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1. Introduction and summary

In his booklet on ergodic theory [1] Halmos raises the question of the existence
of p-th roots of measure-preserving transformations, and more specifically the
question of the existence of p-th roots of the N-shifts (see problem 4 on page 97).
On page 56 of the same book he indicates that if N = k2, then the N-shift has
a square root. Clearly, essentially the same argument shows that if N= kP,
then the N-shift has a p-th root.
The main purpose of this paper is to show that the one-sided N-shift has a

p-th root if and only if N = kP for some positive integer k. The problem of the
existence of roots seems to be more difficult for the bilateral N-shift than for
the one-sided N-shift. At least our methods involve the many-to-one nature of
the one-sided N-shift and its roots, and cannot be used on the bilateral shifts.

2. Notation

The following symbols will be used:
N is a positive integer;

= {W = (W1, W2, * *.)|wi e {0, 1, * N - 1} for all i};
E2 is the smallest o-field containing all sets of the form {wl1wi= k};
P is a probability measure on (Q, 2) defined so that the sequence {Wk}

of coordinate projection random variables is an independent se-
quence, and so that P{fwwi = k} = 1/N for k = 0,1, * , N - 1
and all i;

T is the one-sided N-shift defined by T(w,, (02, * = (W2, (03,
O is the subcollection of 2Q consisting of all subsets of sets (in 2) of

measure zero;
= {E, + E21E, E 2 and E2 E 20}. This is a o-field;

P* is the completion of P to 2I*;
w+ j/N =(coW, 2, * *) where W= (WI, W2, *,O < l < N-1, and w'=

WI + j (mod N).
' Research supported by NSF Grant GP-1816.
2 Research supported by the Air Force Office of Scientific Research, Office of Aerospace Re-

search, U. S. Air Force, Grant Nr AF-AFOSR-746-65.
327



328 FIFTH BERKELEY SYMPOSIUM: BLUM, BRUNK, AND HANSON

3. Results

For our first two lemmas we state some relatively well-known facts about T.
LEMMA 1. The one-sided N-shift T satisfies the following relations:

(i) A E 2(2;*) X TA e 2(2*) and T-1A E 2(2*);
(ii) T is onto;
(iii) T is measure preserving (that is, A c 2 implies P*(A) = P*(T-'A));
(iv) P*(A) = 0 implies P*(TA) = 0 and P*(A) = 1 implies P*(TA) = 1;
(v) T is ergodic (that is, A G 2 and A = T-1A implies P*(A) = 0 or

P*(A) = 1).
LEMMA 2. If A e 2, EE 2*, P*(E) = 1, and En T-1A C A, then

P*(A) = O or P*(A) = 1.
PROOF. Set Ay = Un,=o nk-n T-kA. One shows that P*(T-kA A A) = 0 for

all k, from which it follows that P*(A. A A) = 0 or P*(A) = P*(Ac.). Note that
A. is invariant (namely, T-'A. = A.) so that P*(A.) = 0 or P*(A.) = 1.

Suppose U and V are point transformations from Q2 into Q2 which are 2-meas-
urable (that is, U-12 C 2 and V-12 C 2), or 2*-measurable (U-12* C 2* and
V-12* C 2*), and which are nonsingular (namely, A E 2* and P*(A) = 0
implies P*(U-lA) = 0 and P*(V-lA) = 0).
LEMMA 3. If U and V are 2-measurable, then they are also 2*-measurable.
PROOF. If E E 2, then we can assume that E = E1 + E2 with El e 2 and

E2 C EO where EO E 2, P(EO) = O. Now E2 C E -E1 and P(EO - El) = 0. It
follows that U-1(E) = U-'(El) + U-'(E2) with U-'(El) e 2, U-1(E0- El) e 2,
P[U-I(E0- El)] = 0, and U-1(E2) C U-'(E0- E1). Thus U-'E e 2 and sim-
ilarly, V-1E e 2*.
Now let Do = {Xw UV(w) = VU(w) = T(w)} and note that Do is in 2. Define

(1) D = on U-1Dnn V-1Do.
We assume that P* (Do) = 1. It follows from the nonsingularity of U and V
that P*(D) = 1 also.
LEMMA 4. If w E D, then TU(w) = UT(w) and TV(w) = VT(X).
LEMMA 5. If P* (E) = 1, then UE E 2*, VE E 2, andP*(UE) = P*(VE) = 1.
PROOF. First UE D UV(D n V-'E) = T(D n V-1E). However,

(2) P*[T(D n V-'E)] = P*(D n V-'E) = 1,
so UE has inner P* measure 1. Thus UE E * and P*(UE) = 1. The remaining
conclusions follow by interchanging U and V in the above argument.
LEMMA 6. The transformations U and V are measure preserving.
PROOF. We will show that U is measure preserving. The proof that V is

measure preserving is identical and omitted.
For A E V define ,u(A) = P*(U-IA). We see that u is a probability measure

which is absolutely continuous with respect to P*, since U is nonsingular. Note
that lemma 4 implies D ) U-T-IA = D n T-'U-1A. Thus
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(3) Iu(A) = P*(U-1A) = P*(T-1U-1A) = P*(D nl T-1U-'A)
= P*(D n U- T-'A) = P*(U-lT-lA) = (T-1A)

so that T is measure preserving with respect to ,u.
The remainder of the proof is similar to that of theorem 1 and corollary 1

of [2].
Let A be a maximal positive set for the signed measure P*-, as guaranteed

by the Hahn decomposition theorem. The set

(4) Ao = U nTT-A
n=O k=n

can be shown to be a maximal positive set for P* -, . But Ax is invariant,
hence P*(Aj=) 0 or 1. But since IA is absolutely continuous with respect to P*,
we have P*(A,) = 0 implies IA(A.) = 0, and P*(A,,,) = 1 implies P*(Ac ) = 0
implies ,u(A' ) = 0 implies IA(A.) = 1. In either case (P* -,)Ax, = 0. Similarly
P*- p can be shown to be zero on a maximal negative set so P*p-,. Thus
P*(U-lA) = P*(A) for A e V.
LEMMA 7. If E E 2*, then P*(T-lE) = P*(U-lV-lE) = P*(V-lU-lE).
PROOF. The lemma follows from the observations that D n U-1V-1E =

D n V-1U-1E = D n T-1E and that P*(D) = 1.
THEOREM 1. If U and V are measurable (2 or 2*) point transformations from

. into Q which are nonsingular, and such that P*{wl UV(w) = VU(w) = T(co)} = 1,
then there exist positive integers n and m such that

(i) mn = N,
.. P* rexactly m out of the collection

1

(11) P { cU(C), U(mw + o/n),t c e,U(co+ (N-1)/N) equal U(W) 1
(iii) p* exactly n out of the collection111 ' I V(@w), V(C) + IIN), * ,V(w + (N -1)/N) equal V(cW)1
PROOF. Let

r exactly k members of the collection 1

(5) Ak =l U(W), U (W + N) **... , U (,+ NN
-

) are equal to U(w)

r exactly k members of the collection 1
(6) Bk = l V(W), v(co+ ), ... , V (c + NN 1) are equal to V(co)
Note that ,k= 1 Ak = n,k Bk = Q and that the Ak's and Bk's are measurable
sets. Let m be the smallest integer such that P*(Am) > 0, and let n be the largest
integer such that P*(Bn) > 0.
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Let

W,C4)+ *, + N EDn [Am U Am+, U .. U An]

(7) G1 = co, U(co) eBn

U(,w), U(co)+ N,* U(W) + N 1 UD

and note that G1 C U-'Bn and P*[U-lB,, - G] 0= so that P*(G1) > 0 and
G1, f. Suppose w E G1. Exactly n members of the set

(8) MU(), M(@) + IX * *. * U(co) + N }

are such that V[U(w) + (a/N)] = V[U(w)]. Suppose these are ul, * , un. Now
u-t(ui) n D P 0 for each ui, say xi E U-'(ui) n D. Since

(9) T-1[T(w)] = {yjT(y) = T(w)} = { W + I
, w + N }

we see that xi E Am U ... U An sO that there are at least m points in the set
{w, w + (1/N), * *, w + (N - 1/N)} which have the same image under U as
xi does, namely ui.
Thus Tw has n preimages under V (namely ul, * , un) such that each one

of these has at least m preimages under U which are in D. We see that TW has
at least nm preimages under VU = T which are in D, hence nm < N.

Let

V(co),V(w+ k)*V (+ NN) 1

(10) G2= W,W+K, ,W+ N EDfn{B1U* UBn}
V(w) EAm

N-i 1V('), V(W) + **V(') + NN EDnVD

Note that G2 C V-'Am and P*[V-lAm -G2] = 0 so that P*(G2) > 0 and
G2 4. Suppose w e G2. Exactly m members of the set

(11) {V(W), V(co) + I± .. . V(W) + N-1}
are such that U [V(cw) + k/N] = U[V(w)]. Suppose these are vi, v, yi. Now
v-1(vk) n D # 4, say Yk e V-l(vk) n D. We have

(12) T-1(Tw) = {co +
I * o+ N 1}

and since yk E D n V-1V(w), we see that Yk E T-h(Tw). However,
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(13) co w + N * + N EB1U ... U B.,

Soyk EB, U ... U Bn.
Thus there are no more than n preimages of each vk which are in

(14) w + 1, X
N-}l

It follows that Tw has m preimages under U (namely v1, v, Vm) such that each
of these has at most n preimages under V which are in D, so that we have at
most nm of these preimages. These are all preimages under T, and if they are
all such preimages, then N < nm. We are done if V (w + k/N) e {v,, v* , Vm}
for each k. If this is not the case, then either

(15) V( + N) E{V(@), V(") + ,* V(,) + NN-} {vl * * V.}

(which contradicts T (w + k/N) = T(w)), or else

(16) V(w + N)
f
V(X), V(") + NX..V(c.,) + N-1}

But since V(cw) and V (co + k/N) E D, we have

(17) T(V(w)) = VU(V(w)) = V[T(w)] = V [T (c + N)]

= v[UV(+ )]= T [V ( +

Thus both V(wo) and V (w + k/N) are in D, and preimages of T(V(W)) under
T, hence V (w + k/N) = V(w) + j/N for some j. We have already seen that
these circumstances imply V (co + k/N) E {v,, * * *, vm}.
Now that we have shown that mn = N, let us look again at the points in G1.

We saw that if co e G1, then T? has n preimages under V, and that each of these
had at least m-preimages under U which are in D. Since mn = N and Tw has
the N preimages w,Gw+ 1/N, ** *,w + (N-1)/N (in D) under UV = T, it
follows that each preimage under V of Tw has exactly m preimages (in D) under
U. In particular, U(co) is a preimage under V of Tw, and therefore has exactly
m preimages (in D and thus in w, w + 1/N, * , w + (N -1)/N) under U, hence
wi) S Am. Thus G1 C Am.

Similarly, looking at G2 we argue that if w e G2, then V(w) has exactly n

preimages (in w, co + 1/N, co,X + (N -1)/N) under V, and hence X E B^.
Thus G2 C Bn.
We have shown that

(18) Bn D G2 ae V-'Am D V-1Gj a-e-V-'.U-Bn
and
(19) Am D G1 ae U-'B. D U-1G2 a-e- U-1V-'Am.
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An application of lemma 7 shows that B,, a-e- T-'B_ and A,, a- T-1Am. An ap-
plication of lemma 2 shows that P*(Am) = P*(Bn) = 1 and completes the proof
of the theorem.
THEOREM 2. The one-sided N-shift has a nonsingular and measurable p-th

root S (in the sense that P*{wIT(aw) = SP(w)} = 1) if and only ifN = kPfor some
positive integer k.

PROOF. Suppose N = kP and let X = {1, * , k}. The following is hinted
at on page 56 of [1]. Define

(20) X = {x = (lx, * p,x)lix E X for i = 1, ***,p}.

Let ,6 be any one of the N! distinct mappings of {0, , N - 1} onto Q.x.
Define x, = (Ixa, x.,,xa) for aE {0, * , N-1} by xe, = Vb(a). Now sup-
pose w (WI, W2, *.*) e Q and that x<,, = (1x,i, 2Xa,j, ** ,x

Define

(21) S- = [1k-1(2X., **, pX.,I X.), Vl(2X., *. I* pX., 1X-),***]

In order to obtain Sw, one encodes each digit wi of W using #, to find the cor-
responding p-tuple x.,j = k(wc). Then one eliminates the first digit in the coded
version of W1, namely, lx,,, and one regroups into p-tuples. This amounts to a
p-shift of the encoded version of W. Finally one decodes each digit: S is 2 and
2* measurable, measure preserving, and is a p-th root of T everywhere (namely,
SPw = Tco for all W).
Now suppose P*{wjSP(w) = T(W) = 1} and that S is measurable and non-

singular. Let U = SP-' and V = S. From theorem I there exists some positive
integer k such that

lexactly k out of the collection

(22) l*{(i).S(), S (w+ N+ j 1) are equal to S(w) 1

It is almost obv! us that SP is kr-to-one almost everywhere. (A rigorous proof
of this fact involves a little effort with sets of measure zero but will be omitted
because the difficulties are of the type encountered in theorem 1.) Since T is
N-to-one everywhere it follows that N = k.

4. Some remarks on generalizations
It is clear that the results given here are valid, not only for the one-sided

N-shift, but for other ergodic transformations which are essentially N-to-1 as
well. The essentials seem to be that there exists a transformation # such that
on a set of measure one, w, #,(w), * * *, e-t1(w) are all different and co = e(w);
that kl be measurable and nonsingular; and that T(w) = T(W') if and only if
CWI = lk(W) for some k (provided we have restricted w and co' to some set of
measure 1). We have used the fact that the one-sided N-shift is bimeasurable.
It would be interesting to know whether it is necessary that T have this property.
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It would also be interesting to know about roots of T in the case where ,6 is of
finite period for almost all X but the period is a function of co.
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