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1. Introduction

Let (X, M, m) be a a-finite measure space, and let T be a positive contraction
defined on L'(X, 68, m). It was shown by Hopf [9] that the space X can be
decomposed into two disjoint subsets with respect to T, the conservative part and
the dissipative part. Recently, Neveu [12] remarked that one can single out a
particular subset, called the strongly conservative part, from the conservative
part. In what follows, we show (theorem 2) that if the positive contraction T is
conservative, then the complement of the strongly conservative part can be
decomposed further into at most a countable number of disjoint subsets, each
of which is characterized by a certain infinite sequence of positive integers. As
Neveu has remarked, the strongly conservative part is characterized as the
maximal set carrying an element f in LI(X, (B, m) which is left invariant by T
(see theorem 1 below).
The problem of determining the existence of a strictly positive element which

is left invariant by T has received considerable attention in recent years in
connection with the invariant measure problem for measurable transformations
and Markov processes. Various necessary and sufficient conditions for the exist-
ence of such an element f (though stated in terms of the existence of a finite,
invariant, and equivalent measure) have been obtained by Hopf [8], Dowker
[3], [4], Calder6n [1], Hajian and Kakutani [6], and Sucheston [13] for the
case of an operator T which arises from a measurable transformation; and
by Ito [10] and Hajian and Ito [5] for the case of a T which arises from a
Markov process. The methods and results of the last two papers cited above can
be generalized further without any modification. In fact, Neveu [12] proves some
of these assertions for the general case of a positive contraction T operating on
L'(X, 63, m) using much simpler and more elegant arguments.

In Hajian and Ito [5] it was shown by means of a trivial counter-example
that the case of Markov processes in general is not quite the same as for the
case of invertible measurable transformations. However, assuming that the
operator is conservative, most of the annoying minor difficulties disappear, and
the theory generalizes smoothly. In the second part of this paper we show
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(theorem 3) that all of the necessary and sufficient conditions previously obtained
in [5] for the case of invertible measurable transformations generalize to positive
contractions which are assumed to be conservative. We also show (theorem 4)
that these conditions are violated in a stronger way, just as in the case of in-
vertible measurable transformations, when a positive contraction is conservative
and ergodic and admits no strictly positive invariant element.

In the last part of the paper we restrict to operators which arise from Markov
processes and measurable transformations. In each case we prove a theorem
which seems to be of some interest. It would be interesting to generalize them
to the case of a positive contraction if possible.

2. Definitions and basic concepts

We shall use the following basic notations and definitions: (X, 03, m) represents
a a-finite measure space; 4 a measurable nonsingular (not necessarily invertible)
transformation on (X, 03, m); P(x, A) a nonsingular Markov process; LI(X, (0, m)
the Banach space of real-valued m-integrable functions; and L-(X, 03, m) the
Banach space of real-valued m-essentially bounded functions with their respec-
tive usual norms. For detailed definitions of these and other concepts used
throughout this paper see [5].
Most of the statements involving an element f in L'(X, 63, m) or L-(X, 63, m)

are meant to be qualified by the words a.e., and all the subsets considered are
assumed to be measurable even though not explicitly stated.
A linear operator T defined on L1(X, 63, m) will be called a positive contraction

if it satisfies the following two conditions:
(a) T is positive, that is, Tf > 0 if f 2 0;
(b) 11|T| < 1.
Let us denote by U the adjoint operator of T; then U is a linear operator on

L(X, (P, m) satisfying the following two conditions:
(a') U is positive;
(b') 11 Ull < 1.
We say that an element f E L'(X, 03, m) is invariant under T (or simply

T-invariant) if Tf = f. An element g E L-(X, 63, m) is invariant under U (or
simply U-invariant) if Ug = g, and g is U-subinvariant if Ug < g. A set B c 03
will be called a U-invariant set, or a U-subinvariant set, if the characteristic
function SCB of B is a U-invariant function, or a U-subinvariant function, re-
spectively.
We shall be concerned with the existence of a nonnegative T-invariant f 0 0.

We remark that for the existence of such an element and for related problems we
may assume without loss of generality that the given measure m is finite. This is
because if m is not finite but is o-finite, then we can consider a finite measure m*
equivalent to m (see [5]). If we write w = dm*/dm, the Radon-Nikodym deriva-
tive of m* with respect to m, then the formula
(1) Tf = (1/w)T(fw) for f E LI(X, 03, m*)
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defines a positive contraction P on the space L1(X, 6, m*). (Note that f E
L1(X, 63, m*) if and only if fw E L'(X, 63, m) and that w is positive almost
everywhere.) We see easily that T has an invariant element fo if and only if
T leaves go = fow invariant. Furthermore, one can easily show that Tnf =
(l/w)Tn(fw) holds for each n; therefore, the infinite sum - I Tnilf I(x) con-
verges or diverges at a point x if and only if the corresponding sum

1_ Tnilfw I(x) converges or diverges at x, respectively. Therefore, in the sequel
we assume that m(X) = 1.

Let us denote by I the function taking constant value one a.e. Let us write
C = {xl En=o TnI(x) = -o} and D = X - C. Hopf [9] showed that for any
function f E L'(X, 63, m) with f > 0 there exists a subset Nf of C such that
m(Nf) = 0 and such that 5n=o Tnf(x) = oo for all x e C - Nf. Furthermore,
for any function g E L'(X, 63, m) there exists a subset N, of D such that
m(N,) = 0 and such that n'=o Tnlgl(X) < 7 for all x E D - N,. The set C
thus defined is called the conservative part of the operator T and D the dissi-
pative part.
We say that a positive contraction T is ergodic (or, equivalently, U is ergodic)

if the only U-invariant functions are constants. Note that in general the ergo-
dicity of T defined in this way does not necessarily imply that it is conservative.
For a positive contraction T defined on L1(X, 63, m) and for any set A E 63

with m(A) > 0, we define TAf = $tAT($Af). Clearly, TA defines a positive con-
traction on L1(A, (BA, mA) where (3A denotes the o-algebra of those sets in 63
which are contained in A, and mA denotes the restriction of m to (MA. If we denote
by UA the adjoint of TA defined on LI(A, (BA, mA), then UA can be shown to be
induced by U in the following manner: UAg = $CAU($CAg).
We shall use the following two lemmas quite often in the sequel.
LEMMA 1. The following four conditions are equivalent:
(i) A E 63 is U-subinvariant;
(ii) for any f E L1(X, 63, m), the inclusion {xlf(x) $ 0} C X - A implies that

{xjTf(x) $01 CX-A;
(iii) for any f e L1(X, 63, m), TAf = 9ATkf holds for every positive integer k;
(iv) for any g e L-(X, 63, M), UAg = Uk(9EAg) holds for every positive integer k.
PROOF. We shall prove that (i) = (ii) X (iii) =X (iv)X (i). For the first impli-

cation, suppose (ii) does not hold. Then there exists an element f E L'(X, 63, m)
such that {xlf(x) $ 0} C X - A and Tf(x) $ 0 for all x in some set B C A
with m(B) > 0. We may assume, taking the absolute value of f if necessary, that
f 2 0 on X, and hence Tf > 0 on B. Then,

(2) ° I Tf dm = Ix(U$B)C d <)fdm <f dm< x Af dm = O,(2 <fBTfin fx(E)f.Jx(A)f.dfx A

which is a contradiction.
For the second implication, (ii) implies that the support of T($xxAf) must be

contained in X - A. Therefore, 9CAT($x_Af) = 0, which is equivalent to the
statement TAf = XATf. Now suppose that TAf = CATnf for every positive integer
n < k - 1, then



364 FIFTH BERKELEY SYMPOSIUM: HAJIAN AND ITO

(3) TAf = TA(TrAf) = TA($ATk-'f) = TA(Tk-lf) = 9CAT(Tklf) = 9tATkf.
By induction we conclude (iii).
To prove that (iii) X (iv), we take g E L'-(X, 63, m) and f e LI(X, 63, m),

then

(4) hx (U"g)f dm = JA (UAg)f dm = IA A(TAf) dm = IA gXA(Tkf) dm
= | 9gA(Tkf) dm = fx Uk(g$tA)f dm.

Since this is true for anyf e L1(X, 6, m), UAg = Uk(9gaA).
Finally, in the fourth implication, (iv) implies that UAI = U$CA. But from

the way UA was induced from~U, it follows that UAI = CA(U9'A). Therefore,
DCA(USCA) = USCA. Since l|Ull < 1 implies U$EA < 1, it follows that USXA < WtA.
REMARK. There seems to be some confusion in the literature on the definition

on invariant sets. In [2], Chacon defines a set B to be invariant if for any
f E L1(X, 63, m), {xlf(x) # 0} C B implies {xlTf (x) s 0} C B. According to
Tsurumi [14], however, a set B is T-invariant if TBf = $CBTf holds for every
f E L1(X, 6M, m). We shall not use either of these definitions. Lemma 1 above
shows that a set A is U-subinvariant in our sense if and only if X - A is invari-
ant in Chacon's sense and if and only if A is T-invariant in Tsurumi's sense.
For any f E LI(X, 63, m), we define f+ = max (f, 0) and f = - min (f, 0).

Then f+ 0,1- O, f = f+-f and IfI = f+ +f. Furthermore, if f = f -f2
with fi 2 0 and f2 .0, then we must have fi > f+ and f2 >f.
LEMMA 2. Suppose an element f e L1(X, (3, m) is T-invariant, then so are f+,

P, and If l.
PROOF. The T-invariance of f implies that f+ - f = T(f+ - ) = Tf+ -

Tf. The positivity of T then implies f+ < Tf+ and f < Tf. But since T is a
contraction, we must havef+ = Tf+ and - = Tf. Therefore, f+ andf are both
T-invariant, and since If = f+ + f, so is If 1.
We also need the following lemma which is due to Neveu [12].
LEMMA 3. Let T be a positive contraction defined on L1(X, 63, m). Suppose T

does not admit an invariant element which is strictly positive. Then there exist a set
B and an infinite sequence of positive integers {nili = 1, 2, * } such that m(B) > 0
and

(5) E Un'CB(x) < 2 a.e. on X.
i=1

3. Decomposition of the conservative part

The following theorem elaborates the remark of Neveu made in [12]. We have
also learned that Krengel has discussed this decomposition recently in an as yet
unpublished work of his.
THEOREM 1. There exists a subset S of the conservative part, called the strongly

conservative part, satisfying the following conditions:
(i) every T-invariant element in LI(X, 63, m) has support in S;
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(ii) for every nonnegative function f E L'(X, 63, m) with f > 0 on S and for
every infinite sequence of positive integers {nIji = 1, 2,

(6) E Tn'f(x) = a.e. on S.
i=1

(iii) X - S is a U-subinvariant set.
PROOF. Let us denote by I the collection of all sets in 63 of the form

{xlg(x) > O} where g is a nonnegative T-invariant element in L'(X, 63, m). Let
a = SUPA E mi(A). Since it is clear that 2[ is closed under the formation of
countable unions, there exists a set S e 91 such that mr(S) = &. Let fo > 0 be an
element in L'(X, 63, m) such that Tfo = fo and S = {lxfo(x) > 0}. To prove (i)
we suppose that g is a T-invariant function such that g $d 0 on some set
B C X - S with m(B) > 0. Then by lemma 2, fo + Igl is also T-invariant, and
therefore, {xlfo + lg9 > 0} e W. We also have m{xlfo + 191 > °} .rm(S) +
m(B) > 6, which is a contradiction.
To prove (ii), let us consider the operator Ts which is a positive contraction on

L'(S, 63s, ms). The function fo is a strictly positive invariant element for Ts
since Tsfo = SCsT(Csfo) = 9CsTfo = 9Csfo = fo. Therefore, by theorem 4 of [5],
for every function f G L'(S, 63s,ims) with f > 0 on S, and for every infinite
sequence of positive integers {ni|i = 1, 2, .* ,

(7) E TJif(x) = a.e. on S.
i=1

If we now take any function f E LI(X, 63, m) which is nonnegative on X and is
strictly positive on S, then for each integer k Ttsf < 9CsTkf. Therefore, for any
such f and for every infinite sequence of positive integers {niIi = 1, 2, **}

(8) TTnf(x)=X a.e. on S.
i=1

Finally, to show (iii), suppose X - S is not U-subinvariant. Then there exists
a subset B of S such that m(B) > 0 and for all x G B, U9Cx_s(x) > 0. Then

(9) 0 < foUsXxs din < fxfo Uox-s dm = f sTfodm = |foxdi = 0

which is a contradiction. This completes the proof of the theorem.
We next state a few more lemmas which we need for the further decomposition

of C - S.
LEMMA 4. Let A be any set in 63 with m(A) > 0. If the contraction TA has a

nontrivial invariant element in L'(A, 63A, mA), then T also has a nontrivial invariant
element in L'(X, (6, m).

PROOF. Let f be a nontrivial function in L'(A, 63A, MA), which is invariant
under TA. By lemma 2, we can suppose that f > 0 on A. We define an element
f e L1(X, 63, m) by

(10) f f on A
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From the definition of TA it follows that TAf = TAf. The invariance of J under
TA implies f = TAJ = TAf = SCAT(OCAf) = 9CATf. Therefore, on A we have
f = 3 = Tf. On the other hand, since T is positive and f > 0,

(11) fdm = fAfd IA Tf dm < Tf dm.

But since T is a contraction, we must have fx Tf dm < fxf dm, which implies
fA Tf dm = fx Tf dm. Therefore, Tf = 0 a.e. on X - A. Thus, Tf = f a.e. on
X, and this proves the lemma.
LEMMA 5. Let B be any set in . Then the setf = B U Un=1 {xI UOCtB(x) > O}

is the smallest U-subinvariant set containing B.
PROOF. We write Bo = B and B. = {xI Un9B(X) > O} for n = 1, 2, *-- We

first show that U9CB,(X) < $B,,(X) a.e. on X for n = 0, 1, * - - . Since 11 Ull < 1
implies that U9CB.(X) < 1 a.e., it suffices to show that UOCB,(X) = 0 a.e. on
X - B,,+, = {xl U-+l9CB(x) = O}. The chain of equalities

(12) 0 = B Un+'DCB dm = f(T Bx.,+,))(Un"CB) dm

IB (ToCX -BB+)(U"9cB) dm

implies that T2X-B.,,+ = 0 a.e. on Bn. Therefore,

(13) 0 f TSCx-Bn+l dm = xB U9CBn di,

which proves that UaB. = 0 a.e. on X -Bn+.
We now show that P is U-subinvariant. Suppose not, then there exists a set

E C X - P such that fE UXBj dm > 0. But since E n P = 0, it follows that

(14) fUocAdm < uU E B.) dmi< Ef EBn+, dm = 0,E E n=O E ~~~~~~~n=O

which is a contradiction.
Suppose now that F is a U-subinvariant set containing B. The positivity of U

then implies UngrB < Un9F < 9F Therefore, Bn C F for each n. Consequently,
P C F, which implies that P is the smallest U-subinvariant set containing B.
LEMMA 6. The contraction T is conservative if and only if every U-subinvariant

function is U-invariant.
PROOF. The proof follows immediately from lemma 7 of [10] once we show

that T being conservative, is equivalent to the following condition:
(a) for every set E with m(E) > 0, _n=oIE Tni dm = oo.

If T is conservative the condition (a) is obviously satisfied. Conversely, sup-
pose that T is not conservative. For each positive integer k let us put

(15) Ak = {xl E_ TnI(X) < k}-
n=O
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Then Uk= , Ak = D, so that m(D) > 0 implies the existence of a positive
integer k such that m(Ak) > 0. We then have

(16) f TI(x) dm f | ,0T^I(x) dm < km(Ak) < 00.
n=0 JA Jk n=0

Therefore, condition (a) is not satisfied.
COROLLARY. If T is conservative, the strongly conservative part S and its

complement X - S = C - S are both U-invariant sets.
PROOF. By theorem 1, X - S is U-subinvariant. Since T is conservative,

lemma 6 implies that X - S is U-invariant. Clearly the complement of any
U-invariant set is also U-invariant.
When T is conservative, we decompose X - S further.
THEOREM 2. Assume that T is conservative. Then there exists at most a countable

number of disjoint subsets {Ajlj = 1, 2, * *} of X - S satisfying the following
conditions:

(i) each set Aj is U-invariant;
(ii) U'f 1 Aj = X - S modulo a set of measure zero;
(iii) for each j = 1, 2, * , there exists an infinite sequence of positive integers

{njIi = 1, 2, * *} such that for everyf E L1(X, 6f, m),

(17) L T {If (x) <00 a.e. on Aj.
i=1

PROOF. Consider the contraction Tx-s on L1(X - S, 63x-s, mx-s). By
lemma 4, Tx-S does not have any nontrivial invariant element in L1(X -
S, 63x-s, mx-s). Therefore, lemma 3 applies to Txs, and we get a set B C X - S
and an infinite sequence of positive integers {ni'li = 1, 2, - * } such that
m(B) > 0 and

nl(18) E U" sB(X) < 2 a.e. on X -S.
i=11

Since X - S is U-invariant, lemma 1 implies Uk_s9Cg = Uk9CB for each k.
Therefore,

Unl(19) IU O9CB(x) < 2 a.e. on X.
i=l

Let

(20) A1= BU U {xIU-9CB(x)> 0}-
n=1

By lemma 5 and lemma 6, A1 is the U-invariant subset of X. Lemma 5 also
implies that A1 n s = 0, since X - S is a U-invariant set containing B. Let
us define an element h E L-(X, 63, m) by

E (112+l)UkgB(X)forx EAl,(21) h(x) = k 1

for x EX-A,
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Then h > 0, and

(22) E U th(x) < UUn (E (1/2k+1) Uk$s)(x)
i=l i=l k=l

-k=1E(1/2k+1)Uk (2 U ct"B) < 1 a.e. on X.
k=l i=l

Therefore, for any f E L'(X, (B, im),

(23) > lf11 2 iff Uthdi= f ( TntIf) hdm

2 L ( TnsIfI) h dm.
Since h > 0 on Al, we must have

(24) E TlIfI(x) < a.e. on A,.

Since the union of two disjoint U-invariant sets is again U-invariant, S U A, is
U-invariant, and therefore, X - (S U Al) is also U-invariant. Consider the
contraction Tx_ (SUA,) and repeat the same argument as above. We then obtain
a U-invariant subset A2 of X - (S U Al) and an infinite sequence of positive
integers {n2ji = 1, 2, * } such that

(25) E Tn2fI(x) < a.e. on A2 for every f e L'(X, (B, m).

We keep repeating the above process. After at most a countable number of steps
we will exhaust the set X - S, and in this way obtain the decomposition
{Ajlj = 1, 2, * *} of X - S together with the associated sequences of positive
integers {nili = 1, 2, *- } with the desired property. This completes the proof
of the theorem.
REMARK. The sequences {njli = 1, 2, *--} are a natural generalization of

weakly wandering sequences defined for invertible measurable transformations
in [5]. In fact, if T arises from such a transformation, then for each j = 1, 2, *..
there exists a set Bj of positive measure which is weakly wandering under
{n 'li = 1, 2, * * ..

4. Existence of strictly positive invariant elements for a conservative T

In [5] it was shown that the following two conditions are necessary but in
general not sufficient for the existence of a strictly positive invariant element for
an operator T which arises from a Markov process.

(A) for every measurable functionf withf > 0, and for every infinite sequence
of positive integers {nIi = 1, 2, - .*,

(26) E Unf(x) = 00 a.e.
i=1
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(B) for every decomposition {Eklk = 1, 2, .. *} of the space X, for every
measurable set B with m(B) > 0, and for every infinite sequence of
positive integers {niji = 1, 2, *.*} there exists an index k (depending on
the set B and the sequence {n}) such that

(27) Y f UnixE, dm =o.

We also consider the following condition:
(C) for every decomposition {EkIk = 1, 2, .* } of the space X, and for every

infinite sequence of positive integers {nili = 1, 2, * *

(28) m{fl{xl E Un'SE,(x) <}} = 0.

We now prove the following theorem.
THEOREM 3. For any positive contraction T defined on L1(X, 6(, m) the con-

ditions (A), (B), and (C) are equivalent (regardless of T being conservative). Any
(and hence all) of these conditions are necessary and sufficient for the existence of a
strictly positive invariant element for a conservative T.
PROOF. We first show the equivalence of the conditions (A), (B), and (C).
To prove (A) -* (C), suppose (C) does not hold. Then there exist a decompo-

sition {Eklk = 1, 2, *--} and an infinite sequence of positive integers {nIi =
1, 2, * *} such that

(29) m{f {Xl E UniqE.(X) < 00 > 0.k=l i=l1
We denote the above set of positive measure by A. Next choose an g > 0 with
E < m(A), and then choose a sequence of positive integers {Nklk = 1, 2, .. *}
such that for each k, m(Ak) < 8/2k, where

(30) Ak = A n {xI E Uni$Ek(x) > Nk}-

Let A* = U'=1 Ak; then m(A - A*) > m(A) - kl /2k>O. If x AA-A*,
then

(31) E UmO$E"(X) < Nk for all k.
i=1

We define

(32) f = E (1/2 Nk) OCEIG
k=1

Then f > 0 on X and

(33) E Un'f(x) < 1 on A-A*,
i=l

contradicting (A).
That (C) -+ (B), follows immediately from the monotone convergence

theorem.



370 FIFTH BERKELEY SYMPOSIUM: HAJIAN AND ITO

To show that (B) -* (A), suppose (A) does not hold. Then there exist a strictly
positive function f e L"'(X, 63, m), an infinite sequence of positive integers
{njIi = 1, 2, - - *}, and a set B with m(B) > 0 such that lim,_. Unif(x) = 0

boundedly on B. Therefore, there exists an infinite subsequence {nj j = 1, 2, * }
of the sequence {ni} for which

(34) ZfUnif dm < o.
j=l J

We define El = {x|f(x) > 1} and Ek = {xl1/(k - 1) > f(x) > l/k} for k = 2,3,
* - - . Then {Ek Ik = 1, 2, * - -} is a countable decomposition of X, and for each
k, f > (l/k)9CEk. Therefore, for each k = 1, 2, * * *,

(35) , f UniSCE, dm < k F f Unfdm < oo,j=l JB ~~j=l J
which contradicts (B).

Finally, we show that the condition (A) is sufficient for the existence of a
strictly positive invariant element for a conservative T. This will complete the
proof of the theorem since the necessity of conditions (A) and (B) was already
shown in [5]. We suppose that T has no strictly positive invariant element.
Then by lemma 3, there exist a set B with m(B) > 0 and an infinite sequence
of positive integers {niji = 1, 2, * } such that

(36) E_ U-i9CB(x) < 2 a.e. on X.
i=l

Let

(37) B = B U U {XIUnSCB(X) > O};
n=1

since T is conservative, B is a U-invariant set. Let

(38) f = EY (1/2k+1) U':SCB on B,

1L on X-B.
Then f > 0 on X, and the invariance of B implies

(39) E Unf = E U-i E (1/2k+1)UkgCB) on S.
i=l i=l (k='l

Therefore,

(40) E Unf < 1 on B;
i=l

this contradicts (A).
REMARK. The following three conditions, which were shown in [10] to be

necessary but not sufficient for the existence of a strictly positive invariant ele-
ment, are also sufficient under the added assumption that T is conservative:

(D) for every , > 0, there exists a 6 > 0 such that m(B) < a implies
Supn fB T'I dm < £;
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(D)' for every 8 > 0, there exists a 8 > 0 such that m(B) < 8 implies
sup. (1/n) 57k=OZ fB Tki dm < 9;

(D)" the mean ergodic theorem holds for T in L'(X, 63, m).
PROOF. It is clear that (D) implies (D)'. It was shown in [10] that (D)'

and (D)" are equivalent, and that (D) is necessary for the existence of a
strictly positive invariant element for T. We therefore show that (D)" is
sufficient assuming that T is conservative. To this end, consider Ti =
s-limn~(1/n) E TkI ; where s-lim means the limit in the sense of the norm
in L'(X, 6B, m). Clearly Ti is T-invariant. Let A = {xITlI(x) > 0}; then as in
the proof of theorem 1, we can show that X - A is U-subinvariant, and hence
U-invariant. But on U-invariant sets the integrals of TI(x) and 1(x) have the
same value. Therefore,

(41) m(X) = Jx TIl(x) dm = fA TI(x) dm = m(A).

This means X = A; therefore, TI is a strictly positive T-invariant function.
Let us now suppose that T is ergodic as well as conservative. Then the only

U-invariant sets are the null set and the whole space X. Therefore, in the de-
composition X = U= l Aj U S obtained in theorem 2, only one of these sets is
of positive measure. Thus, we can state the following theorem.
THEOREM 4. Let T be a positive contraction acting on L'(X, B, m). Assume

that T is conservative and ergodic. Then one and only one of the following conditions
holds:

(i) for every f E L'(X, 63, m) with f > 0, and for every infinite sequence of
positive integers {nili = 1, 2, * * *

(42) E Tn'f(x) = 00 a.e. on X.
i=l

(ii) There exists an infinite sequence of positive integers {nili = 1, 2, * } such
that for every f E L'(X, 3, m),

(43) LiTnljf I(x) < a.e. on X.
i=1

REMARK. It is clear that condition (i) of the above theorem holds if and only
if T has a strictly positive invariant element, and condition (ii) holds if and only
if T has no nontrivial invariant element.

5. Some special cases

Let us consider a nonsingular Markov process P(x, B) defined on the measure
space (X, 63 m). Such a process gives rise in a natural way to a positive contrac-
tion T in L'(X, 63, m) (see [5]). We say that a nonsingular Markov process is
conservative, or is ergodic, whenever the induced contraction T is conservative
or ergodic, respectively. When a positive contraction T arises from a nonsingular
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Markov process P(x, B), then the adjoint U on L0(X, 63, m) is given by the
following simple formula,

(44) Uf(x) = ff(y)P(x, dy) for f e L-(X, 63, m).

A finite invariant measure for P(x, B) which is absolutely continuous with
respect to m corresponds in a one-to-one way to a nonnegative invariant element
for the induced contraction T. It is possible for P(x, B) to admit infinite but
a-finite invariant measures. Existence of such measures cannot be characterized
by the existence of invariant elements for the induced contraction T. However,
we have the following characterization which generalizes theorem 3 of [5].
THEOREM 5. Let a nonsingular Markov process P(x, B) defined on (X, 63, m)

be conservative and ergodic. Suppose there exists an infinite but cr-finite measure ,u
invariant under P(x, B) and equivalent to m. Then there exists an infinite sequence
of positive integers {n Ii = 1, 2, } such that for every f e LI(X, 63, ,u),

(45) L Unjlf I(x) < a.e. on X.
i=l

PROOF. The invariance of the measure ji under P(x, B) implies that the
operator U can be defined by the formula (44) not only for f e LD(X, 63, ,u) -
L-(X, 63, m), but also forf e L1(X, 63, A). It is easy to see that U considered as
an operator on L1(X, 63, ,u) is a positive contraction. The invariance of ,u implies
also that the adjoint U* of this contraction U (U* is defined also on L-(X, (6, ,u))
extends to a positive contraction on LI(X, 63, IA). It is easy to see that P(x, B) is
conservative and ergodic if and only if the only U-subinvariant functions in
LY(X, 63, Iu) are constants. On the other hand, a slight modification of the argu-
ments used in theorem 3 of [11] shows that constants are the only U-subinvariant
functions in L-(X, 63, ,u) if and only if they are the only U*-subinvariant func-
tions in L-(X, 63, ,u). It is easy to show that if there exists a nontrivial U-sub-
invariant element in L1(X, 63, ,u), then there must be a nontrivial U-subinvariant
element in L1(X, 63, I) n L(X, 63, ,u). Therefore, the fact that P(x, B) is
conservative and ergodic implies that there is no U-subinvariant element in
L1(X, 63, j;), except 0, since the measure ,u is infinite.

Let w = dlu/dm, the Radon-Nikodym derivative of ,u with respect to m, and
define a contraction operator C on L'(X, 63, m) by the formula

(46) C(fw) = wUf for every f e L'(X, 63, ,

(Note that every element of LI(X, 63, m) is of the form fw with f e L1(X, (6, ,
The adjoint of C is the same U* regarded as an operator on L-(X, 63, m). The
transformation C is conservative and ergodic since the only U*-subinvariant
functions in L-(X, (B, m) are constants by comments made in the preceding
paragraph. Suppose now that a function fw e L'(X, 63, m) is invariant under C;
then we have fw = C(fw) = wUf, which implies that f is an element in
LI(X, 63, IA) left invariant by U. Therefore, f = 0, and this implies that the con-
traction C on L'(X, 63, m) has no nontrivial invariant element. Consequently, by
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theorem 4 (see the remark following theorem 4), there exists an infinite sequence
of positive integers {niIi = 1, 2, * * } such that for every fw e LI(X, (3, m),

(47) E2 Olilfwl(x) < a.e. on X.
i=l

Since Oklfwl = w UklfI for each positive integer k, this completes the proof of
the theorem.

COROLLARY. Let a nonsingular Markov process P(x, B) defined on (X, 63, m)
be conservative and ergodic. Suppose there exists an infinite but o-finite measure
,u invariant under P(x, B) and equivalent to m. Then there exists an infinite
sequence of positive integers {ni|i = 1, 2, }-*} such that for any decomposition
{EkIk = 1, 2, ** } of the space X withM(Ek) < oX for k = 1, 2,

(48) m{k UnU'i"Et(X) < X} 1.

Let 4 be a measurable and nonsingular transformation defined on the measure
space (X, 63, m). In discussing the problem of invariant measures, Hopf [8]
introduced the concept of a bounded set (see also Halmos [7]). In [7] Halmos
showed that there exists a v-finite invariant measure u equivalent to m if and
only if the whole space X is the union of a countable number of bounded sets.
Using these concepts we may easily prove the following.
THEOREM 6. Let 4 be a measurable and nonsingular transformation defined on

the measure space (X, 63, m). Assume 0 is conservative and let S be the strongly
conservative part of X. Then S' = X - S may be decomposed further into two
disjoint invariant sets R and Q = S' - R satisfying the following conditions:

(i) every u-finite invariant measure which is absolutely continuous with respect to
m has support disjoint from Q;

(ii) there exists a a-finite invariant measure j. which is equivalent to m on R.
PROOF. Suppose A1 is a bounded set of positive measure contained in S'.

Since 4 is conservative, by lemma 5,

(49) AT = U 0-iA,
i =o

is an invariant set, and is the countable union of bounded sets r-iAi, i = 0, 1,
* - - . If A2 is a bounded set of positive measure contained in S' - A1, then as
above form A2. We now use the principle of exhaustion and obtain a maximal
set R contained in S', and R consists of the disjoint union of sets of the form
A * = U °=o +-1A where A is a bounded set of positive measure. It is clear that
R is the union of a countable number of bounded sets, and Q = S' -R does not
contain any bounded sets of positive measure. Parts (i) and (ii) of the theorem
now are immediate consequences of the result in [7] mentioned above.
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