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1. Outline of the problem

A one-dimensional Markov branching process may be characterized as follows.
An organism, at the end of its lifetime (of fixed duration), produces a random
number t of offspring with probability distribution

(1) Pr {=k} = ak, k=0,1,2, ***,

where as usual

(2) ak.O, ak=1.

All offspring act independently with the same fixed lifetime and the same
distribution of progeny. The population size X(n) at the n-th generation is a
temporally homogeneous Markov chain whose transition probability matrix is
(3) Pij = Pr {X(n + 1) = j|X(n) = i} = Pr {Ji+ t2 + * + (i = j},
where ('s are independent observations of a random variable with the proba-
bility law (1). An equivalent way to express (3) is through its generating func-
tion, which is simply

(4) E pijsi = [f(s)]i, i = 0, 1, **,
3=0

where f(s) = Ek=oaksk.
It is a familiar fact that the n step transition probability matrix P(j) =

Pr {X(n) = jjX(0) = i} possesses the generating function

(5) L P','si =
j=0

where

(6) fn(s) = f-i(f(S)), fo(s) = s,
is the n-th functional iterate of f(s).
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A set of stationary probabilities for IIPfjlP is a set of numbers wri, i = 0, 1, 2, **,
satisfying ~~~~~~~~~~~~~0,(7) 1rj = iPij, j = O, 1, 2, * ;7ri > O, jwi=1

i=O i=O

If we drop from (7) the requirement that i=o 7ri < x, then a nonnegative
solution is referred to as a stationary measure rather than as stationary proba-
bilities. The importance of stationary measures is familiar, and discussions of
their relevance and interpretations can be found in various texts dealing with
Markov chains (see [1] and [2]).
For the branching process it is easy to show that, except in the trivial case

f(s) = s, the only stationary measure is the sequence (1, 0, 0, * * *, 0, * *.). We
will investigate the existence and uniqueness of a stationary measure for the
truncated system of equations

(8) irj = 7riPj, j = 1, 2, .7; i > O,
i=l1

where the state i = 0 has been deleted.
We exclude the trivial case f(s) = s. A simple induction argument shows that

if ao = f(O) is zero, then (8) has only the trivial solution iri = 0, i = 1, 2, * - - .
Hence we will assume that 0 < ao < 1, so that f(s) = ao + arsr + * , where
a, > 0 for some first r > 1. It follows that Pi,r = ialo-'ar, and for a nontrivial
solution of (8) we have

(9) 7r = E 1riiao'a, > 0.
i=l

Moreover, the generating function 7r(s) = 7{=1 7risi has radius of convergence
p > ao. From (8) we obtain the functional equation

(10) 7r(s) = 7r(f(s)) - r(f(O)).

It is easy to deduce from (10) that 7r(s) is analytic in the circle Isl < q where
q is the smallest positive solution of f(s) = s. Conversely if 7r(s) = _=1 7risi is
a solution of (10) with nonnegative coefficients, then the sequence {7rj} is a
solution of (8). Thus the question of existence and uniqueness of nonnegative
solutions of (8) is equivalent to the question of existence and uniqueness of
solutions of the functional equation (10) possessing a power series expansion
with nonnegative coefficients.
The existence of a solution of (10), with nonnegative coefficients, is established

in Harris [3] using classical methods of functional iteration developed by
Fatou [4]. It had already been pointed out by Fatou that if the coefficients
are not required to be nonnegative, then (10) has infinitely many linearly
independent solutions. More recently, Kingman [5] has shown that when
f'(1) =# 1, the solution of (10) can be nonunique, even when the coefficients
are required to be nonnegative. His counterexample, surprisingly, is the simple
case of f(s) = (1 - p)/(l - ps), p 5# 2. It seems possible that the nonunique-
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ness of positive solutions of (10) always prevails when f'(1) $d 1. The uniqueness
problem in the critical case when f'(1) = 1, which is important in certain genetic
considerations of Fisher [8], has remained open.

In this paper we study the case f'(1) = 1. It is shown that when a further
condition, widely satisfied in application, is met, then (10) has only one linearly
independent solution with nonnegative coefficients. Section 2 is devoted to an
auxiliary theorem and the main result is obtained in section 3. An application
to Fisher's theory of genetic variance is discussed in section 4.

Henceforth we will assume that f(s) is analytic in a circle of radius 1 + E,
E > 0. It is established in ([3], page 25) that

(11) A(s) = lim [1 1-f(0)]

exists for Isl < 1 and satisfies the functional equation (10). (For the validity of
this result it is enough to postulate f(iv) (1) < oo.) Furthermore, A(s) is analytic
in Is < 1, A (0) = 0 and A(s) satisfies the asymptotic relation

(12) A(s)-.-' ' sT 1.

Examination of (11) readily reveals that A(s) has a power series expansion
with nonnegative coefficients and A(r) (s) > 0, s > 0, r = 1, 2, 3, - - - . It follows
that s = B(w) = A-1(w) (the inverse function of A(s)) exists for positive w
and satisfies 0 < B(w) < 1 on 0 < w < oo. Notice that B verifies the functional
equation

(13) f(B(w)) = B(w + c), w > 0.

By adjusting A (s) by a multiplicative constant, we can without loss of generality
take c = 1 in (10), and henceforth we assume this done.
The main theorem of section 3 asserts that under condition I (below) the

branching process for the critical case (f'(1) = 1) admits a unique (apart from
a multiplicative constant) stationary measure.
CONDITION I. Let f(s) be a probability generating function analytic at s = 1,

such that 1 is the smallest nonnegative solution of the equation f(s) = s. The gen-
erating function f(s) is said to satisfy condition I if the expression

(14) 1 -f 1( - u) = E CkUk
k=1

-f is the inverse function of f) possesses only nonnegative coefficients, that is,

(15) Ck > °, k = 1,2, --- .

Because f is analytic at 1 and f'(1) = 1, the expansion (15) certainly exists
for Jul sufficiently small.
We emphasize that (15) is not satisfied for arbitrary probability generating

functions. For example, if f(s) = 2e + (1 - 3e)s + es3 with e small, then condi-
tion I fails. In fact, a direct calculation shows in this case that cl > 0, c2 > 0
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and c3 < 0. On the other hand, the assumption (15) is satisfied for many of
the usual probability generating functions occurring in applications includ-
ing f(s) = aO + (1 - ao)sk, (0 < ao < 1, k > 1), f(s) = (1 - fl)y/(1 -,s)'Y,
(O <f < 1, -y > 0), and others. Actually, we have the general result.
THEOREM. If f(s) generates a P61ya frequency sequence, that is, f(s) is of the

form

II (1 + ais) II(1-i)
(16) i(s) = Ke-ts XI K = e 1X

vI=1 (1-iS) t=I1(l + ai)

where the parameters are subject to the restrictions

(17) 7. 0, ai > 0, 1 > pi 2 0, (ai + i) <o,

then condition I holds.
This result is rather deep and its proof lengthy and intricate. We refer the

reader to [6] for complete details. The family of probability generating func-
tions (16) embraces the Poisson, the binomial, the negative binomial, and others.

It will be shown that if f(s) and g(s) are each probability generating functions
fulfilling condition I, then f(g(s)) also satisfies condition I. Thus the class of
generating functions satisfying condition I is closed with respect to the composi-
tion operation. The key auxiliary theorem needed in the analysis of the unique-
ness problem for a stationary measure is the following theorem.
THEOREM 1. If f(s) satisfies condition I and B(w), 0 < w < oo is inverse to

A(s) defined in (11), then 1 - B(w) is completely monotonic. In fact, 1 - B(w)
possesses a representation of the form

(18) 1 - B(w) = f0 e-wt d0(t)

where @(t) is a distribution function on [0, oo ).
The proof of this theorem occurs in [5], but for completeness of this paper

we repeat the argument here.

2. Proof of theorem 1

We need the following lemma.
LEMMA 1. Iff(s) and g(s) are probability generating functions satisfying condi-

tion I, then the composition h(s) = f(g(s)) satisfies condition I. In particular, all
the iterates fn(s), n = 1, 2, * satisfy condition I.
PROOF. We have

(19) 1 -f1(1 - U) = EI cTu, C{2 0.

(20) 1 g-9l(l - v) = EIkVk, Yk 2 0,
k1=
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and hence
(21) 1 - h-(1 - u) = 1 - g-(f-(l - u))

= 1- g-1(1 -v),
where v = 1f-1(1- u) is small when u is small. Thus

(22) 1 - h-(1 - u) = Eek( E Ctu)
k=l ?=I

is a power series with nonnegative coefficients and the lemma is proved.
We are now prepared to prove theorem 1.
PROOF. We examine

(23) 1 _ - = Rn(s)1 M(S) q.
where qn = 1-fn(O). Since Rn(s) converges to A(s) uniformly for any compact
subset of Isi < 1, it follows that Rn-;(w) tends to B(w) uniformly on bounded
subintervals of [0, X ).

Solving R,n(s) = w for fn(s) gives

(24) fn(s) = 1- 1'
w +-

qn
and so

(25) s = f. (i - 1 1) = Rn-'(w).
\qn/

Now, on account of lemma 1, we have

(26) ( qn)~~~~~~~~~~. (n) n
(26) 1 - Rn-1(w) = 1 - fn( - 1 ) k 1

k

where c(kn > 0 and the convergence holds for all w > 0.
Each term 1/(w + l/q")k is trivially completely monotonic. Indeed, we have

the explicit representation

(27) 1 = 1 f e dt.

qn

Since the coefficients in (26) are nonnegative, it follows that the sum 1 - R1 (w)
is completely monotone. Thus

(28) 1 - Rn1(w) = f| e-wtffn(t) dt, w > 0,

and Ofn() 2 0 for all > 0. Notice that 0n(S) has total integral 1 because
Rn l(0) = 0. However, R;-1(w) tends to B(w) for w > 0. Therefore, 1 - B(w)
is completely monotone and
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(29) 1 - B(w) = o e-wt do(t), 61(w) > 0

where 0(t) is an increasing function on [0, Xc) of total variation at most 1. Since
B(O) = 0, we deduce by Abel's Theorem for Laplace transforms that 0(t) is a
distribution function.

It can be proved that 0(t) is absolutely continuous, but we shall not need
this fact.

3. The uniqueness of stationary measure

We begin with two lemmas which assert certain asymptotic properties of
B(w) = A-1(w) and its derivatives as w -+ cc.
LEMMA 2. The monotonic function @(t) occurring in the statement of theorem 1

satisfies the asymptotic relation limn,o 0(t)/t = 1.
PROOF. It was pointed out in (12) that A(s) obeys the asymptotic law

lim, t i (1 - s)A (s) = 1. By the substitution s = B(w), this limit formula
asserts that

(30) [1-B(w)]w--1 as w-+c,
or equivalently,

(31) e-wt do(t) - - as w T .

Because 0(t) is increasing we can apply a classical Tauberian theorem (see [7],
page 197) to (31) which implies the result
(32) O(t) -' as 0, 0

as was to be shown.
With the aid of lemma 2 we determine the rate of decay of derivatives B (r) (w)

of B(w) as w -+ oo. Consider

(33) (-1)r+lB(r)(w) = fo e-w'tt dO(t) = fo e-wt do(t)
where

(34) r(t) f=otXr d1(,q).

From (32) we deduce, integrating by parts, that

35a(U) = t dO Q) -'.ur+1 as u 0.

Invoking a well known Abelian theorem for Laplace transforms (see [7],
p. 181), we conclude that

(36) (_1)r+lBr(w) r+l as w- cc.

The above analysis demonstrates the following lemma.
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LEMMA 3. Subject to condition I, the function B(w) obeys the asymptotic
relations

(37) 1-B(w) as w -*,w

(-)1)+B(1)(w)(w'_ as w co, r = 1,2,*.

We are now ready to prove the principal uniqueness theorem for stationary
measures of branching processes in the critical case.
THEOREM 2. Let f(s) satisfy condition I. The only solution of

(38) A(f(s)) = A(s) + 1, A(0) = 0,

analytic for IsI < 1 for which A(k)(O) > 0, k = 1, 2, * is determined as in (11)
modulo a suitable multiplicative constant.

PROOF. Let 7r(s) = F i= 1zrisi be another solution of (38) where 7ri > 0
(i = 1, 2, ** ). Consider
(39) 7r(B(w))-w =g(w), 0 <w < oo

where B(w), 0 < w < oo, is the inverse function of A(s). It is straightforward
to verify that, as a consequence of (38), g(w) is periodic of period 1.

Observe that
(40) 7r(s) = A(s) + g(A(s)), 0 < s < 1.

On differentiating (40) and multiplying by A3(s)/A'(s), we obtain

(41) 7r'(s) As(s) = A3(s) + g'(A(s))A3(s), 0 < s < 1.

Since 7r(s) has only nonnegative coefficients, it follows that 7r'(s) is nondecreasing
on 0 < s < 1. Next consider

d A3() (s) s)FA"(s)1(42) ds A'(s)
= [3 - A(s) [A'(s)]2]

But from B(A(s)) = s we derive B'(A(s))A'(s) = 1 and

(43) B"(A(s))[A'(s)]2 + B'(A(s))A"(s) = 0.

By virtue of these relations we may write the right side of (42) in the form

(44) B'(A(s)) [3B'(A(s)) + B"(A(s))A(s)].

We will now determine the sign of the quantity in brackets for s near 1 which
is the same as w = A (s) approaching oo. Consider
(45) 3B'(A(s)) + B"(A(s))A(s) = 3B'(w) + B"(w)w, w X .

Referring to lemma 3, we find

(46) 3B'(w) + B"(w)w -2 w-2 = w W 00X
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and this is obviously positive for w large. Thus (dlds) (A 3(s)/A'(s)) > 0 for s
near 1. Clearly, 7r'(s) and A3(s)/A'(s) are positive, and consequently we see that

(47) 7r'(s) A'(s)

is monotone increasing for s near 1. On the other hand, the derivative of the
right side in (41) is

(48) A2(s)A'(s)[3 + 3g'(w) + wg"(w)], w = A(s).

Since g is periodic, it follows that g'(w) is uniformly bounded. Now, if g(w) is
not constant, then there exists infinitely many values of the form Wk = k + wo,
k = 1, 2, *** (obviously Wk -m co) such that g"(wk) = g"(wo) < 0. As s ap-
proaches 1, w = A(s) -- oo, and (48) is manifestly negative at Wk when k is
sufficiently large. This fact clearly contradicts the statement following (47).
The only tenable inference is that g(w) _ c = constant. Since 7r(0) = A (0) = 0,
inspection of (40) reveals in that case that g(w) = 0. The uniqueness proof is
complete.
Added in proof. The preceding analysis can be extended to show that modulo

an additive constant there exists a unique solution of (38) provided only that
A(s) satisfies A'(s) > 0 and A"(s) > 0 in an interval 1 -e < s < 1 for some
E > 0.

4. Applications

We will apply the uniqueness theorem of section 3 to the discussion of a
problem of interest in genetics. The following finite stochastic model was pro-
posed by Fisher and Wright, [8] and [9], with a view to investigating fluctuation
of gene frequency subject to the influence of random sampling.

Consider a fixed population of 2N elements which are either of type a or A.
The next generation is formed by 2N independent binomial trials as follows:
if the parent population consists of j a-types and 2N - j A-types, then each
trial results in a or A with probabilities

(49) pj =2N qj= 2N

Repeated samplings are made with replacement. By this procedure we generate
a Markov chain {X.} where Xn is the number of a-genes in the n-th generation
in a population of constant size 2N. The state space consists of 2N + 1 values
{0, 1, 2, ... , 2N}. The transition matrix is explicitly computed according to
the binomial distribution as

(50) Pik = Pr {Xn+i =k-Xn = i}= 2N qk) N
PjIc - I(A~~~~
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Notice that states 0 and 2N are permanent absorbing (or frequently referred
to as states of fixation).
The left eigenvector {uN(j)}jo of the matrix (4) corresponding to the eigen-

value 1 - (1/2N) satisfies

(51) (1 - 2-) UN(j) = E UN()Pij, j = 0, 1, 2, * , 2N,

and has a probabilistic interpretation ([1], Chap. 13). In fact, the limiting
distribution given that fixation has not occurred can be expressed in terms of
{uN(j)}jl as follows:

(52) lim Pr {Xn = iX id 0, 2N} 2N-1 i = 1, 2, ,2N - 1.
E UN(j)
j=1

Since all states communicate, it is easy to see that UN(i) > 0, i = 1, 2, *--
2N - 1. Notice that the index only traverses the set of transient states.
The quantity (52) is of interest from a genetic viewpoint since it provides a

measure of genetic variability in the population after a long time under the
condition that fixation has not occurred. The extent of heterozygosity
(= variability) is an important ingredient in the process of evolution.
No explicit formula for {UN(i)} is known for the special Markov chain at

hand. It would be desirable to ascertain some of the properties of {uN(j)}, and
we do this by passing to a limit (N -X o) imposing the normalization uN(l) = 1.
The result is the following.
THEOREM 3. Let {uN(j)},1 I1 be the left eigenvector corresponding to the eigen-

value X2 = 1 - 1/2N for the transition probability matrix (50) normalized so that
uN(1) = 1. Let {u(j)}l..1 be the unique stationary measure normalized so that
u(l) = 1 of the Poisson branching process with generating function of offspring
distribution given by f(s) = e1-'. Then

(53) lim UN(j) = u(j), j = 1, 2, 3, .

REMARK. The method used here is direct. A more general result is stated in
theorem 4 below.
PROOF. The first equation of (51) shows that

2N-1 N N * \2N1
(54) 1 = UN(1) 2 E UN(i)Pil > E UN(i)Pil = UuN(i)i 1 )-

N=1 \ 2N
N
2uuN(i)ie7ic for c=1+ + 3+(2+()3j+ ,
i=1

and so _.=I uN(i)S8 is certainly uniformly bounded for jsl < e-¢. By symmetry,
since uN(2N - i) = uN(i), we infer that 2Ff1-' uN(i)si is also uniformly bounded
for jsl < e-¢. Now, straightforward manipulations using the fact that Pkl 2 Pko
for all k > 1 shows that
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2N-1 N 2N-1
(55) L UN(i)Si 2 E UN(k) E Pkisi

i=l k=1 i=1

N
(k) ( + (s-i)

k )2N 2N-1

k=E UN(k) 1 + (s 1) 2N) k=1
UN(k)PkO

2N-1 k\2N N

- E UN(k) 2
'N E uN(k)e

k=1 2 =

2N-1 2N-1
- E UN(k)Pkl - E UN(k)Sk.

k=1 k=1

It follows by setting s = e-c, co = c, that
N

(56) 7IN(S) = E UN(k)Sk
k=1

is uniformly bounded for 1s1 < e-c where cl = co(l - e-o). Iteration of this
procedure shows that 7rN(s) is uniformly bounded for Isl < e-cn where
(57) c.+, = (1 - e c-)co.
Since cn-O0, 7rN(S) is uniformly bounded in any circle Isi < 1 - fE the bound
depending on e.
Now a classical theorem of Vitali permits us to select a subsequence from

{rN(S)} converging to 7r(s) inside Isl < 1 -e. Since we have the equation
(58) 2N-1 k(k) (1 k)2N +(7- )N(S)

k=1 2Ic1 \N c1 k22N-1 N + (s 1) k 2N 2N-1 k\ 2NJN
k=1EUy 2N) k=l1 2N

a simple application of dominated convergence implies that

(59) 7r(f(O)) + 7r(s) = 7r(f(8)), 7r(s) = E u(k)Sk, for Isl < 1 - e.
k=1

The uniqueness theorem in view of the normalization u(l) = 1 implies that
7r(s) coincides with cA(s) where c is an appropriate fixed multiplicative con-
stant. The result (53) then follows at once.
Asymptotic estimates of u(i) are available, and in this sense the conclusion

of (53) has significance for evaluating the quantities UN(i). A discussion of this
point is given in Harris ([3], page 30). Another application of (53) indicated
in Moran ([10], Chap. 5), (see also, Fisher [8]), concerns the number of loci in a
population of N diploid individuals maintaining a level of heterozygosity con-
sisting of i representatives of one allele and 2N - i of the alternative allele.
We close this paper by formulating a more general result as follows. Consider

a finite Markov chain process on the state space {0, 1, , 2N} with transition
probability matrix
(60) P 3(N) = aija2N-i,2N-j

a2N ,2N
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where aii = coefficient of si in [f(s)]i, and f(s) = F_=o aisi is a probability
generating function. The example (50) arises for the special choice f(s) = e.(s-i)
(a > 0). We assume that 0 < ao, ao + a, < 1 and the greatest common divisor
of the indices where ak > 0 is 1.
The importance of the special Markov chains with transition probability

matrix of the form (60) for the investigation of genetic systems are discussed
in [11]. It is obvious that 0 and 2N are absorbing states. The largest eigenvalue
less than 1 is simple and its value is

(61) =
coefficient of s2N-. in [f(S)] 'N-: [f (S)]2

a2N ,2N

We have indicated in [11] that Pij(N) coniverges as N - oo to the transition
probability matrix of the branching process induced by the probability gen-
erating function f(s). A generalization of theorem 3 can be stated as follows.
THEOREM 4. Let f(s) be a probability generating function satisfying the condi-

tions of theorem 2. Let {uN(i)}f-o be the eigenvector corresponding to X2 satisfying
2N-1

(62) X2UN(j) = E UN(i)Pij(N), i = 1, 2, *, N - 1
i=i

normalized so that uN(1) = 1. Then
(63) lim UN(i) = U(i), i = 1, 2, 3,

exists, and {u(i)} (normalized so that u(1) = 1) is the unique stationary measure
of the branching process induced by the generating function f(s).

Our original proof of the above result made delicate use of saddle poinit
approximations of some independent interest. Harry Kesten has communicated
to us a probabilistic argument valid under more general conditions. The details
of these proofs will be presented elsewhere.
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