ROOTS OF THE ONE-SIDED N-SHIFT

J. R. BLUM ${ }^{1}$
University of New Mexico
H. D. BRUNK ${ }^{2}$ and D. L. HANSON ${ }^{2}$
University of Missouri

1. Introduction and summary

In his booklet on ergodic theory [1] Halmos raises the question of the existence of p-th roots of measure-preserving transformations, and more specifically the question of the existence of p-th roots of the N-shifts (see problem 4 on page 97). On page 56 of the same book he indicates that if $N=k^{2}$, then the N-shift has a square root. Clearly, essentially the same argument shows that if $N=k^{p}$, then the N-shift has a p-th root.

The main purpose of this paper is to show that the one-sided N-shift has a p-th root if and only if $N=k^{p}$ for some positive integer k. The problem of the existence of roots seems to be more difficult for the bilateral N-shift than for the one-sided N-shift. At least our methods involve the many-to-one nature of the one-sided N-shift and its roots, and cannot be used on the bilateral shifts.

2. Notation

The following symbols will be used:
$N \quad$ is a positive integer;
$\Omega=\left\{\omega=\left(\omega_{1}, \omega_{2}, \cdots\right) \mid \omega_{i} \in\{0,1, \cdots, N-1\}\right.$ for all $\left.i\right\} ;$
$\sum \quad$ is the smallest σ-field containing all sets of the form $\left\{\omega \mid \omega_{i}=k\right\}$;
$P \quad$ is a probability measure on (Ω, Σ) defined so that the sequence $\left\{\omega_{k}\right\}$
of coordinate projection random variables is an independent se-
quence, and so that $P\left\{\omega \mid \omega_{i}=k\right\}=1 / N$ for $k=0,1, \cdots, N-1$ and all i;
$T \quad$ is the one-sided N-shift defined by $T\left(\omega_{1}, \omega_{2}, \cdots\right)=\left(\omega_{2}, \omega_{3}, \cdots\right)$;
Σ^{0} is the subcollection of 2^{Ω} consisting of all subsets of sets (in Σ) of measure zero;
$\Sigma^{*}=\left\{E_{1}+E_{2} \mid E_{1} \in \Sigma\right.$ and $\left.E_{2} \in \Sigma^{0}\right\}$. This is a σ-field;
$P^{*} \quad$ is the completion of P to Σ^{*};
$\omega+j / N=\left(\omega_{1}^{\prime}, \omega_{2}, \cdots\right)$ where $\omega=\left(\omega_{1}, \omega_{2}, \cdots\right), 0 \leq \omega_{1}^{\prime} \leq N-1$, and $\omega_{1}^{\prime}=$ $\omega_{1}+j(\bmod N)$.

[^0]
3. Results

For our first two lemmas we state some relatively well-known facts about T.
Lemma 1. The one-sided N-shift T satisfies the following relations:
(i) $A \in \Sigma\left(\Sigma^{*}\right) \Rightarrow T A \in \Sigma\left(\Sigma^{*}\right)$ and $T^{-1} A \in \Sigma\left(\Sigma^{*}\right)$;
(ii) T is onto;
(iii) T is measure preserving (that is, $A \in \Sigma^{*}$ implies $P^{*}(A)=P^{*}\left(T^{-1} A\right)$);
(iv) $P^{*}(A)=0$ implies $P^{*}(T A)=0$ and $P^{*}(A)=1$ implies $P^{*}(T A)=1$;
(v) T is ergodic (that is, $A \in \Sigma^{*}$ and $A=T^{-1} A$ implies $P^{*}(A)=0$ or $\left.P^{*}(A)=1\right)$.

Lemma 2. If $A \in \Sigma^{*}, E \in \Sigma^{*}, \quad P^{*}(E)=1$, and $E \cap T^{-1} A \subset A$, then $P^{*}(A)=0$ or $P^{*}(A)=1$.

Proof. Set $A_{\infty}=\cup_{n=0}^{\infty} \bigcap_{k=n}^{\infty} T^{-k} A$. One shows that $P^{*}\left(T^{-k} A \Delta A\right)=0$ for all k, from which it follows that $P^{*}\left(A_{\infty} \Delta A\right)=0$ or $P^{*}(A)=P^{*}\left(A_{\infty}\right)$. Note that A_{∞} is invariant (namely, $T^{-1} A_{\infty}=A_{\infty}$) so that $P^{*}\left(A_{\infty}\right)=0$ or $P^{*}\left(A_{\infty}\right)=1$.

Suppose U and V are point transformations from Ω into Ω which are Σ-measurable (that is, $U^{-1} \Sigma \subset \Sigma$ and $V^{-1} \Sigma \subset \Sigma$), or Σ^{*}-measurable ($U^{-1} \Sigma^{*} \subset \Sigma^{*}$ and $V^{-1} \Sigma^{*} \subset \Sigma^{*}$), and which are nonsingular (namely, $A \in \Sigma^{*}$ and $P^{*}(A)=0$ implies $P^{*}\left(U^{-1} A\right)=0$ and $P^{*}\left(V^{-1} A\right)=0$).

Lemma 3. If U and V are Σ-measurable, then they are also Σ^{*}-measurable.
Proof. If $E \in \Sigma^{*}$, then we can assume that $E=E_{1}+E_{2}$ with $E_{1} \in \Sigma$ and $E_{2} \subset E^{0}$ where $E^{0} \in \Sigma, P\left(E^{0}\right)=0$. Now $E_{2} \subset E^{0}-E_{1}$ and $P\left(E^{0}-E_{1}\right)=0$. It follows that $U^{-1}(E)=U^{-1}\left(E_{1}\right)+U^{-1}\left(E_{2}\right)$ with $U^{-1}\left(E_{1}\right) \in \Sigma, U^{-1}\left(E^{0}-E_{1}\right) \in \Sigma$, $P\left[U^{-1}\left(E^{0}-E_{1}\right)\right]=0$, and $U^{-1}\left(E_{2}\right) \subset U^{-1}\left(E^{0}-E_{1}\right)$. Thus $U^{-1} E \in \Sigma^{*}$ and similarly, $V^{-1} E \in \Sigma^{*}$.

Now let $D_{0}=\{\omega \mid U V(\omega)=V U(\omega)=T(\omega)\}$ and note that D_{0} is in Σ^{*}. Define

$$
\begin{equation*}
D=D_{0} \cap U^{-1} D_{0} \cap V^{-1} D_{0} \tag{1}
\end{equation*}
$$

We assume that $P^{*}\left(D_{0}\right)=1$. It follows from the nonsingularity of U and V that $P^{*}(D)=1$ also.

Lemma 4. If $\omega \in D$, then $T U(\omega)=U T(\omega)$ and $T V(\omega)=V T(\omega)$.
Lemma 5. If $P^{*}(E)=1$, then $U E \in \Sigma^{*}, V E \in \Sigma^{*}$, and $P^{*}(U E)=P^{*}(V E)=1$.
Proof. First $U E \supset U V\left(D \cap V^{-1} E\right)=T\left(D \cap V^{-1} E\right)$. However,

$$
\begin{equation*}
P^{*}\left[T\left(D \cap V^{-1} E\right)\right]=P^{*}\left(D \cap V^{-1} E\right)=1 \tag{2}
\end{equation*}
$$

so $U E$ has inner P^{*} measure 1. Thus $U E \in \Sigma^{*}$ and $P^{*}(U E)=1$. The remaining conclusions follow by interchanging U and V in the above argument.

Lemma 6. The transformations U and V are measure preserving.
Proof. We will show that U is measure preserving. The proof that V is measure preserving is identical and omitted.

For $A \in \Sigma^{*}$ define $\mu(A)=P^{*}\left(U^{-1} A\right)$. We see that μ is a probability measure which is absolutely continuous with respect to P^{*}, since U is nonsingular. Note that lemma 4 implies $D \cap U^{-1} T^{-1} A=D \cap T^{-1} U^{-1} A$. Thus

$$
\begin{align*}
\mu(A) & =P^{*}\left(U^{-1} A\right)=P^{*}\left(T^{-1} U^{-1} A\right)=P^{*}\left(D \cap T^{-1} U^{-1} A\right) \tag{3}\\
& =P^{*}\left(D \cap U^{-1} T^{-1} A\right)=P^{*}\left(U^{-1} T^{-1} A\right)=\mu\left(T^{-1} A\right)
\end{align*}
$$

so that T is measure preserving with respect to μ.
The remainder of the proof is similar to that of theorem 1 and corollary 1 of [2].

Let A be a maximal positive set for the signed measure $P^{*}-\mu$ as guaranteed by the Hahn decomposition theorem. The set

$$
\begin{equation*}
A_{\infty}=\bigcup_{n=0}^{\infty} \bigcap_{k=n}^{\infty} T^{-k} A \tag{4}
\end{equation*}
$$

can be shown to be a maximal positive set for $P^{*}-\mu$. But A_{∞} is invariant, hence $P^{*}\left(A_{\infty}\right)=0$ or 1 . But since μ is absolutely continuous with respect to P^{*}, we have $P^{*}\left(A_{\infty}\right)=0$ implies $\mu\left(A_{\infty}\right)=0$, and $P^{*}\left(A_{\infty}\right)=1$ implies $P^{*}\left(A_{\infty}^{c}\right)=0$ implies $\mu\left(A_{\infty}^{c}\right)=0$ implies $\mu\left(A_{\infty}\right)=1$. In either case $\left(P^{*}-\mu\right) A_{\infty}=0$. Similarly $P^{*}-\mu$ can be shown to be zero on a maximal negative set so $P^{*} \equiv \mu$. Thus $P^{*}\left(U^{-1} A\right)=P^{*}(A)$ for $A \in \Sigma^{*}$.

Lemma 7. If $E \in \Sigma^{*}$, then $P^{*}\left(T^{-1} E\right)=P^{*}\left(U^{-1} V^{-1} E\right)=P^{*}\left(V^{-1} U^{-1} E\right)$.
Proof. The lemma follows from the observations that $D \cap U^{-1} V^{-1} E=$ $D \cap V^{-1} U^{-1} E=D \cap T^{-1} E$ and that $P^{*}(D)=1$.

Theorem 1. If U and V are measurable (Σ or Σ^{*}) point transformations from Ω into Ω which are nonsingular, and such that $P^{*}\{\omega \mid U V(\omega)=V U(\omega)=T(\omega)\}=1$, then there exist positive integers n and m such that
(i) $m n=N$,
(ii) $P^{*}\left\{\omega \left\lvert\, \begin{array}{l}\text { exactly } m \text { out of the collection } \\ U(\omega), U(\omega+1 / n), \cdots, U(\omega+(N-1) / N) \text { equal } U(\omega)\end{array}\right.\right\}=1$,
(iii) $P^{*}\left\{\omega \left\lvert\, \begin{array}{l}\text { exactly } n \text { out of the collection } \\ V(\omega), V(\omega+1 / N), \cdots, V(\omega+(N-1) / N) \text { equal } V(\omega)\end{array}\right.\right\}=1$.

Proof. Let

$$
\begin{align*}
& A_{k}=\left\{\omega \left\lvert\, \begin{array}{l}
\text { exactly } k \text { members of the collection } \\
U(\omega), U\left(\omega+\frac{1}{N}\right), \cdots, U\left(\omega+\frac{N-1}{N}\right) \text { are equal to } U(\omega)
\end{array}\right.\right\}, \tag{5}\\
& B_{k}=\left\{\omega \left\lvert\, \begin{array}{l}
\text { exactly } k \text { members of the collection } \\
V(\omega), V\left(\omega+\frac{1}{N}\right), \cdots, V\left(\omega+\frac{N-1}{N}\right) \text { are equal to } V(\omega)
\end{array}\right.\right\} . \tag{6}
\end{align*}
$$

Note that $\sum_{k=1}^{n} A_{k}=\sum_{k=1}^{n} B_{k}=\Omega$ and that the A_{k} 's and B_{k} 's are measurable sets. Let m be the smallest integer such that $P^{*}\left(A_{m}\right)>0$, and let n be the largest integer such that $P^{*}\left(B_{n}\right)>0$.

Let

and note that $G_{1} \subset U^{-1} B_{n}$ and $P^{*}\left[U^{-1} B_{n}-G_{1}\right]=0$ so that $P^{*}\left(G_{1}\right)>0$ and $G_{1} \neq \phi$. Suppose $\omega \in G_{1}$. Exactly n members of the set

$$
\begin{equation*}
\left\{U(\omega), U(\omega)+\frac{1}{N}, \cdots, U(\omega)+\frac{N-1}{N}\right\} \tag{8}
\end{equation*}
$$

are such that $V[U(\omega)+(\alpha / N)]=V[U(\omega)]$. Suppose these are u_{1}, \cdots, u_{n}. Now $U^{-1}\left(u_{i}\right) \cap D \neq \phi$ for each u_{i}, say $x_{i} \in U^{-1}\left(u_{i}\right) \cap D$. Since

$$
\begin{equation*}
T^{-1}[T(\omega)]=\{y \mid T(y)=T(\omega)\}=\left\{\omega, \omega+\frac{1}{N}, \cdots, \omega+\frac{N-1}{N}\right\} \tag{9}
\end{equation*}
$$

we see that $x_{i} \in A_{m} \cup \cdots \cup A_{n}$ so that there are at least m points in the set $\{\omega, \omega+(1 / N), \cdots, \omega+(N-1 / N)\}$ which have the same image under U as x_{i} does, namely u_{i}.

Thus $T \omega$ has n preimages under V (namely u_{1}, \cdots, u_{n}) such that each one of these has at least m preimages under U which are in D. We see that $T \omega$ has at least $n m$ preimages under $V U=T$ which are in D, hence $n m \leq N$.

Let

$$
G_{2}=\left\{\begin{array}{l}
V(\omega), V\left(\omega+\frac{1}{N}\right), \cdots, V\left(\omega+\frac{N-1}{N}\right) \in D \tag{10}\\
\omega, \omega+\frac{1}{N}, \cdots, \omega+\frac{N-1}{N} \in D \cap\left\{B_{1} \cup \cdots \cup B_{n}\right\} \\
V(\omega) \in A_{m} \\
V(\omega), V(\omega)+\frac{1}{N}, \cdots, V(\omega)+\frac{N-1}{N} \in D \cap V D
\end{array}\right\}
$$

Note that $G_{2} \subset V^{-1} A_{m}$ and $P^{*}\left[V^{-1} A_{m}-G_{2}\right]=0$ so that $P^{*}\left(G_{2}\right)>0$ and $G_{2} \neq \phi$. Suppose $\omega \in G_{2}$. Exactly m members of the set

$$
\begin{equation*}
\left\{V(\omega), V(\omega)+\frac{1}{N}, \cdots, V(\omega)+\frac{N-1}{N}\right\} \tag{11}
\end{equation*}
$$

are such that $U[V(\omega)+k / N]=U[V(\omega)]$. Suppose these are v_{1}, \cdots, v_{m}. Now $V^{-1}\left(v_{k}\right) \cap D \neq \phi$, say $y_{k} \in V^{-1}\left(v_{k}\right) \cap D$. We have

$$
\begin{equation*}
T^{-1}(T \omega)=\left\{\omega, \omega+\frac{1}{N}, \cdots, \omega+\frac{N-1}{N}\right\} \tag{12}
\end{equation*}
$$

and since $y_{k} \in D \cap V^{-1} V(\omega)$, we see that $y_{k} \in T^{-1}(T \omega)$. However,

$$
\begin{equation*}
\omega, \omega+\frac{1}{N}, \cdots, \omega+\frac{N-1}{N} \in B_{1} \cup \cdots \cup B_{n}, \tag{13}
\end{equation*}
$$

so $y_{k} \in B_{1} \cup \cdots \cup B_{n}$.
Thus there are no more than n preimages of each v_{k} which are in

$$
\begin{equation*}
\left\{\omega, \omega+\frac{1}{N}, \cdots, \omega+\frac{N-1}{N}\right\} . \tag{14}
\end{equation*}
$$

It follows that $T \omega$ has m preimages under U (namely v_{1}, \cdots, v_{m}) such that each of these has at most n preimages under V which are in D, so that we have at most $n m$ of these preimages. These are all preimages under T, and if they are all such preimages, then $N \leq n m$. We are done if $V(\omega+k / N) \in\left\{v_{1}, \cdots, v_{m}\right\}$ for each k. If this is not the case, then either

$$
\begin{equation*}
V\left(\omega+\frac{k}{N}\right) \in\left\{V(\omega), V(\omega)+\frac{1}{N}, \cdots, V(\omega)+\frac{N-1}{N}\right\}-\left\{v_{1}, \cdots, v_{m}\right\} \tag{15}
\end{equation*}
$$

(which contradicts $T(\omega+k / N)=T(\omega)$), or else

$$
\begin{equation*}
V\left(\omega+\frac{k}{N}\right) \notin\left\{V(\omega), V(\omega)+\frac{1}{N}, \cdots, V(\omega)+\frac{N-1}{N}\right\} \tag{16}
\end{equation*}
$$

But since $V(\omega)$ and $V(\omega+k / N) \in D$, we have

$$
\begin{align*}
T(V(\omega)) & =V U(V(\omega))=V[T(\omega)]=V\left[T\left(\omega+\frac{k}{N}\right)\right] \tag{17}\\
& =V\left[U V\left(\omega+\frac{k}{N}\right)\right]=T\left[V\left(\omega+\frac{k}{N}\right)\right]
\end{align*}
$$

Thus both $V(\omega)$ and $V(\omega+k / N)$ are in D, and preimages of $T(V(\omega))$ under T, hence $V(\omega+k / N)=V(\omega)+j / N$ for some j. We have already seen that these circumstances imply $V(\omega+k / N) \in\left\{v_{1}, \cdots, v_{m}\right\}$.

Now that we have shown that $m n=N$, let us look again at the points in G_{1}. We saw that if $\omega \in G_{1}$, then $T \omega$ has n preimages under V, and that each of these had at least m-preimages under U which are in D. Since $m n=N$ and $T \omega$ has the N preimages $\omega, \omega+1 / N, \cdots, \omega+(N-1) / N$ (in D) under $U V=T$, it follows that each preimage under V of $T \omega$ has exactly m preimages (in D) under U. In particular, $U(\omega)$ is a preimage under V of $T \omega$, and therefore has exactly m preimages (in D and thus in $\omega, \omega+1 / N, \cdots, \omega+(N-1) / N$) under U, hence $\omega \in A_{m}$. Thus $G_{1} \subset A_{m}$.

Similarly, looking at G_{2} we argue that if $\omega \in G_{2}$, then $V(\omega)$ has exactly n preimages (in $\omega, \omega+1 / N, \cdots, \omega+(N-1) / N$) under V, and hence $\omega \in B_{n}$. Thus $G_{2} \subset B_{n}$.

We have shown that

$$
\begin{equation*}
B_{n} \supset G_{2} \xlongequal{\text { a.e. }} V^{-1} A_{m} \supset V^{-1} G_{1} \xlongequal{\text { a.e. }} V^{-1} U^{-1} B_{n} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{m} \supset G_{1} \xlongequal{\text { a.e. }} U^{-1} B_{n} \supset U^{-1} G_{2} \xlongequal{\text { a.e. }} U^{-1} V^{-1} A_{m} . \tag{19}
\end{equation*}
$$

An application of lemma 7 shows that $B_{n} \xlongequal{\text { a.e. }} T^{-1} B_{n}$ and $A_{m} \xlongequal{\text { a.e. }} T^{-1} A_{m}$. An application of lemma 2 shows that $P^{*}\left(A_{m}\right)=P^{*}\left(B_{n}\right)=1$ and completes the proof of the theorem.

Theorem 2. The one-sided N-shift has a nonsingular and measurable p-th root S (in the sense that $P^{*}\left\{\omega \mid T(\omega)=S^{p}(\omega)\right\}=1$) if and only if $N=k^{p}$ for some positive integer k.

Proof. Suppose $N=k^{p}$ and let $X=\{1, \cdots, k\}$. The following is hinted at on page 56 of [1]. Define

$$
\begin{equation*}
\Omega_{X}=\left\{x=\left.\left({ }_{1} x, \cdots,{ }_{p} x\right)\right|_{i} x \in X \quad \text { for } \quad i=1, \cdots, p\right\} . \tag{20}
\end{equation*}
$$

Let ψ be any one of the N ! distinct mappings of $\{0, \cdots, N-1\}$ onto Ω_{X}. Define $x_{\alpha}=\left({ }_{1} x_{\alpha}, \cdots,{ }_{p} x_{\alpha}\right)$ for $\alpha \in\{0, \cdots, N-1\}$ by $x_{\alpha}=\psi(\alpha)$. Now suppose $\omega=\left(\omega_{1}, \omega_{2}, \cdots\right) \in \Omega$ and that $x_{\omega_{i}}=\left({ }_{1} x_{\omega_{i}, 2} x_{\omega_{i}}, \cdots,{ }_{p} x_{\omega_{i}}\right)$.

Define

$$
\begin{equation*}
S \omega=\left[\psi^{-1}\left({ }_{2} x_{\omega 1}, \cdots,{ }_{p} x_{\omega 1},{ }_{1} x_{\omega 2}\right), \psi^{-1}\left({ }_{2} x_{\omega 2}, \cdots,{ }_{p} x_{\omega 2},{ }_{1} x_{\omega 2}\right), \cdots\right] . \tag{21}
\end{equation*}
$$

In order to obtain $S \omega$, one encodes each digit ω_{i} of ω using ψ to find the corresponding p-tuple $x_{\omega_{i}}=\psi\left(\omega_{i}\right)$. Then one eliminates the first digit in the coded version of ω_{1}, namely, ${ }_{1} x_{\omega 1}$, and one regroups into p-tuples. This amounts to a p-shift of the encoded version of ω. Finally one decodes each digit: S is Σ and Σ^{*} measurable, measure preserving, and is a p-th root of T everywhere (namely, $S^{p} \omega=T \omega$ for all ω).

Now suppose $P^{*}\left\{\omega \mid S^{p}(\omega)=T(\omega)=1\right\}$ and that S is measurable and nonsingular. Let $U=S^{p-1}$ and $V=S$. From theorem 1 there exists some positive integer k such that

$$
P^{*}\left\{\begin{array}{l}
\text { exactly } k \text { out of the collection } \tag{22}\\
S(\omega), S\left(\omega+\frac{1}{N}\right), \cdots, S\left(\omega+\frac{N-1}{N}\right) \text { are equal to } S(\omega)
\end{array}\right\}=1
$$

It is almost obvi, us that S^{p} is k^{p}-to-one almost everywhere. (A rigorous proof of this fact involves a little effort with sets of measure zero but will be omitted because the difficulties are of the type encountered in theorem 1.) Since T is N-to-one everywhere it follows that $N=k^{p}$.

4. Some remarks on generalizations

It is clear that the results given here are valid, not only for the one-sided N-shift, but for other ergodic transformations which are essentially N-to-1 as well. The essentials seem to be that there exists a transformation ψ such that on a set of measure one, $\omega, \psi(\omega), \cdots, \psi^{N-1}(\omega)$ are all different and $\omega=\psi^{N}(\omega)$; that ψ be measurable and nonsingular; and that $T(\omega)=T\left(\omega^{\prime}\right)$ if and only if $\omega^{\prime}=\psi^{k}(\omega)$ for some k (provided we have restricted ω and ω^{\prime} to some set of measure 1). We have used the fact that the one-sided N-shift is bimeasurable. It would be interesting to know whether it is necessary that T have this property.

It would also be interesting to know about roots of T in the case where ψ is of finite period for almost all ω but the period is a function of ω.

REFERENCES

[1] P. R. Halmos, Lectures on Ergodic Theory, New York, Chelsea, 1956.
[2] J. R. Blum and D. L. Hanson, "On invariant probability measures I," Pacific J. Math., Vol. 10 (1960), pp. 1125-1129.

[^0]: ${ }^{1}$ Research supported by NSF Grant GP-1816.
 ${ }^{2}$ Research supported by the Air Force Office of Scientific Research, Office of Aerospace Research, U. S. Air Force, Grant Nr AF-AFOSR-746-65.

