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1. Introduction

It is the purpose of this note to show that it is impossible to define a prob-
ability measure on the group 9 of invertible measure-preserving transformations
from the unit interval onto itself, if it is demanded that the measure on 9 obey
two fairly "natural" conditions. One of these is an invariance condition on the
measure, and the other asserts that certain distinguished subsets of 9 are
measurable.
One reason for trying to construct such a probability measure is the following:

the group 9 has been topologized in at least two different ways (see Halmos [3]);
in one of those topologies (the "weak" topology) it has been proved that the
set £ of ergodic transformations (and in fact, the set W' of weakly mixing trans-
formations) is of the second category, and the set 8 of strongly mixing transfor-
mations is of the first category (see [3], p. 77 ff.). Corresponding to this
information about the "topological size" of 8, W, and 8, it would have been
natural to seek information about the measures of these (and possibly other)
subsets of 9. One could have hoped, for example, that "almost every transforma-
tion is ergodic." However, one needs first to have an appropriate measure on 9.
Another motivation comes from game theory. One of the characterizations of

the Shapley value [4] of a cooperative n-person game involves a random ordering
of the players. Recently games in which the player set may be a (possibly
atomless) measure space have attracted attention, in part because of their
applications to economics and politics. (For a comprehensive list of references,
see Debreu [2].) One approach to defining the Shapley value for such games
would involve the notion of a "random ordering" of the measure space of players.
Replacing "ordering" with "measure-preserving transformation," leads to the
question that we have answered (negatively) in this note.
The theorem of this paper provides additional evidence of the comparative

intractability of function spaces when viewed from the measure-theoretic rather
than from the topological viewpoint (compare with [1]).
A precise statement of the theorem is given in section 2, and it is proved in
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section 3. The "naturalness" of the invariance condition is discussed in the last
section.

2. Statement of the theorem
Let I be the measure algebra of Lebesgue measurable subsets of the unit

interval I, modulo the sets of measure 0 (that is, the algebra in which sets
differing by sets of measure 0 are not distinguished). Let 9 be the group of
Lebesgue measure preserving automorphisms of I; the members of this group
may be thought of as invertible measure-preserving transformations from I onto
itself, where two transformations are identified if they differ on a set of measure 0
only. We will treat members of I as if they were subsets of I, speaking of unions,
intersections, inclusions, and so on. Lebesgue measure will be denoted by X
throughout. No confusion will result.
THEOREM. There is no pair (r, jU), where r is a a-field of subsets of 9, and A is

a probability measure on r, for which
(2.1) for each xC E r and T G 9, we have 3CT E r, and ,i(3CT) = ,u(3C);
(2.2) for all E and F in I, the function from 9 to the reals defined by

f(T) = X(E n TF) is r-measurable.
A few words of explanation are in order. "Probability measure," of course,

means that ,u(9) = 1. Condition (2.1) is the right-invariance condition; it says
that if a r-measurable set of transformations is multiplied on the right by a
single transformation, then it remains r-measurable, and its /A-measure (prob-
ability) remains unchanged. Without some such condition it would be trivially
possible to construct a probability measure on 9, for example by concentrating
all the probability on one transformation T. Condition (2.2) is a measurability
assumption which seems very reasonable.
The theorem remains true if ¶CT is replaced by TiC in condition (2.1), that

is, if right invariance is replaced by left invariance. Condition (2.2) remains
unchanged.

3. Proof of the theorem
It will be assumed throughout that there is given a pair (r, p) obeying the

specifications of the theorem, and this will lead eventually to a contradiction.
Often it will be convenient to use the language of probability, that is, to

replace ,u by "Prob," fg IA(dT) by "Exp" (for "Expectation"), and so on.
"Variance" will be abbreviated by "Var," and "Covariance" by "Cov"; like
"Exp," these two operators will be applied exclusively to random variables
defined on the probability space (9, r, u).
LEMMA 1. Let D, F1, F2 E I, and X(F1) = X(F2). Then

(1) Exp X(D n TF1) = Exp X(D n TF2).
PROOF. Let S be a member of 9 such that SF1 = F2. Define measures X7

and t72 on the closed unit interval [0, 1] by
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(2) 7i[0, a] = M{T: X(D n TFi) < a}
for i = 1, 2. Then ?qi is the distribution of the random variable X(D n TFi), and
(3) 72[0, a] = t{T: X(D n TSF1) . al

= M{TS: X(D n TSF1) S al
= A{U: X(D n UF1) . al
= 1[0, a],

where the second equality follows from (2.1) and the third by setting U = TS
and noting that as T runs over 9, so does U. From this it follows that

(4) Exp X(D n TF2) = J|1 a772(da) = fI a71i(da) = Exp X(D nTF),
which is the assertion of the lemma.
LEMMA 2. For all D, F, e I,

(5) Exp X(D n TF) = X(D)X(F).
PROOF. For an arbitrary but fixed positive integer m, let F1, *--, Fm be

disjoint members of I with equal measure, whose union is I. Then X(Fi) = 1/m
for all i. From lemma 1 it follows that Exp X(D n TFi) does not depend on i;
let us denote it by -y. Now
(6) X(D) = Exp X(D) = Exp X(D n TI)

= Exp X D n T U Fi = Exp E X(D n TFi)

m
= E ExpX(Dn TFJ) = my.

i=1

Hence, y = X(D)(1/m) = X(D)X(Fi) for i = 1, , m.
Now whenever X(F) = 1/m for some m, it is possible to set F1 = F and to

find m - 1 sets F2, *-- , Fm satisfying the above conditions; hence, whenever
X(F) is the reciprocal of an integer, the assertion of the lemma is established.
But each measurable set F e I is a countable union of sets whose measures are
reciprocals of integers; and since Exp is countably additive for nonnegative
random variables, the assertion of the lemma follows in the general case as well.

Before stating the next lemma, we introduce the following notation: for
D, E, F E I and E n F = 0, we write

(7) g(E, F) = gD(E, F) = Exp [X(D n TE)X(D n TF)].

LEMMA 3. Let D, E, F1, F2 c I, and F1nE = F2nE = 0, X(F1) = X(F2).
Then gD(E, F,) = gD(E, F2).
PROOF. The proof is similar to that of lemma 1. This time, let S be a member

of 9 such that both SF1 = F2 and SE = E. Define measures 177 and -q2 on [0, 1]
by 77i[0, a] = ,u{T: X(D n TE)X(D n TFi) S al; then because of (2.1),
712FO, a] = q,[°, a] for all a, and hence
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(8) Jo1 af72(da) = 101 an1(da);

but that is precisely what the lemma asserts.
LEMMA 4. Let D, E, F E I, and EnF = 0. Then

(9) gD(E, F) < X2(D)X(E)X(F).
PROOF. If X(E) or X(F) vanish, there is nothing to prove; assume, therefore,

that X(E) > 0, X(F) > 0, and so X(E) < 1, X(F) < 1. For an arbitrary but fixed
positive integer m, let F1, - - - , Fm be disjoint members of I with equal measure,
whose union is I - E. Then X(Fi) = (1 - X(E))/m for all i. From lemma 3 it
follows that g(E, Fi) does not depend on i; denote it by y. Now

m m
(10) g(E, I\E) = g E, U Fi) = g(E, Fi) = my.

Hence,
(11) g(E, Fi) = y = g(E, I\E)/m = X(Fi)g(E, I\E)/(1 - X(E)).
Whenever F C I\E and X(F) = (1- X(E))/m for some m, it is possible to

set F, = F and to find m - 1 sets F2, * , Fm satisfying the above conditions;
hence, for such F, we have

(12) g(E, F) = X(F) g (E, I\E)
(1 - X(E))

But each set F C I\E is a countable union of such F; and so (12) follows for
all F with E n F = 0. Now
(13) g(E, I\E) = Exp [X(D n TE)(X(D) - X(D n TE))]

< Exp [maxo.<0x(D) t(X(D) - 9)]
= Exp [X2(D)/4] = X2(D)/4.

Then choosing Eo so that X(Eo) = -, and applying (12), we find

(14) g(Eo,F) < X(F) X )/4 = X(F)X(Eo)X2(D)
2

whenever Eo n F = 0. Now by usiing (12) and the symmetry of g in its two
variables, we obtain

(15) g(E, F) = X(E) g(F, I\F)
(1 - X(F))

whenever E n F = 0. Setting E = Eo in (15) and combining with (14), we
deduce

(16) g(F, I\F)/(1 - X(F)) < X(F)X2(D)
whenever Eo n F = 0. Combining this with (15), we obtain

(17) g(E, F) < X(E)X(F)X2(D)
whenever Eo n F = 0 and E n F = 0. Now whenever X(F) < 2, it is possible
to choose Eo so that ELo n F = 0; since E n F = O by the hypothesis of the
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lemma, the lernma is proved in those cases. When X(F) > -, we may express F
as the union of two disjoint subsets each of measure < 2: the lemma then
follows from the additivity in F both of g(E, F) and of X(F).
LEMMA 5. For all D, F e I,

(18) Var X(Dn TF) = 0.
PROOF. If D = I there is nothing to prove. Therefore, assume that X(D) < 1.

Let F1, *-- , F, be disjoint members of I, with equal measures, such that
U?=1 Fi = F; then X(Fi) = X(F)/n for all i. Assume n > 1. Define random
variables xi, * x*,',, by xi = X(D n TFi). Then

n
(19) Var X(D n TF) = , Var xi + 2 E Cov (xi, xj).

j=1~~~~i>
Now by lemmas 2 and 4,

(20) Cov (xi, xj) = g(Fi, Fj) - (Exp X(D n TF1))(Exp X(D n TFj))
< X(Fi)X(F,)X2(D) - (X(D)X(Fi))(X(D)X(Fj))
= 0.

On the other hand, xj is clearly bounded by X(Fi) = X(F)/n < 1/n, so
Var xi < 1/n2. Hence
(21) Var X(D n TF) < n/n2 = 1/n.
Letting n -+ o, we deduce the conclusion of the lemma.

Suppose now that F = [0, -]. Then it follows from lemmas 2 and 5 that with
probability one, TF intersects every rational interval D in a set of measure
2X(D). But then with probability one, TF is a set of density 2 at each point;
whereas, it is known that there are no such Lebesgue measurable sets. This is
the contradiction that establishes our theorem.
The corresponding theorem when right invariance is replaced by left invariance

can be proved in a similar manner. Alternatively, if (A, v) is a pair satisfying
(2.2) and the left-invariant analogue of (2.1), define

(22) r = JcCc9:ac-1 EA},
where
(23) e-1= {T e 9: T-1E 3C};

and define u on r by IA(JC) = v(C-1). Then it may be verified that (p, r) satisfies
(2.1) and (2.2), and so contradicts the main theorem; this establishes the left-
invariant version.

4. Discussion of the invariance condition

The invariance condition (2.1) seems rather strong. One may ask whether
weaker conditions might not be devised, under which it would be possible to
define a probability measure on 9, while still retaining the intuitive notion that
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the measure is distributed "uniformly" over 9. Certainly, the current result
does not entirely exclude such a possibility, and we will not pretend that the
last word on the subject has been said.
However, it should be pointed out that we have proved more than appears at

first sight. The invariance condition (2.1) is used only twice in the proof, namely
in the proofs of lemmas 1 and 3. Thus one could substitute these lemmas for
condition (2.1) and still obtain the same result. Although the statements of
these lemmas are more involved and less concise than (2.1), their direct intuitive
appeal is perhaps greater than that of (2.1): both lemmas assert that the measure
on 9 does not "discriminate" between sets F1 and F2 in I of equal Lebesgue
measure. It is really only these "non-discrimination" conditions, in addition to
condition (2.2), that are needed to prove the nonexistence of a measure on 9.

Note added in proof. Following is an extremely short proof of the theorem of this
paper, for which I am indebted to Professor Harry Furstenberg. Let S in 9 be
strongly mixing. Fix D and F in I, and define random variables yn = yn(T) by
yn= X(D n TSnF). Then for each T, yn(T) = X(7'-1D n SnF) -- X(D)X(F) as
n .-> Because of the invariance condition (2.1), all the Yn have the same distri-
bution; since they tenld to the constant X(D)X(F) poinitwise, it follows that yn =

X(D)X(F) for each n with probability 1. By setting n = 0 we complete the proof.
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