated
way: recurrence is a hereditary property.
Of course we first have to make precise the concepts of macroscopic and micro-

scopic recurrence. Section 2 of this paper is devoted to the definition and dis-
cussion of recurrence of points and measures under the action of T; for measures,
weak topology is adopted, and examples and easy constructions are exhibited.

In section 3 the new recurrence theorem (theorem 3.1) is stated. We prove it
in two different ways. I had proved the theorem for mixing measures (section 5)
but not for the general case, when I told the problem to V. Strassen (Goettingen).
After 24 hours we met again, each having produced a proof for the general case.
Strassen's proof is by far the simpler one, employing the same ideas which are
used for the classical Poincar6 theorem; my proof needs some preparation and
uses the ideas of M. Kac [7] (see also Jacobs [6], p. 55, ff.); both proofs are
given here.

Section 4 gives the lattice properties of the system of all measures which are
375
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recurrent along a given sequence of time points. It is shown that 'extremal'
measures are either invariant or periodic or 'wandering' under the action of T.
In the latter case, no stronger or equivalent finite T-invariant measure exists.
This shows that our recurrence theorem goes strictly beyond the range covered
by ergodic theory with an invariant measure, and that it cannot be reduced to
the classical Poincar6 theorem by passing to a stronger finite invariant measure.
Nonperiodic 'extremal' recurrent measures are easily obtained; indeed, it is
shown in section 5 that every mixing recurrent measure is even 'universally
extremal.'

In section 6, Gaussian recurrent measures are discussed. The idea of the proof
of theorem 6.1 was given to me orally by S. M. Vershik in a discussion.

In section 7, recurrent Markov measures with finite state space are investi-
gated by an extension of methods developed in Jacobs [2], [3]. And in section 8,
we make an application to the theory of nonstationary noisy channels. A special
case of theorem 8.3 has already been announced in Jacobs [5].

I am very much indebted to V. Strassen and A. M. Vershik for their contri-
butions to this paper.

2. Recurrence

1. Topological preliminaries. Let Q = {cw, q, * * } be a Hausdorff space, and
let C(Q) denote the Banach lattice of all bounded real continuous functions on
Q with the usual supremum norm lff 11 = supw,Cn If() 1. Further, let B be the
c-field generated by C(Q), that is, the c-field of Baire sets in U. Throughout this
we shall assume Q Polish, that is, separable and metrizable such as to ensure
completeness, unless an exception is explicitly stated. Consequently, there will
be no distinction between Baire and Borel sets.
Note that R(B) = {h, m, * * -} denotes the L-space of all finite a-additive real

functions on B, that is, of all electric charges in Q2. If Q is compact, R(B) is
simply the dual Banach lattice of C(Q). The set R(B)+ of all finite measures on
Q is the positive cone of R(B). Let V = {mlm e R(B)+, m(Q) = 1} be the system
of all normalized measures, that is, probability distributions on U. Being the
cross-section of the convex lattice cone R(B)+ with the hyperplane {hl f dh = 11,
it is (algebraically) a simplex whose extremal points are just the normalized
one-point masses e&,(wE Q). In addition to the topology given by the total vari-
ation norm,

(1) llhll = lhl(Q) = sup Iffdhl,
if111<1
feC(12)

we consider in R(B) the weak topology induced by C(Q):
(2) hk- h, (weakly)
means

(3) ff dhk |f dh, (FE C(Q)).



POINCARE"S RECURRENCE THEOREM 377

Both R(B)+ and V are weakly closed. If Q is compact, V is weakly compact.
The lattice operations, obviously norm continuous, are not weakly continuous
in general (COk -C implies ,, --* , but ck A B., -- 5. A A,, is wrong if Bk 5# 65,,
(k = 1, 2, * - *)), but enjoy some semicontinuity properties. For later use, we
mention that the operation h -| hi in R(B) is weakly lower semicontinuous;
that is, (2) implies

(4) lim inf f f dlhkl 2 ff dlhl, (O < feC(Q2)).

This follows from the general formula

(5) f d|hl = sup E If fk dhl,
where the sup goes over all finite decompositions f = E fk which fulfill 0 <
fk e C(Q2). Clearly, the expressions under the sup are weakly continuous, which
proves the above statement.
Now let T be a continuous mapping of Q2 into itself; T is B-measurable. That

is, if we define the inverse image UT-1 of a set U C Q by UT-1 = {wlwT e U},
then
(6) UT-1 e B, (U G B).
The mapping T induces norm continuous mappings-also denoted by T-of
C(Q) and of R(B), each into itself, which are defined by
(7) (fT)(w) = f (wT), (o E Q, f e CM),
(8) f f d(hT) = f fT dh, (f e C(Q), he R(B)).

Clearly T: R(B) -* R(B) is weakly continuous and norm contracting. It even
commutes with all finite lattice operations, if it is one-to-one onto and has a
measurable inverse. As a rule, we shall not make the latter hypothesis. Both
R(B)+ and V are T-invariant.

2. Recurrent points.
DEFINITION 2.1. A point w E Q is called recurrent (with respect to T), if it

returns into each of its neighborhoods; that is, if for every open U containing w, the
set

(9) t(w, U) = {tIt > 0, wTt E U}

of its return times into U is nonempty. Let Q,. denote the set of all T-recurrent
points in Q.

It is obvious that for a recurrent w, the set t(w, U) is always infinite.
Throughout the paper we shall denote strictly increasing sequences to, ti, * of

nonnegative integers by gothic letters, such as t, t', * - - .

DEFINITION 2.2. Let t: to, ti, be given. A point wcE is called recurrent
along t or t-recurrent (with respect to T) if

(10) coTtk W.
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Let Q(t) denote the set of all points of Q which are recurrent along t. The points of
Ut Q(t) are also called sequentially recurrent.
We shall use both definitions also if Q is an arbitrary topological space. Obvi-

ously, sequentially recurrent points are always recurrent. Our standing hypothe-
sis that Q7 be Polish implies (i) of the following lemma.
LEMMA 2.1. Since Q is Polish, (i) Qrec = Ut Q(t). Further, (ii) for arbitrary

U C Q, let Uc = - U be the complement of U, and let

(11) Uret = {lwj E U, t(w, U) id 0}

be the set of all points in U which return to U. Then for every basis E of the topology
of Q,

(12) Qrec = n (Uret u Uc).
Uez

The proof is obvious. Note that (i) depends only on the assumption that Q
has a locally countable basis, and that (ii) holds for an arbitrary topological
space U.
COROLLARY. If U C Q is measurable, then Uret is measurable. The set Qrec of

all recurrent points is measurable.
PROOF. Measurability of Uret follows, for example, from

(13) U - Uret = U UT- - U UT-,
t>o t>1

if U is measurable. If we choose a countable basis L of the topology, measura-
bility of Qrec follows from this, and from (12). If looking for examples of recurrent
points, one should note:

(1) if t: to, tl, * * is such that tk+1 = tk + 1 for infinitely many k, then 0(t)
consists exactly of all T-fixed points;

(2) if t: to, t1, * is such that lim infk (tk+± - tk) = d < oo, then there exists.
a do such that 0 < do < d, and Q(t) consists exactly of all points w which have
period do under T, that is, which fulfill wTdo = c. If, for example, tk = 2k + 1,
then d = 2 and do = 1;

(3) if tk = k!, (k = 0,1, * ), then Q(t) contains all T-periodic poiInts;
(4) passing to a subsequence increases Q(t);
(5) there may quite well be disjoint sequences t, t' such that Q(t) = Q(t).

Take, for example, an irrational real a/2ir and define T: eiv -> ei(v+a) on Q=

{e4kp real}. There is a sequence t: tk -> oo of even, and also a sequence t': tk' - oo
of odd integers such that ei(P+t'-) i <ei(P+k'). We have Q(t) = Q= Q(Y).
Under some additional hypotheses there are general devices assuring the

existence of recurrent points. We mention the following cases.
(6) Let Q be compact. A closed nonempty set M C Q which fulfills MT C M

and is minimal with res'pect to these properties, is called minimal invariant. The
existence of minimal invariant sets follows from compactness via Zorn's lemma.
In our metrizable case, Zorn's lemma may be replaced by some more constructive
device. Minimal invariance of M implies that for every - e M, the sequence
7, IT, 7T2, *.. is dense in M. Consequeiltly, if U is an open neighborhood of
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some w e M, thenM C Ut >o UT-t, and compactness impliesM C Uo <t <L UT-'
for some finite L > 0. In particular, t(co, U) is nonempty and even dense; two
successive elements of t(co, U) differ by at most L + 1. Thus we have obtained
points which are recurrent even in a refined sense.

(7) Let m be a finite measure in Q which is T-invariant, namely, it fulfills
m(GT-1) = m(G) (G c B). Applying this to G = Ut>0 UT-', we obtain from
equation (13)

(14) m(U - Uret) = 0, (U C B).

This is Poincar6's classical recurrence theorem. By (12) (for a countable basis
) we find that m-almost every X eE2 is recurrent. By means of the individual

ergodic theorem it can even be proved that for almost every w the sets t(w, U)
each have positive frequency in (0, 1, 2, * * * ). In particular, existence of a finite
T-invariant measure implies existence of recurrent points. Incidentally, compact-
ness of Q implies the existence of a finite T-invariant measure. In the next section
we shall see how to construct T-recurrent points, if a is a product space and T
is the shift transformation.

3. Recurrent sequences. Let X = {x, y, * } be a Polish space. From copies
Xt = X, (t = O,1**) of X we form the product space

am

(15) ~~Q= I Xt = {( = (xo, Xi, * )lxt E X(t > O)},
t=O

of all sequences of points in X, with product topology, which is also Polish. The
shift mapping T: Q-* Q is defined by
(16) (xo, xi, * -)T = (xl, x2, **), ( = (xo, xi, *) C Q)

Since T is continuous, all preceding sections apply.
DEFINITION 2.3. A sequence xo, xi, e* X is called recurrent, if the corre-

sponding point co = (xo, xi, - * *) C Q is T-recurrent, and recurrent along t or
t-recurrent, if w is recurrent along t. According to the definition of product topology
in Q, a sequence xo, xi, - C* E X is recurrent along t if and only if

(17) Xt+tk -f X (t = 0, 1,

This implies, for example, that two t-recurrent sequences are equal if they
differ only in finitely many components.

Let us see how to get examples.
(1) If t: to, tl, -*. is such that tk+1 = tk + 1 for infinitely many k, then every

t-recurrent sequence is constant.
(2) Let tk = k!. Then every periodic sequence is recurrent along t: to, ti, .

Since the periodic points are dense in Q, we find that QA(t) is dense in Q, but it
is a proper subset of Q, unless X consists of a single point; indeed, it is easy to
exhibit sequences co which are not t-recurrent, if X has more than one point.

(3) If X is compact, so is Q2, and we obtain recurrent sequences co as members
of minimal T-invariant sets. There are also explicit constructions of such points.
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For X = (-1, 1) we may, for instance, put Xk = cos ak for an arbitrarily fixed
real a (almost periodicity) (see, furthermore, Morse-Hedlund [9]).

(4) It is easy to construct finite T-invariant measures in Q; for example, as
product or Markov measures. This makes (7) of section 3 applicable to yield
another way to recurrent sequences.

(5) Explicit construction of recurrent sequences: recurrence of a sequence
xO, xI, . .. , e X means that every finite section x0, * *, xt is reproduced in the
sequence again and again up to arbitrarily small deviations. This suggests the
following: let t: to, t1, be such that tk+1 - tk - (after (3) this assumption

k

causes no essential loss of generality). We intend to place points of X onto the
integers 0, 1, * * * so as to obtain a recurrent sequence. This placement will now
be done in the following way. First, choose xo, * * *, xtl E X arbitrarily; for all
k > 1 such that tk+1 -tk > tl, put xt+. = xu (0 < u < ti), thus ensuring that
XU+tk -_+xU (0 < u < t1). Second, fill all empty places u < t2 with arbitrary
xu E X; for all k > 2 such that tk+1 - tk > t2, we may put xt+u = xu (0 < u < t2)
without destroying the results of our first step, and so on. It is clear that this
construction, working as if the topology in X would be the discrete one, is
highly flexible. One could also discuss the two-sided infinite product space
Q = IV= - . X,, (X, = X, t = 0, -1, * -) with its shift T, and ask different
questions, for instance, about continuation of T-recurrent sequences in Q into
T-recurrent sequences in D. We will not discuss these problems here.

4. Recurrent measures. We consider the set V of all probability distributions
on Q, endow it with its weak topology, and consider T as a continuous mapping
of V into itself. We want to define recurrent probability distributions as recurrent
points in V. As V, in general, is not Polish, we have to make a choice between
definitions 2.1 and 2.2. We decide for the latter, thus setting up the following
definition.
DEFINITION 2.4. A finite charge distribution h E R(B) is called recurrent along

t or t-recurrent, if
(18) hT4 -k h, (weakly).

k
Let us denote by
(a) R(t) the set of all t-recurrent charge distributions;
(b) R(t)+ the set of all t-recurrent finite measures; and
(c) V(t) the set of all t-recurrent probability distributions.

The elements of UtR(t), UIR(t)+, UtV(t) are simply called (sequentially) re-
current charges, measures, and probability distributions respectively.

I think there will be no confusion about the symbols R(B), R(t), and so on.
Well-known criteria for weak convergence (see, for example, Prohorov [10],

p. 164) imply the following.
LEMMA 2.2. Let m be a finite measure in Q, and t: to, t1, * . . Then the following

statements are equivalent:

(i) m e R+(t),
(ii) lilnk inf m(UT-tk) 2 m(U), (U C Q open),
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(iii) limk sup m(FT-tk) < m(F), (F C Q closed),
(iv) limk m(ET-tk) = m(E), (E C Q m-boundaryless).
Here a measurable set E is called m-boundaryless if its boundary 9E fulfills

m(aE) = 0.
Now we give some easy examples and general points of view so as to make the

reader familiar with the concept of a recurrent measure. More complicated
examples will be discussed in sections 6 and 7. The structure of R(t), R(t)+, and
V(t) will be investigated in sections 4 and 5.

(1) Let X be a compact Polish space and W be the simplex of all probability
distributions on X. Endowed with its weak topology, W is a compact Polish
space again; hence, we may define the concept of a T-recurrent sequence in W,
and construct examples according to section 4. Therefore, let some t: to, t1, *- -

and a sequence po, pi, * of probability distributions in X be given, such that

(19) Pt+jk-- Pt, (weakly)
for every t = 0, 1, *- . Let Xt = X; (t = 0, 1, *-). Let

(20) Q=II Xt c (Xo, xi, X,x:E X, (t = 0, 1, ***}t=o
and T be the shift in U. Let us show that the product measure m = lIt'=o pt in
Q is t-recurrent. By the Stone-Weierstrass theorem we have to check

(21) ff d(mTt)Iffdm
only for functions f which are derived from functions fo(x), * , f.(x) E C(X) by

(22) f (X) = fo(xo) . . fn(xn), (w = (xo,xl,, ) EQ)
For such a function f we obtain

(23) ffd(mTtk) ffTtkdm =
n

fftf dpt+tk fftdpt = ffdm,

as desired. If X is finite, m may be called an t-recurrent Bernoulli distribution,
and one may well expect that such distributions appear when a sequence of
independent random experiments is subject to recurrent influences from outside.

(2) Let X be finite and Pt = (Pt(i, k))i,keX, (t = 1, 2, * - *) be a t-recurrent
sequence in the compact space S of all stochastic X X X-matrices. Passing to a
subsequence of t, we may assume that the partial products converge along t:

(24) Pl *.** Ptk k Q E S.

Let p be any Q-invariant probability distribution. The existence of such p is a
well-known fact. It follows that the sequence (pt = pPi ... Pt) fulfills

(25) Ptk k) P

Now let Q, T as in (1), and let m be the Markovian measure in Q with initial
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distribution p and transition matrices Pi, P2, - - . We claim that m is t-recurrent.
Indeed, by the Stone-Weierstrass theorem we need only prove

(26) (mTLk) (F) = m(F)
for special cylinder sets

(27) F = { = (xo, xi, .)Ixo = yo, , xn = yn},
(the indicator functions of these sets form a total set in C(Q)). But for such sets
we have

(28) (mTtk)(F) = m(FT-L)
= Ptk(Yo)Ptk+l(Yo,0) ... Pt.+.(yn-i, Yn).

This converges to p(yo) Pi(yo, yi) ... Pn(y-l, yn) = m(F).
(3) If w E Q is t-recurrent, then S., the unit mass on the point co, is a t-recur-

rent measure.
(4) Minimal invariant sets may be found in V, if V is weakly compact

(for example, if Q is compact); thus we have another way to obtain recurrent
measures.

3. The recurrence theorem (hereditary property of recurrence)

According to our introductory announcement, we now prove a theorem which
states that recurrence is hereditary from macrophysics to microphysics, thus
providing a generalization of the topologized version of Poincar6's classical
recurrence theorem.
THEOREM 3.1. Let T be a continuous mapping of a Polish space Q2 into itself,

and m a recurrent (with respect to T) finite measure on U. Then m-almost every
point of Q is recurrent (with respect to T).

FIRST PROOF (V. Strassen). Let U C Q be open and G = Ut>o UT-'. Then
G is open, GT-1 C G, and G -GT-1 = U - U,, where U, is the set of all points
in U which return to U. It is sufficient to show m(GT-1) = m(G). Let e > 0 and
f E C(Q) be such that 0 < f < lG and f f dm > m(G) - . Find t > 0 such that
ffTtdm> ffdm- e. Then

(29) m(G) > m(GT-') 2 m(GT-') = f laTt dm > f fT' dm

> fdm - e> m(G) - 2E.

As e > 0 is arbitrary, the desired statement follows.
SECOND PROOF (Jacobs). (A) For any set U C Q, let aU denote the bound-

ary of U. The set U is called m-boundaryless if m(O U) = 0 (of lemma 2.2). An
open set U is called strictly m-boundaryless if every UT-' is m-boundaryless,
that is, if m(d(UT-')) = O, (t = O,1,1 * *). Complements, finite unions, and finite
intersections of strictly m-boundaryless sets are again strictly m-boundaryless.

Let us show that there exists a countable basis for the topology, which consists
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of strictly m-boundaryless sets only. Let the topology be given by the metric
I *, * 1. Then for any given c E Q the system of all sets of the form
(30) UE(c) = U- = {|71 |l, -j < e, (e > 0)
is a basis of neighborhoods of w. Let us show that for any t > 0 and 0 < e < e',
(31) a(U,T-t) n a(U,,T-t) = o.
Indeed, let q belong to the set on the left side of (31), and let 7' = OTt, and W'
a neighborhood of q'; then W = W'T-t is a neighborhood of -, and hence contains
points of U,T-t, U,,T-t, Ue'T-t, and U.ST-t respectively. The images under Tt of
such points belong to Uf, U., U,', U.S, respectively, and to W'. It follows that
n' Ei aU n aU. = {ic1,c1 = E} nf {r 1X, ¢1 = Et}, which yields a contra-
diction.
From (31) it follows, that for every co e Q the U,(co) are strictly m-boundaryless

if e > 0 avoids a certain countable set. Clearly, there are sequences Wol, '02, * * -

e Q, El, E2, * * > 0 such that the Ui,(Wk) are strictly boundaryless, and that their
finite unions constitute a basis of the topology. These finite unions are again
strictly boundaryless, and form a countable system.

(B) It follows that

(32) nrnUretn (U-k)
k=l

for a suitable sequence U', U2, * of strictly m-boundaryless open sets. Hence,
it will be sufficient to prove

(33) m(Uret) = mn(U)

for an arbitrary strictly m-boundaryless open set U.
(C) Let U be open and strictly m-boundaryless. For any 0 < s1 < 82 <

... < se, we have

(34) U -UretcUflUcn cT8 n PT-82 n ... nUUCT-8e;
hence, it is sufficient to show that, for every > 0, si, . - - , st may be chosen in
such a way that the set on the right-hand side of this relation has m-measure < E.

Exploiting recurrence of m, lemma 2.2, and the fact that arbitrary finite
intersections of m-boundaryless sets, such as UT-t, UCT-t, are m-boundary-
less again, we chose tl, t2, - * * successively in the following way. Let Ek, > 0,
(k = 1, 2, * *; >2 k) be chosen successively in such a way that Ev k ek, < e/2,
(k= 1,2,*-).
Let

(i) t1 > 0 be such that

(35) m(UT-'") > m(U) - El,;
(ii) t2 > 0 be such that

(36) m(UT-(tl+t2)) = m((UT-t)T-t2) > m(UT-) - E12

> m(U) - (Ell + E12),
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(37) m(UcT-C(t+t2) n UT-12) = m((U n UCT-t)T-t2)
> m(U n UcT-1)-E22;

(iii) t. be such that

(38) m(UT-(Q1+---+t-)) > m(U) - (El + E12 + + 'El),
(39) m(UcT-(1,+-* *+tn) n UT -(t2+ * * *+tn))

> m(U n UcT-iI) - (622 + f23 + * + f2n),

(40) m(UcT-(th+ +t.) n UcT(-2+ +t.) n ... nUcT-(tn-+t) n UT-tn)
> m(U n UcTt-- n ... n UCT-Cl+. "+tn-)) - E

At every step, the sets occurring as the arguments of m in the left sides of
these inequalities are mutually disjoint. As m is finite, there is, for n sufficiently
large, a k < n such that an inequality

(41) 2 > m(UcT-(t1+"+tl) n ... nUcT-(tA+ +tn) n UT-(tk++ +t)

> m(U n UcT-4 n UcT-(tk-l+tA) n ... n UcT-(tl+. +t0)
- (fEkk + + fEkn),

holds, from which

(42) m(U n UCT-81 n ... n UCT-8) < E
follows, if we put

(43) 1 = k, S1 = tk, ***s, Sk = tl + ***+ tk, q.e.d.

Both of the above proofs leave open the following question: let t: to, ti, * * be
such that m is recurrent along t. Is m-almost every w e Q recurrent along some
subsequence of t? In the classical case t: 0, 1, 2, - * *, this is trivially true. We
shall prove in section 5 that it is also true for arbitrary t, if we impose some
mixing condition on m. We shall give a third proof for m(1rec) = m(Q) in that
special case.

4. Lattice properties of recurrent measures

Let Q(Polish), T: Q -Q 2 (continuous), and t: to, t1, * be given. Remember
the definitions of section 2, subsection 4:

(a) R(t) = {hlh E R(B), hTt" -k* h (weakly)},
(b) R(t)+ = R+(t) = {mlm E R(t), m > 0},
(c) V(t) = {mlm E R+(t), m(Q) = 1}-
THEOREM 4.1. The following relations hold:
(1) R(t) is a norm-closed linear sublattice of R(B);
(2) R+(t) is a norm-closed convex cone, and a lattice;
(3) V(t) is a simplex in the algebraic sense;
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(4) T maps each of R(t), R+(t), V(t) into itself and commutes with all lattice
operations.
PROOF. We have to prove that R(t) is a sublattice of R(B) and that T com-

mutes with all finite lattice operations. All other statements are either easily
derived from that, or admit simple direct proofs. It is sufficient to show that
(44) Ihl E R(t), (h E R(t)),
(45) IhIT = IhTI, (h ER(t)),
as every lattice operation may be represented by means of 1 and linear oper-
ations. We now observe the following:

(A) the operation h -v hl in R(B) is weakly lower semicontinuous (see section
2 (2));

(B) IhT'l < IhITt with equality if and only if IhT'1(Q) = (IhIT')(9),
(h G R(B), t > 0);

(C) assume now h E R(t), that is, hTt -- h (weakly). From (A) (section 2,
(2)) and (B) we infer, for arbitrary nonnegative f E C(Q),

(46) lim inf f f d(lhlTt) > lim inf f dlhTtl 2 ffdlhl.

Applying this result to c - f e C(Q) where c > 0 is a constant such that
c- f 2 0, we obtain

(47) lim sup f f d(lhl Ttk) < ffdlhl,
and hence,

(48) f f d(lhlTti) -k ff dlhl,
first for 0 < f E C(Q), and then, obviously, for arbitrary f E C(Q). This shows
(44).

(D) It follows from (B) that for f a 1,

(49) f f dlhl 2 ff dlhTl 2 ff dIhT22>
with equality everywhere if and only if IhIT' = IhT'I, (t > 0). But (C) implies
that a subsequence of the sequence f f dlhTtl tends to f f dlhl. Hence, equality
holds everywhere in (49), and (45) follows.
For t: 0,1, *---, V(t) is the set of all T-invariant normalized measures in Q;

the extremal points of V(t) are the so-called T-ergodic normalized measures; if
Q is compact, V(t) is weakly compact, and Choquet's barycentric decomposition
theorem can be applied to yield ergodic decomposition of an arbitrary m E V(t).
The ergodic decomposition is unique because V(t) is algebraically a simplex (see,
for example, Jacobs [6]). We may question to what extent the 'classical situation'
described by these statements carries over to arbitrary t: to, tl, *--
Theorem 4.1 shows that many statements are still true in the general case.

There is, however, one key hypothesis to Choquet's theorem which does not
generalize: in general, V(t) is not compact. This is shown by the following.
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EXAMPLE. Let X = {1, * , a} be finite and

(50) Q= II X = {w= (xo, xi, ... )[x e X(t > 0)}t>o
be the corresponding product space, and let T be the shift operator. If ti = k!,
then every T-periodic probability distribution is recurrent along t: to, tl, *;
that is, V(t) contains all T-periodic normalized measures in U. But these are
known to be dense in V. On the other hand, V P4 V(t), as is easily shown by
constructions as in sections 2.1(6), 2.4(1). Hence V(t) is not weakly closed, and
therefore not weakly compact.
Thus we cannot simply apply Choquet's barycentric decomposition theorem

to the simplex V(t) in general. It is not hard to show that barycenters of arbitrary
mass distributions in V(t) (which need not be concentrated on finitely many
points) belong to V(t). In particular, every m e V which fulfills m(Q(t)) = 1,
belongs to V(t). Theorem 3.1 also yields a barycentric representation of an
arbitrary m ETV(t) as a barycenter of a mass distribution M on point masses
b&, each of which is recurrent; M is obtained by transport of m by the mapping
Xw -4 ,.. But in many cases, M-almost no &, will belong to V(t); for instance, let
m be extremal in V(t), but not concentrated at a single point (examples of this
situation will be obtained in section 5). This implies that m(Q(t)) = 0, because
if m(Q(t)) > 0, we could write m as a sum of two nonzero measures from R+(t)
which are not multiples of m (namely, the restriction mF of m to some subset F
of Q(t) fulfilling 0 < m(F) < 1, and m -mF) contradicting the extremality of
m in V(t). Hence, M-almost no &, belongs to V(t).
The following theorem generalizes a well-known classical statement.
THEOREM 4.2. If m, m' are two different extremal points of V(t), then m I m'.
PROOF. Clearly m A m' belongs to R+(t) and has to be a constant multiple

of both m and m', because otherwise barycentric representations of m or m' of
a type forbidden for extremal points would arise, and m A m' id 0 would not
imply m = m'. Hence, the theorem follows.
REMARK. This theorem has special cases in common with the result of

Kakutani [8].
DEFINITION 4.1. A finite measure m is called wandering (with respect to T) if

the transported measures m, mT, mT2, * are pairwise orthogonal:

(51) mTl mTt, (0< s < t)

THEOREM 4.3. Let m E V(t) be such that m, mT, mT2, ... are extremal points
of V(t). Then m is either periodic or wandering.

PROOF. Assume there exist s, t such that 0 < s < t, mT5 = mTt. Put
t - s = d. Then mTu+d = mTu (u > s). As m is a weak limit point of the se-
quence mTa, mT4+l, * - *, which is periodic of period d, it coincides with some
mTu where s < u < t. It follows that mTd = m, hence m is periodic. If
mTe 3d mT', (0 < s < t), then m is wandering by theorem 4.2.
We now have to investigate under what circumstances theorem 4.3 will apply.

The subsequent theorem 4.4 will show that theorem 4.3 always applies if T is an
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automorphism and m is an extremal point of V(t). In section 5 we shall see that
theorem 4.3 always applies if m is "mixing along t."
LEMMA 4.1. Let S: Q-Q 2 be continuous such that ST = TS. Then R(t)S 5

R(t), R+(t)S C R+(t), and V(t)S C V(t).
PROOF. Let, for example, h e R(t). Then

(52) (hS)Rek = (hTik)S -k hS,
k

as S clearly induces a weakly continuous mapping of R(B) into itself.
THEOREM 4.4. Let T be an automorphism of 2 (namely, one-to-one onto, with a

continuous inverse T-1). Then T sends extremal points of V(t) into extremal points
of V(t).
PROOF. Let m be an extremal point of V(t). Assume that mT E V(t) is not

extremal: mT = 2 (m' + m"), m' =im", and m', m" E V(t). Let WI' = MIT-',
mi" e m"T-1. Lemma 4.1 applied to S = T-1 shows that-',-i" E V(t). If
m' $im", then -m' ffi". But we have m = 2 (mi' + Tn") contradicting ex-
tremality.
The following results may be considered as tools for disproving the extremality

of a given point m e V(t).
THEOREM 4.5. Let K C B be a system of measurable sets, and
(a) R(t, K) = {hjh E R(t), h(F) = 0 (F G K)
(b) R+(t, K) = R(t, K) n R+(t),
(c) V(t, K) = R(t, K) n V(t).

Then
(1) R(t, K) is a norm-closed linear sublattice of V(t),
(2) R+(t, K) is a norm-closed convex cone, and a lattice,
(3) V(t, K) is a simplex.
For the proof use theorem 4.1.
THEOREM 4.6. Let K C B be arbitrarily given. Then for every finite measure

mO the system
(53) {mlm e R+(t, K), m < mo}

is a norm-closed lattice and hence contains a unique maximal element ;m. If
mO G R+(t), then
(54) (mO- n),

that is, mn is the restriction of mO to a suitable measurable set.
PROOF. All statements but the last are an easy consequence of theorem 4.5.

The fact that R+(t, K) is a norm-closed cone implies, together with the maxi-
mality of mn and mO E R+(t),
(55) m = (nmi)A mo, (n = 1, 2,* ).

This in turn implies (54).
The following example exhibits an application of the above theorems.
EXAMPLE. A set F E B is called weakly wandering if there is a sequence

uo, ul, -* oo such that FT-UI n FT-Uk = 0, (j $ k). Let
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(56) K = {FIF E B, F weakly wandering}.
Theorem 3.6 implies that for any given mo E V(t) there is a unique minorant
mn of mo which vanishes on every weakly wandering set and is maximal with
respect to these properties. Sucheston's [11] extension of Hajian-Kakutani's [1]
famous result implies that a finite measure is dominated by a finite T-invariant
measure if and only if it vanishes on K. Hence m is the maximal t-recurrent
component of mo which is dominated by a finite T-invariant measure. Theorem
3.6 says that m is the restriction of mo to a certain measurable set. For instance,
let Q be the circumference of the unit circle, and T its rotation by an irrational
multiple of 7r. If mo consists of at most countably many point masses, then i = 0.
If mo is the equidistribution of mass 1 over an arc of positive length, then m = m.
In general,- is the absolutely continuous part of mo with respect to arc length
measure.

5. Mixing

Let Q(Polish) and T: Q-Q 0 (continuous) be fixed.
DEFINITION 5.1. Let t: to, ti, * be given. A normalized measure in m E V is

called
(i) mixing along t, if

(57) lim [f fT4g dm- f fT4 dmf g dm] = 0, (f,gEC(Q));

(ii) mixing, if it is mixing along t: 0, 1, .
Mixing along a sequence is preserved
(a) if we pass to a subsequence,
(b) if we transport the measure by T.
Clearly every point mass m = &, is mixing. If mT = m, and m is weakly mix-

ing, then m is in general not mixing (see Jacobs [6]), but there is a sequence t:
to, ti, *- *, even of frequency 1, such that m is mixing along t (apply lemma
4.4.1 from Jacobs [4]). Let X be finite and

t=o

be the corresponding product space, with shift T. Let po, pi, be any sequence
of normalized measures on X. Then the product measure m = W.to pt on Q2 is
mixing. This follows easily (Stone-Weierstrass) from the fact that finite-dimen-
sional cylinder functions are dense in C(Q). The same argument holds for the
two-sided shift space Iftl - X,.

Further examples (Markov measures in shift space) will be provided by
theorem 7.6. It is easily seen by an approximation procedure that m is mixing
along t if and only if (i) holds for arbitrary f e C(Q) and g e L'M. Passage to
f E Ll is, however, in general not allowed, as we shall see later on.
The above definition is formulated in terms of continuous functions. We want
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to pass to an equivalent version in terms of sets. For any subset F of Q, denote by
OF the boundary of F. Then we have the following theorem.
THEOREM 5.1. Let m E V(t). Then the following statements are equivalent:
(i) m is mixing along t;
(ii) for any two measurable subsets F, G of Q such that m(6F) = 0, the relation

(59) lim [m(FT-tk n G) - m(FT-tk)m(G)] = 0
k-*

holds, that is, the sequence FT tk is mixing in the sense of Renyi [13].
PROOF. (i) > (ii): Let m be mixing along t. If m(OF) = 0, then the existence

of fo, f1 E C(Q) such that 0 < fo < 1F < fi and f (fi - fo) dm < e, where E > 0
is arbitrarily given in advance. If m E V(t), then for arbitrary g E C(Q) with
O<g< 1,

(60) 0 < lim inf [f lFTtkg dm - f foTthg dm]
< lim sup [f lFTtkg dm - f foT4g dm]

< lim sup [f (fi - fo) Ttkg dm] < lim f (fi- ) Ttk dm

= f (fi - fo) dm < e.

This implies
(61) lim sup f 1FTt4g dm < lim f foTtkg dm + E

= [im foTtkdm. f gdm] + e

f/fodm f gdm +

< f 1F dm f g dm +
A similar argument shows

(62) lim inf f 1FT'ig dm > f 1F dm f g dm-e.

As e > 0 is arbitrary,

(63) lim flpTtkg dm = 1F dmi| g dm

follows, first for 0 < g < 1, hence for arbitrary f e C(Q). Taking g 1, we
obtain

(64) limf lFTtk dm = f 1Fdm,

and, by combination,

(65) lim [1F Ttkg dm - lFTh dm f g dm] = 0, (g C



390 FIFTH BERKELEY SYMPOSIUM: JACOBS

Obviously (65) also holds for all g e Ln, hence for all g E LI, especially for
g = 1a with measurable G C U. But this means (59).

(ii) X (i): (59) means (65) for g = 1G. By linear combination and L'-norm
approximation, we obtain (65) for m(aF) = 0 and arbitrary g E Ll,, in particular,
for g E C(Q). Now, every f E C(Q) is uniformly approximable by linear combi-
nations of functions 1F with m(9F) = 0. This allows us to prove (65) for arbi-
trary f e C(Q) in the place of 1F. Consequently, m is mixing along t.
Remark that m e V(t) was not needed for (ii) X (i).
THEOREM 5.2. If m E V(t) is mixing along t, then m is an extremal point of

V(t).
PROOF. An easy approximation procedure shows that (57) holds even for

g e L'M. Now let moG V(t), mo < m, and dmo = g dm,that is, g e Lm,, 0 < g < 1.
Recurrence, with (57), now implies for arbitrary f e C(Q),

(66) f f dmo = lim f f d(moTit) = lim f fTtk dino

= lim f fTtkg dm = lim f fTtkdm f g dm

= lim f f d(mTtk) g dm = f f dm f g dm,

namely that mo is a constant multiple of m. This shows extremality of m in V(t).
THEOREM 5.3. If m E V(t) is mixing along t, then m is either periodic or

wandering.
PROOF. As m, mT, mT2, * are all mixing and all in V(t) (theorem 4.1, (4)),

we need only apply theorem 4.3.
We know how to construct nonperiodic mixing measures in shift space (see

section 2, 3(6) and 4(1) and the beginning of section 5). Hence we know quite
a few wandering recurrent measures which are, as a rule, not simply poinit masses,
but nonatomic.
Assume that m is a wandering measure which is not concentrated at a single

point. Assume for simplicity that T is an automorphism. Then there is a decom-
position Q = F + G such that

(67) FnG = 0, FT-1 = F, GT-1 = G

(68) m(F)m(G) > 0.

Indeed let E2o be a carrier of m such that the sets QoT-t (t integer) are mutu-
ally disjoint; find a decomposition Q0o = Fo + Go such that Fo n Go = 0,
m(Fo)m(Go) > 0, and put F = Ut-=- FoT-t, G = - F. For f = 1F, g = 1G
we obtain fTr = f; hence, fTt -g = 0, (t = 0, 1, * *). Consequently, (57) can-
not hold for these f, g although m can be constructed as a mixing measure. This
shows that it was reasonable to restrict f, g to C((Q) in definition 5.1.
THEOREM 5.4. Let m E V(t) be mixing along t. Then m-almost every point of

Ql is recurrent along some subsequence of t (which will in general depend on the point).
PROOF. By the construction given in section (A) of the second proof of
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theorem 3.1, it is sufficient to show that for every strictly m-boundaryless open
set U C Q2with 0 < m(U) < 1,
(69) iim m(U n UeT-tl n ... n UcT-tn) = 0,

n-*o

possibly after passage from t to a subsequence. Now every finite intersection of
sets of type UT-' or UCT-8 is m-boundaryless. Recurrence, with mixing along t
(the latter in the set-theoretical form given in theorem 5.1), implies the possi-
bility of writing
(70) m(U n UCT-tn n ... n UcT-tvn) < m(U)m(Uc)n + 8,

(O < Pi < *.*- < Pn)

for an arbitrary 6 > 0 possibly by passage from t to a subsequence. By a diagonal
procedure (69) is now easily obtained for m(Uc) < 1.

6. Recurrent Gaussian distributions

Let p(s, t) (s, t integers) be a strictly positive definite function, that is, p(s, t) =
p(t, s) and 5 k=l aip(Si, Sk)Uk > 0 for arbitrary mutually different integers
si, * , sn and arbitrary complex a,, * * *, a,n such that Ek-l lakl > 0. Let
X = = Xt (t integer) and Q = IIt Xt, with natural product Borel field B
and shift T. Clearly, Q is a Polish but noncompact space. There exists a unique
Gaussian probability distribution m in Q such that p(s, t) is the covariance func-
tion of m; that is, p(s, t) = r,fpt dm where p 2-tQ RI denotes the t-th compo-
nent mapping.
LEMMA 6.1. Let p(s, t), p,(s, t), (v = 1, 2, -**) be strictly positive definite func-

tions over the integers, and m, m, (v = 1, 2, * ) the corresponding Gaussian
measures in D. Then m, -- m (weakly) if and only if
(71) Pv(s, t) - p(s, t), (s, t integer).
PROOF. (I). Assume m, -* m (weakly). Let t: Q - RI denote the t-th compo-

nent function. For fixed integers s #= t, let p, pv be the common distributions of
so, and pt under m, m, (v = 1, 2, * *.); they are nonsingular normal distributions
in R2 fulfilling p, -- p (weakly). From this

(72) LI Xy p.,(dx, dy) JR2xy p(dx, dy)

is deduced by elementary procedures. Hence p,(s, t) -* p(s, t) follows for s 5d t.
The proof for s = t is still simpler. I leave the details to the reader.

(II). Assume p,(s, t) -+ p(s, t) (s, t integers). Let p, p, be the common
distribution of a finite number of component functions of Q under m, Mi,
(v= 1, 2, * .). Then p, p (weakly) is easily deduced. It follows that m,(F) -*

m(F) for m-boundaryless finite dimensional cylinder sets. The open sets of this
kind form a basis for the topology in U. Hence, for every open G C Q and given
e > 0, there is an m-boundaryless cylinder set F such that m(F) > m(G) - e.
This implies
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(73) lim inf m,(G) > lim inf m,(F) = m(F) > m(G) - E.
5 v

Hence,
(74) lim inf m,(G) > m(G), (G C Q open).

Consequently, m5, -> m (weakly) after a well-known criterion for weak con-
vergence (see, for example, Prohorov [10]).
As a corollary we obtain the following theorem.
THEOREM 6.1. Let m be a Gaussian probability distribution in Q, and p(s, t)

(s, t integers) its covariance function. Then for every t: to, t1, **,
(75) m E V(t)
is equivalent to

(76) p(s + t5, t + t') - p(s, t), (s, t integers).
PROOF. Clearly, p,(s, t) = p(s + t,, t + t,) is the covariance function of

m, = mTt'.
It is easy to construct p(s, t) such that (76) will be fulfilled for a certain

t: to < t, < * . Take, for example, a sequence of strictly positive definite 2 X 2
matrices Q. = (Qu(i, k)), (u integer, i = 0, 1), such that Q.+t,(i, k) -+ Qu(i, k),
(u, i, k arbitrary). Define

(77) p(8, fQu(i,k) if s=2u +i, t= 2u+k; i,k= 0, 1
(77) p(s,t) 0 otherwise.

Then p(s + 2t,, t + 2tp) = Q. + t,(i, k) - Qu(i, k) = p(s, t), if s = 2u+i,
t + 2u + k. For all other pairs s, t we have p(s + 2t,, t + 2t,) = p(s, t) = 0.
Of course, convex combination does not lead out of the domain of all p fulfilling
(76) with a fixed sequence t: to, ti, * - -.

THEOREM 6.2. Let m be a Gaussian measure in Q and p(s, t) (s, t integer) its
covariance function. Assume that m is recurrent along t. Then m is mixing along t
if and only if
(78) lim p(t, t + tk) = 0, (t integer).

k-*so

PROOF. (I). Assume (78) holds. Then it is easy to prove the relation
(79) lim [m(FT-tk n G) - m(FT-tk)m(G)] = 0

k

for all finite-dimensional cylinder sets F, G C Q which belong to the class A of
all cylinder sets of the form F = Fo X F1 where Fo is a conditionally compact
set in a finite number of coordinates, and F1 is the product of copies of R1 in the
other coordinates, and moreover, Fo is boundaryless with respect to the pro-
jection of m to the corresponding finitely many coordinates.

There is a countable system X of finite unions of sets of A such that X is a
basis of the topology of Q; X consists of boundaryless sets. On the other hand,
for every fixed G G B, the system of all F E B, such that (79) holds is closed
with respect to the formation of proper differences and disjoint unions. It is easy
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to see that A is closed with respect to the formation of finite intersections;
consequently, (79) holds for arbitrary F e X[ and G E A.
Another simple extension procedure shows that (79) holds even for arbitrary

F e XI and G e B, and consequently, also for arbitrary F such that Fc e A and
G E B. Now we are able to find for arbitrary m-boundaryless F and arbitrary
e > 0 sets Fo, F, such that Fo, Fc E X,
(80) Fo C F C Fl,
(81) m(Fl- Fo) < e
(exhaust the interior of F and of Q- F by sets from the above-mentioned basis).
Let G C Q be measurable; then
(82) m(FoThk n G) < m(FT-tk n G) < m(FiT-tk n G).
Applying (79) to F = Fo and F = F1, we obtain

(83) lim m(FuT-tk n G) = (lim m(FoT-tk))m(G) = m(Fo)M(G)
k k

(84) lim m(FT-tk nG) = (lim m(FiT-tk))m(G)
k k

= m(Fl)m(G) < m(Fo)m(G) + E

by recurrence along t and a well-known criterion for weak convergence (see
Prohorov [10]). Consequently,
(85) lim suplm(FT-tk n G) - m(FT-tk)m(G)j < e.

As e > 0 is arbitrary, (79) follows for arbitrary m-boundaryless F and measurable
G; hence, m is mixing along t, by theorem 5.1.

(II). Let m be mixing along t. Equation (78) is then derived by easy approx-
imation procedures.

7. Recurrent finite-state Markov measures

In this section we investigate Markov measures with a finite state space
X = {1, * - *, a} 0 0 and a recurrent sequence of transition matrices. We shall
prove that for appropriate initial distributions the Markov measure is recurrent,
and sometimes even mixing.

1. Distributions in state space. A charge distribution in the state space X =
{1, *---, al 0 j0 is a real vector h = (h(j), *-,h(a)) = (hi) e Ra; hi is the
charge of state i. The total (absolute) charge

a
(86) llhll = E2 jhjI

i=1

is the norm of h. The charge h is called a mass distribution on X if

(87) h > O, that is, h(j) > O, (i = 1, - a),
and a probability distribution on X if h > 0 and t- 1 h(i) = 1. Let W denote the
compact simplex of all probability distributions on X.
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For every charge distribution h EJRa, the set {ilh(c) 5- 0} is called the carrier
of h. Two probability distributions p, q on X have disjoint carriers if and only if
IIP- qll = 2. A polyhedron WO C W, whose vertices (= extremal points) have
mutually disjoint carriers, is always a simplex. Let 'Yr denote the system of all
simplices with r vertices such that any two vertices have disjoint carriers
(r = 1, * , a). Clearly, yl = {{I}Ip E W}, Ya = {W}. The simplices of al are
the only ones in U.= -y, with norm diameter less than 2.
For closed nonempty subsets W1, W2 of Ra we introduce the set distance

(88) jW', W"I = sup inf llh' - h"Il + sup inf llh" - h'il.
h'EW' h"EW" h"EW" h'E W'

The closed nonempty subsets of W form a compact metric space, and -l, * * *,,a
are compact subsets of this space. For later use we extract from Jacobs [2] the
following lemmas.
LEMMA 7.1. If W1, W2 E 'Y,, W1 C W2, then W, = W2.
LEMMA 7.2. There is a monotone function q(O) > 0, defined for 6> 0 suffi-

ciently small, and fulfilling I (0) < 1 and

(89) lim u1(0) = 0
e-o+o

such that the following statements hold.
(i) Let U, U E Yr, and let el, * - *, er be the vertices of U, and e1, * * r the

vertices of U. Let 0 be such that 7l(0) is defined, and assume U, UI < 0. Then there
is a unique permutation wr of {1, * , r} such that

(90) IIePP - ePjj < 71(0), (1 < p < r)
holds.

(ii) Let C E y, with vertices 61, * * , d and let ir be a permutation. Assume that

(91) | - ePII < 7(0), (1 < p < r).
Then
(92) 119P2T- ePJJ < 2i7(0), (1 < p < r),
that is, when permutations multiply, deviations add.
A linear mapping P of Ra into itself is called stochastic if

(93) WP C W.
If we identify P with its matrix (P(i, k)), (i, k = 1, * , a), then (93) is tanta-
mount to

P(i, k) > 0,
(94)

, P(i, k) = 1.
klc=

A system y of nonempty closed subsets of W is called stochastically connected,
if for any two sets W1, W2 e y there are stochastic mappings P, Q such that
WIP = W2, W2Q = W1. From

(95) llhPlI < llhll, (h E Ra, P stochastic),
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that is, the contraction property of stochastic mappings, the following lemma is
easily deduced.
LEMMA 7.3. Let -y be a stochastically connected system of nonempty closed sub-

sets of W. Assume that there is an r such that Y nf ri-d 0. Then -y C yr.
PROOF. Let wo0 E -y n yr and W, E -y. As W1 is a stochastic image of Wo, its

vertices are at most r in number, and at mutual distances <2. Since Wo is a
stochastic image of W,, the vertices of W, are at least r, hence exactly r, in
number, and at mutual distances >2. Hence W1 E Yr.

2. Recurrent sequences of stochastic mappings. Let M be the system of all
stochastic mappings in Ra. The norm

(96) IILII = suplIhLII
lihll <1

for linear mappings in Ra makes i a compact metric space. Assume that a
recurrent sequence

(97) PI, P2, *

of stochastic mappings Pt G f is given. Choose a fixed sequence t: to, tl,
along which the sequence (97) is recurrent:

(98) IIPt+t' - PJll- 0, (t = 1, 2, .

(That 1 instead of 0 is the first index for the sequence (97) should not cause any
trouble.)

Let

(99)
X~~~t = P., ..*I* Pt, (O < s < t),
tP,, = 1, (s < t).

Our aim is the investigation of the asymptotic behavior of the sequence
lPl, 1P2, 1P3, *. , 1Pt, * . First of all we look for the asymptotic behavior of
the sequence W 1Pt, (t = 1, 2, ***) of nonempty polyhedra C W, employing the
set distance.
THEOREM 7.1. There is an integer r with 1 < r < a such that all limit points

of the sequence W iPt, (t = 1, 2, * * *) belong to yr. If any W 1Pt has a diameter <2,
then r = 1. In other terms, the shape of W 1Pt becomes more and more that of a
simplex whose vertices have mutually disjoint carriers; if the diameter of W 1Pt ever
becomes <2, it tends to 0.
PROOF. Applying the norm continuity of matrix multiplication, we can find

a subsequence 'U: u0, ul, * * * of the sequence t: to, ti, * * *, and a sequence
Ql, Q2, * * * (indeed the Qk will be of the form 8Pt) such that
(100) uk > uO+ *'*+ Uk-1, (k > 0),
and
(101) 1Pu+. '+Uk = 1Puo+ * +Uk_lQk l+UkPUO+ * -++U_-I+Uk, (k = 1, 2, ...

(102) IjUPV - U+UkPV+Ukli < 2 , (1 < u, v < u0 + + ut_i).
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Shortening this, let us put

(103) P(k) = iPuo+ +uk

(104) P[k] = 1+Uk+lPUO+ *--+Uk+Uk+l-

Then (101) becomes

(105) P(k+l) = P(k)QkP(kl, (k = 0, 1, ** ),

and (102) implies

(106) IIP[k] P(k) 11 k 0-

It is our aim to pass (using (106)) from (105) to a limit relation of the form
P = PQP. In order to obtain all the convergences needed, we have to use the
compactness of 21Z, and to pass to subsequences of the sequences P(k), Qk. The
problem arises whether (105) or a similar relation still holds true after passage
to subsequences.
For any k, t > 0, let

(107) P[k,t] l+Uk+l+ * +UA+ePUO+ * +Uk+Uk+l+ ** *+Uk+t-

Then there is a Qkie E such that

(108) P(k+t) = P(k)QktP[k,tl-
We obtain

(109) IIP[k,g P(k)Ij =|l+Uk++ **+Uk+ZPUO+ **+Uk+t - lPuo+ * +Uk||

k+?-1
< E ||l+Uk+I+ * +Ui+Uj+1PUG+ * +Uk+Uk+l+ * +Ui+Ui,1

j=k+l

-l+Uk+l+ +UiPUO+ +Uk+Uk,l+ *+Uill

+ tl+Uk+l UO+ * * - lPUO+ * +Ukt
k+±-1

< L 2-i + 2-(k+l) < 2-k
j=k+l

by (102). If kl, k2, * is a strictly increasing sequence of positive integers, and
if we put

(110) P(k,) = Pv, Qk,,k,+1-kv = QV, P[kv,k,+1-k,] = Pv,
then (105) results in

(111) P^+1 =

and we have

(112) IIP' P"I'l < 2-v' O.

Choosing ki, k2, * appropriately, we may enforce the convergence of Pv
towards some P EFZ. By (112) then P.' -) P also follows. For any limit point
Q c M of the sequence Q', Q2, -.. c M, we now obtain the desired relation

(113) P = PQP.
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From this we deduce
(114) WQP = WQPQP C WP = WPQP C WQP;

hence,
(115) WP = WQP = W(QP)2=
Well-known results from the theory of stationary finite-state Markov chains

now imply that WP is a simplex C W whose vertices have mutually disjoint
carriers: WP e y, for some r. As P is the limit of the P' which always have the
form 1Pt, we obtain:

(a) the system y of all limit points of the sequence W1P, intersects some Yr. If we
now show that

(b) the system -y is stochastically connected, the theorem is proved by lemma
7.3.

Let WO, W1 E y. There are sequences v,, w, - oo such that W Pv, Wo,
W 1P,,, -* W1. We may assume v, < w, and ,,+,P - Q E on; hence, W0Q =W
is easily obtained. By symmetry (b) follows.
THEOREM 7.2. Let t: to, ti, * * * be such that (98) holds, and let r > 0 be as in

theorem 7.1. Furthermore, let t': t, tl, -- be any subsequence of t such that the
sequence W lPtk, converges (in set distance) towards some WO C W; by compactness
such a t' always exists. Put

(116) Wu = Wo P,, (u = O, 1,
Then

(117) WU G Tr, (U = 0X 1X .. *)y
(118) Wu C W PU (u = 0,1, *..),
(119) lim lWu, W 1Pul = 0.

U-O

PROOF. From theorem 7.1, WO G Yr follows. Using obvious relations between
set distance and transformation norm (see Jacobs [2]), we obtain for any u > 0

(120) WU = Wo 1Pu = lim W 1Pt"- 1Pu
k

= lim W iPte ht+lPth'+u
k

= lim W lPtk'+U.
k

By theorem 7.1, the latter limit belongs to yr. The same theorem 7.1 also yields
the other statements. Of course, one should like to remove the passage from t
to a subsequence t' from the statement of the above theorem. This can be
achieved in the following two cases: (a) all Pt are one-dimensional projections,
and (b) the sequence P, (t = 1, 2, * * *) is almost periodic (see Jacobs [2], [3]).
The difficulty in the general case results from the possible nonuniformity of
certain limits. In general the passage from t to some t' is unavoidable, as is shown
by the following simple example.



398 FIFTH BERKELEY SYMPOSIUM: JACOBS

EXAMPLE. Let a = 2 and Pl, P2, * * * be any nonconvergent sequenice of
points in W. Let t: to, t1, * * be such that to = 0, tk - tk-1 > 2, (k = 1, 2, * * ),
tk - tkl k- °, and construct a recurrent sequence P1, P2, * * EMZ such that Pt,
is the identity matrix (k = 0,1, ** ) and WPt,-k = {Pk}, (k = 1, 2, *). This
can easily be done by the method exhibited in section 2, subsection 3(6). Clearly,
,Ptk = Pt,-1, (k = 1, 2, *- * ) is a nonconvergent sequence of one-dimensional
stochastic projections, and W lPtk is nonconvergent.
THEOREM 7.3. Let t: to, ti, * - - be such that (98) holds and limk W iPtk WO

exists. Then the sequence Wt = Wo iPt, (t = 0, 1, * * *) is recurrent along t:

(121) lim |Wu+t, Wul = 0, (u = 0,1, ** ).

PROOF. By the proof of theorem 7.2,

(122) Wu = lim W lPtk+U.

OIn the other hand, WO C W implies

(123) WU+tl C W lPtk+U'
All limit points, for k -> o, of the left side belong to -Yr, as yr is compact and
Wu+t. e yr. They are all contained in the limit Wu of the right side, which is also
il -Yr. Consequently, Wu+t, has, for k -- o, only one limit point, namely Wu
(lemma 7.1). This proves the theorem.
Let r > 0 be determined according to theorem 7.1. A simplex W0o C Yr is called

admissible with respect to the sequence P1, P2, - * * if Wu = WVO iPu E Yr,
(u = 0, 1, * * *), and if the sequence Wo, W1, -*.* *Yr is recurreint aloing a se-
quence, along which the sequence P1, P2, * - - is also recurrent.
THEOREM 7.4. Let WO be an admissible simplex. Then there is a sequence

CU: uo, ul, * * * such that for every p E WO the sequence pt = p iPt, (t = 0,1, * )
is recurrent along 91:
(124) PV+uA Pv, (v = 0,1,*
PROOF. Let el, * , er be an enumeration of the r vertices of the simplex Wo.

Put eP = eP iPt. Then el, * , el are the r vertices of the simplex W,. It is suffi-
cient to find cL: uo, ul, * -such that

(125) evp+Uk- epV (1 < p < r; v = 0,1, )

holds.
If r = 1, we can-according to theorem 7.3-take cU = t, where t is any se-

quence such that (98) holds.
If r > 1, the idea of proof is the following. The recurrence of the sequence

WO, W1, *- * implies that every Wu is again and again nearly congruent with
simplices Wu+t. By lemma 7.2, such an approximate congruence implies approxi-
mate coincidence of vertices. However, the vertex numbers will in general not
coincide; as a matter of fact, there will be some permutation of vertex numbers.
The main objective of the technique applied below will be to obtain identity
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permutation of vertex numbers. For this purpose we observe that permutations
multiply if subsequent time intervals are glued together. We shall glue together
r! time intervals whose attached permutations are equal, thus obtainiing the
identity permutation.
The details of the proof are a bit involved. Choose e > 0, w > 0, and determine

0'> 0 such that n(0) is defined and is < e, <-, according to lemma 7.2. Passing,
if necessary, to a subsequence of t, we may write

(126) jWv+., Wv+u+tkl < r! + 1'

(k > O, O < v < w, 0 < u < tl + ***+ tk-1),
(127) IjV+1+t4PV+UA+tk - V+lPV+Ukll < 7i(0)

(0< V < W; 0 < U < tl + + tk-1)-

For u = 0, we obtain
(128) |WV, WV+tkl <6 (0 < v < w).
Lemma 7.2 now implies the existence of permutations rvk of (1, , r) such

that
(129) VJe +tk eDII < n(O) (1 < p < r; 0 < v < w).
Passing once more to a subsequence of t, we may write

(130) 7rvl = 7r,,2 = *- = 7rv.

Now put
(131) uO = 0, Uk to + + tk-1, (k > 0).
From (126) we deduce

jWV, WV+Ukl < 01

(132) |WV, Wv+UA;+tA;l < 0 (° < k < r, 0 < v < w).
WV+ W,+uk+tkl < oJ

By lemma 7.2, there exist unique permutations

(133) V+17rV+Ukl V+1+Uk7rV+Uk+tk V+1rV+tk = rV V+17rV+uk+tk

such that

(134) V+17rV+Uk+tk V+17rV+Uk V+1+Uk7rV+Uk+tk
holds. Denoting approximations up to q(0) by --and putting v+1+uklrV+Uk+tk =r
for short, we obtain (using (128) and (127))
(135) e+P = ep+tk V+l+tkpV+Uk+tk

ePv +l+tkPV+Uk+tk eP V+lPV+Uk
p7r

= eV +Uk +lk+

The sum of deviations is <3,1(0) < 1. Hence, the approximation is sufficiently
close to yield 7r,, = 7r, and consequently,
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(136) V+1+UA7rV+UA±tk = +17rV+tki = 7rV

This shows that

(137) =+17rV+Uk+tk = +17rV+Uk7r'.

Thus we obtain inductively
k(138) v+17rv+Uk 7rv,

and hence, for k = r!,

(139) V+17rV+UK= 1.
This implies
(140) IJeV+Uk -epl < 77(O) < e, (0 < v < w).

Clearly, the construction can be carried out so as to make Uk as large as desired.
The result of our construction may thus be described as follows: for every e > 0
and every w > 0, there are arbitrarily large u such that
(141) IIeV+u- ep,I < e, (0 < v < w).
This implies the statement of the theorem.
THEOREM 7.5. Let WO be an admissible simplex and eo, * , eO be an enumer-

ation of its vertices. Put Wt = Wo Pt, e: = eg 1Pt, (t > 0; 1 < p < r). Let u > 0
be fixed and p e W such that the carrier of p is contained in the carrier of some e1P.
Put pt = p u+iPt, (t > u). Then the carrier of Pt is contained in the carrier of
ef, (t > u) and

(142) Ijpt- ejPlI 0.

PROOF. If W0 is admissible with respect to P1, P2, * , then W" is admissible
with respect to Pu+1, PU+2, * . . Hence, it is sufficient to prove the theorem in
the case u = 0.

There is an a > 0 such that po < aeg. This implies pt < ael, and the statement
concerning carriers follows. Formula (142) follows now from Pt e W 1Pt and
(119). Indeed, a vector in W which is close to Wt, and whose carrier is contained
in the carrier of e:, is close to etP (it keeps distance 2 from all other e5 (a 0 p)).
The details of the argument are left to the reader (see also Jacobs [2]).

3. Mixing and recurrence of Markov measures. Let us now pass from state
space X to shift space Q (see section 2, subsection 4, example 2)).
THEOREM 7.6. Let WO be an admissible simplex, and p one of its vertices. In
= [If>o X, = {cw = (xo, xi, * * -)jxt E X}, let T be the shift, and m the Markov

measure with initial distribution p and transition matrices P1, P2, * . . Then m is
mixing along t: 0, 1, -* *:

(143) lim If fTtg dm-ffTt dm f g dm I = 0, (f, g E C(M))

PROOF. By the Stone-Weierstrass theorem, it is sufficient to prove (143) in
the special case wheref = 1P, 9 = 1a; F, G are special finite-dimensional cylinder
sets, for example,
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(144) F = [yo, * ,y.], G = [zoy ..* , z.], (YO) ..* *XY.) Zo, Zn E X)-
For t > u we have

J fT' dm = (p iP,)(yo)P,+i(yo, yi) ... P,+.(y8-, y.),

(145) f g dm = p(zo)Pi(zo, z1) ... Pu(z.-i, Zn),

J fTtg dm = p(zo)Pi(zo, zi) ... Pu(z.-., z.)
U+IPt(zu, yo)Pt+i(Yo, Yi) ... Pt+8(y8BI, Ye).

If zu is not in the carrier of p 1Pm, then f fTtg dm = f g dm = 0 (t > u), and (143)
holds trivially. If zu is in the carrier of p 1Px, we need only apply theorem 7.5
to every vector q which corresponds to unit mass in zu, in order to obtain

.+-Pt(zu, -ptll -+0. By the above formulae this implies (143).
THEOREM 7.7. Let WO be an admissible simplex and let p e WO be arbitrary.

In Q = ]It>oXt = {w = (x, X1, . ) Ixt EX}, let T be the shift, and m the Markov
measure with initial distribution p and transition matrices PI, P2, *-- . Let
'U: uo, u1 ... be determined according to theorem 7.4. Then m is recurrent along St:
(146) mTuk k m, (weakly).

PROOF. By the Stone-Weierstrass theorem, it is sufficient to prove

(147) ffT- dm Jffdm

for f = 1F where F = [yo, * * *, ye], with yo, * , YS e X arbitrarily chosen.
Formulae (145), (100), and (124) (the latter for v = 0) then show that

(148) f fTu" dm = (p1Puj) (yo)Pi+uk(yo, yi) ... P.+uk(yS.1, ye)

P(Yo)P1(yo, Yi) *.. P8(y1, Y-) = f f dm.

8. Applications to channel theory

Let X, X' be nonempty finite sets and
e0

(149)
a

= II X = {w = (xo X1, **)Ixes X(t = O, 1, ** *)},
t=O

(150) Q = II X' = {' = ( ***) EX' (t = O, 1, *..)}
t=O

be the corresponding one-sided infinite product spaces. If we put I = X X X',
then Q = Q X Q' may be considered as the one-sided product space correspond-
ing to 1. Shift will be denoted by T in each of the spaces Q, D', Q. Note that they
may be considered as compact metric spaces, the shift being continuous. Indi-
cator functions of finite dimensional cylinder sets are continuous; their linear
combinations are dense in the Banach space of all continuous functions on each
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of these spaces (the Stone-Weierstrass theorem). Hence, we may express most
statements concerning weak topology in terms of cylinder sets as well as in terms
of continuous functions.

Let us recall the language of information theory. The sets X and X' are called
the input and output alphabets; the points of Q and Q' are called the input and
output messages respectively. Probability distributions on Q, .', and Q are
called input and output and compound sources respectively. A stochastic kernel
C from Q to Q' is called a channel. An input source m, together with a channel C,
determines an output source m' = mC, and a compound source mi = m X C,
according to

(151) m'(F') = f m(dw) C(w, F'), (F' C Q' measurable)

(152) in(F X F') = fF m(dw) C(w, F'), (F C Q, F' C Q' measurable),

DEFINITION 8.1. A channel C is said to be
(a) stationary, if

(153) C(wT, F') = C(w, F'T-1), (w E Q, F' C Q' measurable);
(b) periodic with period d, if

(154) C(wTd, F') = C(w, F'T-d), (w e Q, F' C Q' measurable);
(c) recurrent along t: to, t1, ... , if

(155) C(wTtk, F') - C(w, F'T-ik) O_ 0,
k

(co e , F' C Q' finite-dimensional cylinder set);
(d) mixing along t, if each C(w, *) in Q2' is mixing along t;
(e) a channel with finite past history h > 0, if C(w, F') depends only on com-

ponents X8-h, .* * * x,, ...* xt of w E Q for every cylinder set F' depending
only on the components x, through xt in Q';

(f) continuous, if C(-, F') e C(Q) for every finite-dimensional cylinder set
F' C Q';

(g) memoryless, if there is a sequence PO, P1, * of stochastic matrices from X to
X' such that

(156) C(W, ) =II PN(xt, *), (w = (xo, x, Q).
t=o

The correspondence between C and (PO, P1, **) is, of course, one-to-one.
Channels with finite past history clearly are always continuous. Memoryless

channels are always mixing, have finite past history; they are stationary, periodic
with period d, recurrent along t, according to whether the sequence PO, P1, * - - is
constant, periodic with period d, recurrent along t, respectively. If C is stationary
and mT = m, then im-T = imh, m'T = m'. If C and m have period d, so have mni
and m'. If C is continuous, and m and C are recurrent along t, then fm and m' are
recurrent along t. If C is continuous, and C and m are recurrent and mixing along
t, then mi and m' are recurrent and mixing along t. The proofs are left to the
reader.
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DEFINITION 8.2. (1) Let P be a channel, and X, CX two input messages. Then
w and X are called discernible through P, if the probability distributions P(cW, .),
P(,o, *) are orthogonal. IfM C Q is such that w, co e M, co $- X implies discernibility
of c, X through P, then M is called discernible through P.

(2) Let P, P be channels. They are called discernible, if there is a source m such
that mP and miP are orthogonal. This is equivalent to the existence of an input
message co e Q such that P(w, *) and P(w, *) are orthogonal in W'.
THEOREM 8.1. Let C be a channel which is recurrent and mixing along

t: to, t,, * . . Let co, I7 E Q(t') for some subsequence t' of t be such that
(157) C(C,a, *) P- C(7, ).
Then X and q are discernible through C, that is,

(158) C(W, *) I C(1q, )-
PROOF. The hypotheses imply C(cw, *), C(71, *) e V(t'), hence (157) implies

(158) by theorems 5.2 and 4.2.
COROLLARY. Let C be a stationary channel which is mixing along t: 0,1, *

(for instance, a stationary memoryless channel). Let co, 7 be two input messages
produced in two independent experiments by the same recurrent input source. Then
with probability one, X and 7 are discernible through C if C(w, * ) F6 C(71, * ).
PROOF. The correct model for the production of the pair of messages (cW, X1) is

the space Q X Q with the product measure m X m. It is rather trivial that m X m
is recurrent (with respect to shift in a X Q) if m is recurrent. Thus, by theorem
5.4, m X m-almost every pair (w, vq) E Q X Q belongs to (Q X Q)(t') for some
subsequence t' of t: it has components co, t7 which are both recurrent along
a sequence t', along which C is also recurrent. The corollary then follows from
theorem 8.1.
THEOREM 8.2. Let C, Z be two continuous channels, both recurrent and mixing

along the same t: to, ti, *-- . Assume that mC $ mZ7 for some source m which is
recurrent and mixing along t. Then mC I mZ; hence, C and Z are discernible.
The proof is trivial from the preliminary discussion and theorem 8.1.
THEOREM 8.3. Let C be a continuous channel which is mixing and recurrent

along t: to, ti, * - - . For every t > 0, let C'(co, F') = C(w, F'T-t), Co(, F') =
C(wT', F'). Then C' and Ct are continuous channels which are mixing and recurrent
along t. If Ct $ Ct, then Ct and C: are discernible.

PROOF. All statements are obvious except for the last one. Now, Ct $= Ct
implies the existence of a finite-dimensional cylinder set F' C Q' and a point
X = (xo, xi, * * *) E Q such that Ct(cw, F') $ CQ(w, F'). By continuity, we may
find some s > 0 such that Ct(7), F') $ CQ(7 - F') for all v = (yo, yi, *--) such
that yo = xo, ... , y. = x,. Passing if necessary to a subsequence of t, we may
assume tk+1 - tk -- oo0

k

The construction given in section 2, subsection 3, (6) now yields a point
7 = (yo, yi, * *) e Q(t) such that yo, * *, y, have the prescribed values xo, - X., xJ.
Clearly, m = 68, is recurrent and mixing along t, and (mPlt)(F') = Pt(7, F') $
P,(,n, F') = mPt(F'). The preceding theorem now implies mPt I mPt, as required.
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COROLLARY. Let P be a continuous channel which is mixing and recurrent along
some sequence t. Then there are only the following three possibilities:

(1) P is stationary,
(2) P is periodic,
(3) P is wandering in the sense that Pt and Pt are discernible for every t > 0.
PROOF. If (1) and (2) are not true, then Pt FD Pt for every t > 0. The pre-

ceding theorem then shows that (3) is true. This result applies especially to
memoryless channels arising from recurrent sequences IHo, III, * of stochastic
matrices.
With every channel P, a linear positive contraction operator, also denoted

by P, from the Banach lattice R(B) of all finite charge distributions in Q into
the Banach lattice R(B') of all finite charge distributions in Q', is associated. Let

(159) 1Q11 = sup _ lIhQlI
denote the norm of any linear operator Q: R(B) -- R(B'). Discernibility of P
and P implies IIP - Pll = 2.
Our above corollary thus shows that a channel with the properties mentioned

is never recurrent with respect to operator norm topology, except when it is
periodic. In a special case of recurrence (namely almost periodicity), and for
memoryless channels, this result has been announced in Jacobs [5].
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