ROOTS OF THE ONE-SIDED N-SHIFT

J. R. BLUM¹

UNIVERSITY OF NEW MEXICO H. D. BRUNK² and D. L. HANSON² UNIVERSITY OF MISSOURI

1. Introduction and summary

In his booklet on ergodic theory [1] Halmos raises the question of the existence of *p*-th roots of measure-preserving transformations, and more specifically the question of the existence of *p*-th roots of the *N*-shifts (see problem 4 on page 97). On page 56 of the same book he indicates that if $N = k^2$, then the *N*-shift has a square root. Clearly, essentially the same argument shows that if $N = k^p$, then the *N*-shift has a *p*-th root.

The main purpose of this paper is to show that the one-sided N-shift has a p-th root if and only if $N = k^p$ for some positive integer k. The problem of the existence of roots seems to be more difficult for the bilateral N-shift than for the one-sided N-shift. At least our methods involve the many-to-one nature of the one-sided N-shift and its roots, and cannot be used on the bilateral shifts.

2. Notation

The following symbols will be used:

- N is a positive integer;
- $\Omega = \{ \omega = (\omega_1, \omega_2, \cdots) | \omega_i \in \{0, 1, \cdots, N-1\} \text{ for all } i \};$
- \sum is the smallest σ -field containing all sets of the form $\{\omega | \omega_i = k\};$
- P is a probability measure on (Ω, Σ) defined so that the sequence $\{\omega_k\}$ of coordinate projection random variables is an independent sequence, and so that $P\{\omega|\omega_i = k\} = 1/N$ for $k = 0, 1, \dots, N-1$ and all *i*;
- T is the one-sided N-shift defined by $T(\omega_1, \omega_2, \cdots) = (\omega_2, \omega_3, \cdots);$
- \sum^{0} is the subcollection of 2^{Ω} consisting of all subsets of sets (in Σ) of measure zero;

$$\Sigma^* = \{E_1 + E_2 | E_1 \in \Sigma \text{ and } E_2 \in \Sigma^0\}$$
. This is a σ -field;

is the completion of P to
$$\Sigma^*$$
;

 $\omega + j/N = (\omega'_1, \omega_2, \cdots)$ where $\omega = (\omega_1, \omega_2, \cdots), 0 \le \omega'_1 \le N - 1$, and $\omega'_1 = \omega_1 + j \pmod{N}$.

¹ Research supported by NSF Grant GP-1816.

² Research supported by the Air Force Office of Scientific Research, Office of Aerospace Research, U. S. Air Force, Grant Nr AF-AFOSR-746-65.

3. Results

For our first two lemmas we state some relatively well-known facts about T. LEMMA 1. The one-sided N-shift T satisfies the following relations:

(i) $A \in \Sigma(\Sigma^*) \Rightarrow TA \in \Sigma(\Sigma^*)$ and $T^{-1}A \in \Sigma(\Sigma^*)$;

(ii) T is onto;

(iii) T is measure preserving (that is, $A \in \Sigma^*$ implies $P^*(A) = P^*(T^{-1}A)$);

(iv) $P^*(A) = 0$ implies $P^*(TA) = 0$ and $P^*(A) = 1$ implies $P^*(TA) = 1$;

(v) T is ergodic (that is, $A \in \Sigma^*$ and $A = T^{-1}A$ implies $P^*(A) = 0$ or $P^*(A) = 1$).

LEMMA 2. If $A \in \Sigma^*$, $E \in \Sigma^*$, $P^*(E) = 1$, and $E \cap T^{-1}A \subset A$, then $P^*(A) = 0$ or $P^*(A) = 1$.

PROOF. Set $A_{\infty} = \bigcup_{n=0}^{\infty} \bigcap_{k=n}^{\infty} T^{-k}A$. One shows that $P^*(T^{-k}A \Delta A) = 0$ for all k, from which it follows that $P^*(A_{\infty} \Delta A) = 0$ or $P^*(A) = P^*(A_{\infty})$. Note that A_{∞} is invariant (namely, $T^{-1}A_{\infty} = A_{\infty}$) so that $P^*(A_{\infty}) = 0$ or $P^*(A_{\infty}) = 1$.

Suppose U and V are point transformations from Ω into Ω which are Σ -measurable (that is, $U^{-1}\Sigma \subset \Sigma$ and $V^{-1}\Sigma \subset \Sigma$), or Σ^* -measurable ($U^{-1}\Sigma^* \subset \Sigma^*$ and $V^{-1}\Sigma^* \subset \Sigma^*$), and which are nonsingular (namely, $A \in \Sigma^*$ and $P^*(A) = 0$ implies $P^*(U^{-1}A) = 0$ and $P^*(V^{-1}A) = 0$).

LEMMA 3. If U and V are Σ -measurable, then they are also Σ^* -measurable.

PROOF. If $E \in \Sigma^*$, then we can assume that $E = E_1 + E_2$ with $E_1 \in \Sigma$ and $E_2 \subset E^0$ where $E^0 \in \Sigma$, $P(E^0) = 0$. Now $E_2 \subset E^0 - E_1$ and $P(E^0 - E_1) = 0$. It follows that $U^{-1}(E) = U^{-1}(E_1) + U^{-1}(E_2)$ with $U^{-1}(E_1) \in \Sigma$, $U^{-1}(E^0 - E_1) \in \Sigma$, $P[U^{-1}(E^0 - E_1)] = 0$, and $U^{-1}(E_2) \subset U^{-1}(E^0 - E_1)$. Thus $U^{-1}E \in \Sigma^*$ and similarly, $V^{-1}E \in \Sigma^*$.

Now let $D_0 = \{\omega | UV(\omega) = VU(\omega) = T(\omega)\}$ and note that D_0 is in Σ^* . Define (1) $D = D_0 \cap U^{-1}D_0 \cap V^{-1}D_0$.

We assume that $P^*(D_0) = 1$. It follows from the nonsingularity of U and V that $P^*(D) = 1$ also.

LEMMA 4. If $\omega \in D$, then $TU(\omega) = UT(\omega)$ and $TV(\omega) = VT(\omega)$.

LEMMA 5. If $P^*(E) = 1$, then $UE \in \Sigma^*$, $VE \in \Sigma^*$, and $P^*(UE) = P^*(VE) = 1$.

PROOF. First $UE \supset UV(D \cap V^{-1}E) = T(D \cap V^{-1}E)$. However,

(2)
$$P^*[T(D \cap V^{-1}E)] = P^*(D \cap V^{-1}E) = 1,$$

so UE has inner P^* measure 1. Thus $UE \in \Sigma^*$ and $P^*(UE) = 1$. The remaining conclusions follow by interchanging U and V in the above argument.

LEMMA 6. The transformations U and V are measure preserving.

PROOF. We will show that U is measure preserving. The proof that V is measure preserving is identical and omitted.

For $A \in \Sigma^*$ define $\mu(A) = P^*(U^{-1}A)$. We see that μ is a probability measure which is absolutely continuous with respect to P^* , since U is nonsingular. Note that lemma 4 implies $D \cap U^{-1}T^{-1}A = D \cap T^{-1}U^{-1}A$. Thus

ONE-SIDED N-SHIFT

(3)
$$\mu(A) = P^*(U^{-1}A) = P^*(T^{-1}U^{-1}A) = P^*(D \cap T^{-1}U^{-1}A)$$
$$= P^*(D \cap U^{-1}T^{-1}A) = P^*(U^{-1}T^{-1}A) = \mu(T^{-1}A)$$

so that T is measure preserving with respect to μ .

The remainder of the proof is similar to that of theorem 1 and corollary 1 of [2].

Let A be a maximal positive set for the signed measure $P^* - \mu$ as guaranteed by the Hahn decomposition theorem. The set

(4)
$$A_{\infty} = \bigcup_{n=0}^{\infty} \bigcap_{k=n}^{\infty} T^{-k}A$$

can be shown to be a maximal positive set for $P^* - \mu$. But A_{∞} is invariant, hence $P^*(A_{\infty}) = 0$ or 1. But since μ is absolutely continuous with respect to P^* , we have $P^*(A_{\infty}) = 0$ implies $\mu(A_{\infty}) = 0$, and $P^*(A_{\infty}) = 1$ implies $P^*(A_{\infty}^c) = 0$ implies $\mu(A_{\infty}^c) = 0$ implies $\mu(A_{\infty}) = 1$. In either case $(P^* - \mu)A_{\infty} = 0$. Similarly $P^* - \mu$ can be shown to be zero on a maximal negative set so $P^* \equiv \mu$. Thus $P^*(U^{-1}A) = P^*(A)$ for $A \in \Sigma^*$.

LEMMA 7. If $E \in \Sigma^*$, then $P^*(T^{-1}E) = P^*(U^{-1}V^{-1}E) = P^*(V^{-1}U^{-1}E)$. PROOF. The lemma follows from the observations that $D \cap U^{-1}V^{-1}E = D \cap V^{-1}U^{-1}E = D \cap T^{-1}E$ and that $P^*(D) = 1$.

THEOREM 1. If U and V are measurable $(\Sigma \text{ or } \Sigma^*)$ point transformations from Ω into Ω which are nonsingular, and such that $P^*\{\omega|UV(\omega) = VU(\omega) = T(\omega)\} = 1$, then there exist positive integers n and m such that

(i) mn = N,

(ii)
$$P^*\left\{\omega \middle| \begin{array}{l} exactly \ m \ out \ of \ the \ collection \\ U(\omega), \ U(\omega + 1/n), \ \cdots, \ U(\omega + (N-1)/N) \ equal \ U(\omega) \end{array}\right\} = 1,$$

(iii) $P^*\left\{\omega \middle| \begin{array}{l} exactly \ n \ out \ of \ the \ collection \\ V(\omega), \ V(\omega + 1/N), \ \cdots, \ V(\omega + (N-1)/N) \ equal \ V(\omega) \end{array}\right\} = 1.$

PROOF. Let

(5)
$$A_{k} = \left\{ \omega \middle| \begin{array}{l} \text{exactly } k \text{ members of the collection} \\ U(\omega), U\left(\omega + \frac{1}{N}\right), \cdots, U\left(\omega + \frac{N-1}{N}\right) \text{ are equal to } U(\omega) \right\},$$

(6)
$$B_{k} = \left\{ \omega \left| \begin{array}{c} \text{exactly } k \text{ members of the collection} \\ V(\omega), V\left(\omega + \frac{1}{N}\right), \cdots, V\left(\omega + \frac{N-1}{N}\right) \text{ are equal to } V(\omega) \right\} \right\}$$

Note that $\sum_{k=1}^{n} A_k = \sum_{k=1}^{n} B_k = \Omega$ and that the A_k 's and B_k 's are measurable sets. Let *m* be the smallest integer such that $P^*(A_m) > 0$, and let *n* be the largest integer such that $P^*(B_n) > 0$.

329

Let

(7)
$$G_{1} = \left\{ \omega \middle| \begin{array}{l} \omega, \omega + \frac{1}{N}, \cdots, \omega + \frac{N-1}{N} \in D \cap \left[A_{m} \cup A_{m+1} \cup \cdots \cup A_{n}\right] \\ U(\omega) \in B_{n} \\ U(\omega), U(\omega) + \frac{1}{N}, \cdots, U(\omega) + \frac{N-1}{N} \in UD \end{array} \right\},$$

and note that $G_1 \subset U^{-1}B_n$ and $P^*[U^{-1}B_n - G_1] = 0$ so that $P^*(G_1) > 0$ and $G_1 \neq \phi$. Suppose $\omega \in G_1$. Exactly *n* members of the set

(8)
$$\left\{U(\omega), U(\omega) + \frac{1}{N}, \cdots, U(\omega) + \frac{N-1}{N}\right\}$$

are such that $V[U(\omega) + (\alpha/N)] = V[U(\omega)]$. Suppose these are u_1, \dots, u_n . Now $U^{-1}(u_i) \cap D \neq \phi$ for each u_i , say $x_i \in U^{-1}(u_i) \cap D$. Since

(9)
$$T^{-1}[T(\omega)] = \{y|T(y) = T(\omega)\} = \left\{\omega, \omega + \frac{1}{N}, \cdots, \omega + \frac{N-1}{N}\right\},$$

we see that $x_i \in A_m \cup \cdots \cup A_n$ so that there are at least *m* points in the set $\{\omega, \omega + (1/N), \cdots, \omega + (N-1/N)\}$ which have the same image under *U* as x_i does, namely u_i .

Thus $T\omega$ has *n* preimages under *V* (namely u_1, \dots, u_n) such that each one of these has at least *m* preimages under *U* which are in *D*. We see that $T\omega$ has at least *nm* preimages under VU = T which are in *D*, hence $nm \leq N$.

 \mathbf{Let}

(10)
$$G_{2} = \begin{cases} V(\omega), V\left(\omega + \frac{1}{N}\right), \cdots, V\left(\omega + \frac{N-1}{N}\right) \in D\\ \omega, \omega + \frac{1}{N}, \cdots, \omega + \frac{N-1}{N} \in D \cap \{B_{1} \cup \cdots \cup B_{n}\}\\ V(\omega) \in A_{m}\\ V(\omega), V(\omega) + \frac{1}{N}, \cdots, V(\omega) + \frac{N-1}{N} \in D \cap VD \end{cases} \end{cases}$$

Note that $G_2 \subset V^{-1}A_m$ and $P^*[V^{-1}A_m - G_2] = 0$ so that $P^*(G_2) > 0$ and $G_2 \neq \phi$. Suppose $\omega \in G_2$. Exactly *m* members of the set

(11)
$$\left\{V(\omega), V(\omega) + \frac{1}{N}, \cdots, V(\omega) + \frac{N-1}{N}\right\}$$

are such that $U[V(\omega) + k/N] = U[V(\omega)]$. Suppose these are v_1, \dots, v_m . Now $V^{-1}(v_k) \cap D \neq \phi$, say $y_k \in V^{-1}(v_k) \cap D$. We have

(12)
$$T^{-1}(T\omega) = \left\{\omega, \omega + \frac{1}{N}, \cdots, \omega + \frac{N-1}{N}\right\},$$

and since $y_k \in D \cap V^{-1}V(\omega)$, we see that $y_k \in T^{-1}(T\omega)$. However,

ONE-SIDED N-SHIFT

(13)
$$\omega, \omega + \frac{1}{N}, \cdots, \omega + \frac{N-1}{N} \in B_1 \cup \cdots \cup B_n,$$

so $y_k \in B_1 \cup \cdots \cup B_n$.

Thus there are no more than n preimages of each v_k which are in

(14)
$$\left\{\omega,\omega+\frac{1}{N},\cdots,\omega+\frac{N-1}{N}\right\}$$

It follows that $T\omega$ has m preimages under U (namely v_1, \dots, v_m) such that each of these has at most n preimages under V which are in D, so that we have at most nm of these preimages. These are all preimages under T, and if they are all such preimages, then $N \leq nm$. We are done if $V(\omega + k/N) \in \{v_1, \dots, v_m\}$ for each k. If this is not the case, then either

(15)
$$V\left(\omega+\frac{k}{N}\right) \in \left\{V(\omega), V(\omega)+\frac{1}{N}, \cdots, V(\omega)+\frac{N-1}{N}\right\} - \{v_1, \cdots, v_m\}$$

(which contradicts $T(\omega + k/N) = T(\omega)$), or else

(16)
$$V\left(\omega+\frac{k}{N}\right) \notin \left\{V(\omega), V(\omega)+\frac{1}{N}, \cdots, V(\omega)+\frac{N-1}{N}\right\}$$

But since $V(\omega)$ and $V(\omega + k/N) \in D$, we have

(17)
$$T(V(\omega)) = VU(V(\omega)) = V[T(\omega)] = V\left[T\left(\omega + \frac{k}{N}\right)\right]$$
$$= V\left[UV\left(\omega + \frac{k}{N}\right)\right] = T\left[V\left(\omega + \frac{k}{N}\right)\right].$$

Thus both $V(\omega)$ and $V(\omega + k/N)$ are in *D*, and preimages of $T(V(\omega))$ under *T*, hence $V(\omega + k/N) = V(\omega) + j/N$ for some *j*. We have already seen that these circumstances imply $V(\omega + k/N) \in \{v_1, \dots, v_m\}$.

Now that we have shown that mn = N, let us look again at the points in G_1 . We saw that if $\omega \in G_1$, then $T\omega$ has *n* preimages under *V*, and that each of these had at least *m*-preimages under *U* which are in *D*. Since mn = N and $T\omega$ has the *N* preimages $\omega, \omega + 1/N, \dots, \omega + (N-1)/N$ (in *D*) under UV = T, it follows that each preimage under *V* of $T\omega$ has exactly *m* preimages (in *D*) under *U*. In particular, $U(\omega)$ is a preimage under *V* of $T\omega$, and therefore has exactly *m* preimages (in *D* and thus in $\omega, \omega + 1/N, \dots, \omega + (N-1)/N$) under *U*, hence $\omega \in A_m$. Thus $G_1 \subset A_m$.

Similarly, looking at G_2 we argue that if $\omega \in G_2$, then $V(\omega)$ has exactly *n* preimages (in ω , $\omega + 1/N$, \cdots , $\omega + (N-1)/N$) under *V*, and hence $\omega \in B_n$. Thus $G_2 \subset B_n$.

We have shown that

(18)
$$B_n \supset G_2 \stackrel{\text{a.e.}}{=} V^{-1}A_m \supset V^{-1}G_1 \stackrel{\text{a.e.}}{=} V^{-1}U^{-1}B_n$$

and

(19)
$$A_m \supset G_1 \stackrel{\text{a.e.}}{=} U^{-1}B_n \supset U^{-1}G_2 \stackrel{\text{a.e.}}{=} U^{-1}V^{-1}A_m.$$

331

332 FIFTH BERKELEY SYMPOSIUM: BLUM, BRUNK, AND HANSON

An application of lemma 7 shows that $B_n \stackrel{\text{a.e.}}{=} T^{-1}B_n$ and $A_m \stackrel{\text{a.e.}}{=} T^{-1}A_m$. An application of lemma 2 shows that $P^*(A_m) = P^*(B_n) = 1$ and completes the proof of the theorem.

THEOREM 2. The one-sided N-shift has a nonsingular and measurable p-th root S (in the sense that $P^*\{\omega|T(\omega) = S^p(\omega)\} = 1$) if and only if $N = k^p$ for some positive integer k.

PROOF. Suppose $N = k^p$ and let $X = \{1, \dots, k\}$. The following is hinted at on page 56 of [1]. Define

(20)
$$\Omega_X = \{x = (_1x, \cdots, _px)|_i x \in X \text{ for } i = 1, \cdots, p\}.$$

Let ψ be any one of the N! distinct mappings of $\{0, \dots, N-1\}$ onto Ω_X . Define $x_{\alpha} = ({}_{1}x_{\alpha}, \dots, {}_{p}x_{\alpha})$ for $\alpha \in \{0, \dots, N-1\}$ by $x_{\alpha} = \psi(\alpha)$. Now suppose $\omega = (\omega_1, \omega_2, \dots) \in \Omega$ and that $x_{\omega_i} = ({}_{1}x_{\omega_i}, {}_{2}x_{\omega_i}, \dots, {}_{p}x_{\omega_i})$.

Define

(21)
$$S\omega = [\psi^{-1}(_{2}x_{\omega_{1}}, \cdots, _{p}x_{\omega_{1}}, _{1}x_{\omega_{2}}), \psi^{-1}(_{2}x_{\omega_{2}}, \cdots, _{p}x_{\omega_{2}}, _{1}x_{\omega_{3}}), \cdots].$$

In order to obtain $S\omega$, one encodes each digit ω_i of ω using ψ to find the corresponding *p*-tuple $x_{\omega_i} = \psi(\omega_i)$. Then one eliminates the first digit in the coded version of ω_1 , namely, $_1x_{\omega_1}$, and one regroups into *p*-tuples. This amounts to a *p*-shift of the encoded version of ω . Finally one decodes each digit: *S* is Σ and Σ^* measurable, measure preserving, and is a *p*-th root of *T* everywhere (namely, $S^{p}\omega = T\omega$ for all ω).

Now suppose $P^*\{\omega|S^p(\omega) = T(\omega) = 1\}$ and that S is measurable and nonsingular. Let $U = S^{p-1}$ and V = S. From theorem 1 there exists some positive integer k such that

(22)
$$P^*\left\{ \begin{array}{l} \omega \\ \alpha \end{array} \middle| \begin{array}{l} \operatorname{exactly} k \text{ out of the collection} \\ S(\omega), S\left(\omega + \frac{1}{N}\right), \cdots, S\left(\omega + \frac{N-1}{N}\right) \text{ are equal to } S(\omega) \end{array} \right\} = 1.$$

It is almost obvious that S^p is k^{p} -to-one almost everywhere. (A rigorous proof of this fact involves a little effort with sets of measure zero but will be omitted because the difficulties are of the type encountered in theorem 1.) Since T is N-to-one everywhere it follows that $N = k^{p}$.

4. Some remarks on generalizations

It is clear that the results given here are valid, not only for the one-sided N-shift, but for other ergodic transformations which are essentially N-to-1 as well. The essentials seem to be that there exists a transformation ψ such that on a set of measure one, $\omega, \psi(\omega), \cdots, \psi^{N-1}(\omega)$ are all different and $\omega = \psi^N(\omega)$; that ψ be measurable and nonsingular; and that $T(\omega) = T(\omega')$ if and only if $\omega' = \psi^k(\omega)$ for some k (provided we have restricted ω and ω' to some set of measure 1). We have used the fact that the one-sided N-shift is bimeasurable. It would be interesting to know whether it is necessary that T have this property.

one-sided N-shift

It would also be interesting to know about roots of T in the case where ψ is of finite period for almost all ω but the period is a function of ω .

REFERENCES

- [1] P. R. HALMOS, Lectures on Ergodic Theory, New York, Chelsea, 1956.
- [2] J. R. BLUM and D. L. HANSON, "On invariant probability measures I," Pacific J. Math., Vol. 10 (1960), pp. 1125-1129.