
LIMITING DISTRIBUTIONS
FOR BRANCHING PROCESSES

JOHN LAMPERTI
DARTMOUTH COLLEGE

1. Introduction

Let Zn, n = 0, 1, 2, * , be the number of individuals in the n-th generation
of a Galton-Watson branching process with basic distribution {pi, i = 0, 1, * * ..
That is, {Zn} are the random variables of a Markov chain whose states are the
nonnegative integers and whose transition probability matrix is defined by

(1.1) puj = coeff. of xi in p(x)i, where p(x) = L PIX1.
0=0

For background on these processes we refer to the monograph of T. E. Harris
[3], and all statements to the effect that some property of branching processes
is "well known" are hereby defined to mean that the property in question is
discussed there.
The purpose of this paper is to undertake a systematic study of limit dis-

tributions for Z., where the initial state Zo is allowed to tend to infinity with n.
Thus it may happen, for certain sequences of numbers a., bn > 0, c,, = positive
integer (cn, -oc ), that

(1.2) lim P {Zb, a < x Zo = cn}= G(x)

exists in the usual sense of weak convergence of distribution functions. The
basic problem, which is far from being completely solved, is to determine the
class of distributions G which can arise in this manner, and the conditions on
{pi} and {cn} under which a particular G will appear. If the distribution {pj
has finite variance, these questions can be fully answered with little difficulty;
this is done in section 2 below. The case of infinite variance seems much more
difficult, however, and only fragmentary results have been achieved so far
(section 3).
A closely related problem occurs when (1.2) is strengthened by replacing Zn

by Z[nt] and requiring convergence to a limit (depending on t) for each t > 0.
This is essentially equivalent to asserting the existence of a limiting process,
and can occur only in the "critical" case IA = 1. If the convergence occurs with-
out translating the process-that is, if an 0-it has been possible to find all
of the limiting processes which can arise. This theorem is the subject of sec-
tion 4, and states that the possible limits form a one-parameter family (apart
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from scaling) which is closely related to a class of conditional limiting distribu-
tions discovered by V. M. Zolotarev [5]. In the alternative case an/b,, -*
however, matters are much less satisfactory, for only partial results similar to
those for the first problem have been obtained so far. These are given in section 5,
and we conclude with a discussion of some unsolved problems.

2. Finite variance

Let ,u = F_=o ip, be the mean number of offspring per individual, always
assumed finite, and let p(x) be the generating function of {pj}. We shall take
up in turn the cases Iu > 1, p < 1, u = 1. The basis of the discussion is the
following.
LEMMA 2.1. Let F.(x) be a sequence of distribution functions which converge

weakly to a nondegenerate limit F(x), and suppose too that the second moment of
F. converges to that of F, assumed finite. Let cn be any sequence of positive integers
tending to co. Then there exist sequences an, bn > 0 such that
(2.1) lim Fn(")(bnx + ancn) = 4(x)

for all x, where c1 is the standard normal distribution.
(The notation G(m)(x), where G is a distribution function, will always mean

the m-fold convolution of G with itself.)
PROOF. Choose an to be the mean of the distribution Fn and let

bn = cn var (Fn); then F,",) (bnx + anCn) is a distribution with mean zero and unit
variance. From the form of central limit theorem for double sequences given
in ([2], p. 103) we find that

(2.2) lim c. J X2 dFn(bnx + an) = 0

is a necessary and sufficient condition for (2.1). But

(2.3) C, X2 dFn(bfx + a.) = J 2 dF,(y + an)IZi>f bn IV >b..

and c./bn = 1/var (F.). Thus it is enough to see that var (F.) is bounded away
from zero and that

(2.4) fll >b y2 dFn(y + an) -°0 for each E > 0.

The first of these conditions is immediate, since var (F,,) -- 0 would imply
that the limit F was degenerate. Because of the convergence of the second
moments we have a, -* a (the mean of F), and also bn -X 0 since cn -* oo and
var (F.) is bounded. Hence, for large n,

(2.5) ft y2 dFn(y + a,) < y2 dFn(y + an) -f2M y2 dF,(y + an)

< |2X(z - a.)2 dFn(z) -f (Z -an)2 dFn(z),
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where M is any constant larger than a. If ±M are in addition continuity points
of F(z), we can pass to the limit n -X oo and use the hypotheses to obtain

(2.6) lim sup y2dFn(Y + an) < var (F) - M (Z a)2 dF(Z),
which is arbitrarily small if M is chosen large; this proves the lemma.
THEOREM 2.1. Assume ,u > 1 and var {pi = a2 < oo. Let cn be any sequence

of positive integers tending to oo. Then

(2.7) lim P Zn - nCIn < x Zo = Cn} = c(x),

provided b j-pnVC;(p/ 2_ . /2

PROOF. Let

(2.8) F.(x) P{ < x Zo = 1}

It is well known that for Zo = 1, Zn/A.n converges in mean square to a non-
constant random variable w, and so Fn satisfies the hypotheses of lemma 2.1.
Moreover, by the definition of a branching process, letting Z0 = c, has the
effect of convolving the distribution of Zn (given Zo = 1) with itself Cn times.
Hence, (2.1) takes the form (2.7) in this case; the normalizing constant we have
specified is asymptotic to the one chosen for the lemma.
REMARK. In this case there is also a limit distribution when cn tends to a

finite "limit" c, and it is just the c-th power of the law of c. These distributions
are numerous and somewhat difficult to study; we will return to the law of w
in section 3 in a different context. Of course, when Cn -o cc only infinitely
divisible limiting distributions can occur.

Turning to the case A < 1, still with q2 < oo, we will need to use the known
facts that
(2.9) P{Z. 5 0FZo = 1} -CAn,
where c is a positive constant, and that

(2.10) lim P{Z= ilZo = 1, Zn O} = fj, fj 1.
n-- j-1

THEOREM 2.2. If cn d, n", d> 0, then

(2.11) lim P{Zn = ilZo = Cn} = gi, i > 0,
n -x

where {gj} is the distribution with generating function

(2.12) gjxi = ecd[f(x)-1], f(x) = E f6xi.
j=O 3-1

If instead C.AnL)-+ cc, (2.7) holds with b. - [Cep.nae2/(p - p2)]1/2, and a normal
limiting distribution is obtained. These are the only possibilities for nondegenerate
limits.
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(Strictly speaking, these laws and anything of the same type are the only
possibilities.)
PROOF. In case cn - dg-", since the c. original "ancestors" act independently,

it is clear from (2.9) that as n - oo the number of "lines of descent" surviving
at time n tends to have a Poisson distribution with mean cd. But by (2.10)
each such surviving line tends to have the distribution {f,}. Thus the limiting
distribution of Z,, should be that of the sum of a Poisson-distributed number of
independent random variables with distribution {ffj}; the resulting law has
generating function (2.12). This informal argument can easily be made rigorous;
we omit further details.

In the case jn - oo it is again possible to apply lemma 2.1. Instead of
(2.8), we will define
(2.13) Fn(X) = P{Zn < xIZo =

which converges to the compound Poisson law with generating function
exp [cf(x) - c] as described above. The limiting first and second factorial
moments of Fn are 1 and a-2/(A - M2) respectively. Using the known first and
second factorial moments of {fj}, namely c-l and (o.2 - A + M2)/c(A -_2), it
is easy to verify that the first and second factorial moments of the limiting law
are also 1 and a2/(,A - /A2) so that the hypothesis of the lemma is satisfied. Its
conclusion (2.1) then becomes the current version of (2.7).

Finally, we must show that these are the only possibilities. But if, for any
subsequence n', cn, = O(,A-n'), it is clear by (2.9) that the probability that any
of the cn, ancestors have descendants in the n' generation tends to zero, so the
limit, if it exists, is degenerate. Similarly, any subsequence for whichCnc,,'n' -*o
produces a normal law in the limit. In any other case, then, there is a sub-
sequence for which cn, - d1c-n' and we have (2.11). That any limiting law must
belong to the same type as one of these follows from ([2], theorem 1, p. 40).
The case u = 1 is very similar to that above. The discussion is based on the

formulas

(2.14) P{zn s o°iz = 1} , 2a-n

(2.15) lim P -<xZo = 1, Zn $ 0} = 1 -e
n-- n

these results have long been known to hold under the assumption that
E i3pi <0, but as F. Spitzer has recently pointed out (not yet published), the
existence of the second moment is enough. From (2.14) and (2.15), by an ar-
gument entirely analogous to that used when A < 1 we can derive the following.
THEOREM 2.3. Assume j,= 1 and var {pi} = o2<m. If cn - dn, d> 0,

then

(2.16) lim P (Zn <xIZo = Cn} = G(x)
n-* n
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exists, where
2d X

(2.17) lo e-> dG(x) = e ¢2 X+2/U2

If instead cn/n -* oo, (2.7) holds with b. - ' \V/nc,; there are no other limit dis-
tributions except the degenerate laws.

3. Infinite variance

In this section we will consider cases where ii > 1 and a2 = o. It is natural
to try and use the general limit theorems for sums of independent random
variables in a manner analogous to lemma 2.1, but this does not seem easy to
carry out. Instead, we will discuss a method which allows some, at least, of the
nonnormal limiting distributions to be identified. I do not know if they can all
be obtained in this manner, even in principle.
When Iu > 1, even if .2 = oo, w limno_ Z./In exists a.s. by the martingale

convergence theorem; let F(x) = P{cw < x} be its distribution function. The
approach we will use is based on the following theorem.
THEOREM 3.1. If G(x) is any distribution function containing F(x) in its

domain of partial attraction, then G is a possible limit; that is, there exist sequences
of constants for which (1.2) holds.
PROOF. By the definition of partial attraction ([2], § 37) there exist sequences

ai, (3i > 0, yi = positive integer oo, such that

(3.1) limP{ -} G(x),

where wi are independent random variables with the same distribution as W.
For each es, however, we have

(3.2) lim P Zn -,n x< XIZo=yiT=Pf + +W, ia <X

by the convergence theorem and the independence of different lines of descent.
The idea of the proof is to let the limiting process in (3.2) be "almost complete"
before switching from ai_t, Oi-1, yi-1 to ai, fi, yi.
To carry this out precisely, define Ni to be the first integer (> Ni-1 if i > 1)

such that for all n > Ni, the L6vy distance between the distribution on the
left side of (3.2) and its limit is at most e,, where {e,} is any positive sequence
tending to zero. Then for Ni < n < Nj+j we can choose

(3.3) cn = -Yi, bn = 0,,n, an = ai,u'.

Combining the defining properties of this construction with (3.1), it is easy to
see that (1.2) holds.

In order to apply this result, it is necessary to determine the laws to which
F(x) is partially attracted. Since F is not known very explicitly, this appears to
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be difficult in general. However, there is one tractable situatioil, alnd the result
may have some independent interest.
THEOREM 3.2. The distribution F is in the domain of normal attraction of a

stable law with index 1 < a < 2 if and only if the distribution {pi} belongs to the
same domain of attraction.
REMARK. The result is probably true without the restriction to normal

attraction ([2], p. 181), but its proof would be more complicated. Of course the
stable law must be one which is capable of attracting positive random variables,
so that c, = 0 or i3 =-1 in the usual representation of the characteristic func-
tion of the law.
PROOF. The requirement that {pi} be normally attracted to a stable law is

expressed in terms of the behavior of its generating function as x -- 1 by the
condition
(3.4) 1 - p(x) = u(1 -x) -c(1 - x)a + o(1 -x)a, c > 0.
If so(X) is the Laplace transform of F, the condition that as X -O 0

(3.5) (p(X) = 1 -X + dXa +o(Xa), d > 0,
has the same interpretation; thus we wish to show the equivalence of (3.4) and
(3.5). The connection between p and so is known to be

(3.6) K(AX) = p(,p(X)),
which (with the requirement that they be generating functions) determines
either s or p uniquely in terms of the other.

It is easy to see that (3.5) implies (3.4). Calling p(X) = x, we have from (3.5)
and (3.6) 1 - p(x) = A- dpaaXa + o(Xa). But from (3.5), X can be expressed
in terms of x as X = (1 - x) + d(1 - X)a + o(1 - X)a, and combining these
two equations gives (3.4) with c = d(ua -,).
The converse is a little more difficult. Let us write op(X) = 1 - X + a(X),

where a(X) = o(X) since w has mean 1. The function s must satisfy (3.6), and
using (3.4) this becomes
(3.7) a(m,u) = ,ua(X) + cXa + o(X).
It is convenient to make the substitutions a(X) = A (w), X = ew, u = eP which
convert (3.7) into the first order difference equation
(3.8) A(w + p) - ePA(w) = ceaw + s6(w),
where ,6(w) = o(eaw) as w -> -oo. It should be noted that the o(\a) term in
(3.7), and so 4,(w) in (3.8), depend on the unknown a(X), and the growth condi-
tion on #, is a consequence of the requirement that a(X) = o(X). We shall now
study the solutions of
(3.9) B(w + p) - ePB(w) = ceaw + At(w),
and attempt to single out the desired one.
The homogeneous part of (3.9) has the general solution P(w)ew, where P(w)

is any function with period p. It is clear, therefore, that (3.9) has at most one



LIMITING DISTRIBUTIONS 231

solution which is o(ew) as w - -oo, for if there were two, their difference would
be of the form P(w)ew which does not satisfy the condition unless P(w) _ O.
But it is not very difficult to construct such a solution Bo(w), which must in
fact be just A(w) by the uniqueness. We can then see directly that Bo(w) has
the desired behavior at -o.
To carry out this plan, first make the further change of variable B(w) =

e-pc(w), so that (3.9) becomes
(3.10) C(w + p) -C(w) = ce(a-i)w + e-w(w),
and the particular solution of interest is that one which tends to zero at -xo.
Any solution of (3.10) can be extended by summation from its values in, say,
[0, p) to the whole line:

n-1
(3.11) C(w - np) = C(w) - ce-(a-l)p E e(a-1)(w-iP)(1 + o(l)),

i=O

where "o(l)" tends to 0 as w - ip -* -o. If we choose C(w) in [0, p) so that
C(w) -* 0 as w -- -oo, which must be possible since the infinite series con-
verges for each fixed w (a > 1), then the resulting particular solution can be
written

(3.12) Co(w - np) = ce-(a-I)P E e(a-l)(wiP)(J + o(1)).
ten

This is the solution we want; ew-PCo(w) = Bo(w) = A(w). The dominant parts
of the terms of the series are in geometric progression, so that (3.12) easily
yields

(3.13) CO(w) = e(l)P-1Ce(a-1)w + o(e(a-l)w), w -o+-o(3.13) Co(w) = ~e(a-1v-P
But reversing the substitutions we have made, (3.13) becomes

(3.14) a(X) = C Xa+ o(Xa) X -0,

which is equivalent to (3.5) with d = c/(p.a - p.); q.e.d.
COROLLARY. If a branching process has p.> 1 and if {pi} is normally attracted

to a particular stable law, then there exist constants a", bn, Cn for which (1.2) holds
with that stable law in the role of G.

This is an immediate consequence of theorems 3.1 and 3.2. It is natural to
conjecture that only the stable law which attracts {pt} can appear in (1.2) if
Cn + oo, but I have not proved this; perhaps a careful approach via functional
iteration would succeed. The possibilities when {pi} is not attracted to any
stable distribution remain completely unexplored.

4. Limit processes

In this section we will assume that there are sequences bn > 0, cn = positive
integer, such that for each t > 0
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(4.1) lim p (Z[nt] < xJZ = Cn} = G,(x)

exists (in the usual sense of weak convergence), where Gt(x) is always a distribu-
tion function and is nondegenerate for t > 0. This hypothesis is, in appearance
at least, somewhat more general than asserting that the finite-dimensional
distributions of (Z[nt]/bn), given Zo = cn, converge to those of a "reasonable"
limiting Markov process. Our goal will be to find all such processes which are
possible, and it turns out that existence of the one-dimensional limits G,(x)
already provides adequate information.

Let us consider examples. If Iu = 1 and the second moment of {p1} is finite,
then as we have already noted in connection with theorem 2.3,

(4.2) P{Zn$1Z0= i} = n + °
n

and

(4.3) lim P Zn < XZ0 = 1, Zn # o} = 1 - e-cx

where c is a positive constant. From these facts it follows as before that if we
choose bn = n, Cn = dn, then (4.1) holds and Gt(x) becomes the law of the sum
of a Poisson-distributed number of independent exponentially-distributed ran-
dom variables. In this case, therefore, we have

(4.4) e-xZ dG,(x) = exp [ J

It is not difficult to identify the limiting process with the diffusion whose back-
ward equation is

(4.5) au
=
x28

and whose initial state is x = d (see [1]).
A larger class of examples results from work of V. M. Zolotarev, who showed

in [5] that in certain cases (with ,u = 1 but with infinite variance) (4.2) and
(4.3) can be replaced by

(4.6) P{Zn OIZo = 1} = a+

and

(4.7) lim E{e-xz-/n'jZo = 1, Zn $4 0} = 1 - - {1 +

where c > 0 and a > 1 are constants. (The law whose transform is given in
(4.7) has a density which can be expressed in terms of a stable law of index
a'- when a > 1.) When these formulas are valid, (4.1) again holds if we choose
bn = nf, Cn = dna, and this time we obtain the compound Poisson law deter-
mined by
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(4.8) f e- dGe(x) = exp [-dX {1 + t (c) }a]

The example above which arises in the case of finite variance is obtained in the
special case a = 1. However, the nature of the limiting processes is quite dif-
ferent when a > 1 than when a = 1; in particular, although they are still
martingales, they do not have continuous path functions.
The main result of this section is that these examples are the only ones

possible.
THEOREM 4.1. If (4.1) holds as described in the first paragraph of this section,

then Gt(x) must satisfy (4.8) for some a > 1; d, c > 0. In addition, it must be the
case that cn/bn tends to a positive, finite limit, and that

(4.9) Cn = naL(n),
where L is slowly varying in the sense of Karamata.

(That is, L(cx)/L(x) -* 1 as x -X o for every fixed c > 0.)
The proof is quite lengthy, so a brief outline may be worthwhile. We will

use the Laplace transform of Gi in the form

(4.10) Jo e- dGt(x) = e-400,
and the function A't(X) will be shown to satisfy two functional equations. The
first of these merely expresses the branching property, and is easily obtained
(lemma 4.3). The second equation is a consequence of (4.9) (lemma 4.7), and
it is the derivation of (4.9) which is the hardest part of the proof. This will be
done in lemmas 4.4 to 4.6. Finally, the functional equations can be solved,
yielding (4.8).
LEMMA 4.1. If (4.1) holds, the branching process satisfies Iu < 1.
PROOF. If ,> 1, it is well known that (for Zo = 1) Z. -- +oo with prob-

ability q > 0. For each k there is, therefore, an N(k) such that
(4.11) P(Zn+N(k) 2 k for all n > 0 |Zo = 1) 2 q/2,
and by the law of large numbers we have

(4.12) lim P (Z+N(k) 2 k.q m for all n > 0 IZo m) uniformly in k.
m- 3

Thus the probability on the left has a positive lower bound 6 as k and m
vary independently. But if (4.1) holds, so that Z1/b, has limit law G1, for each k
we will eventually have n > N(k), and so for large n

(4.13) P{bn23 bn I } >

This situation (with 5 independent of k) makes it impossible for Z2./bn to have
a limiting distribution at all unless GI is degenerate at 0.
LEMMA 4.2. If (4.1) holds, then limnO, c./b. = d exists, 0 < d < o, and

,' = 1.
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PROOF. The existence of the limit follows at once from (4.1) upon setting
t = 0; this also yields d > 0. But since ;s < 1 by lemma 4.1,

(4.14) lim EZ Z =l lim} C, [ntl < dliiMt,

and either d = 0 or i < 1 would imply that the limiting mean is 0 and so make
the distribution of Znt/bn tend to become concentrated at 0, contrary to the
hypothesis of nondegeneracy. (From now on we will write Znt in place of Z[nt].)
COROLLARY. Without loss of generality, we can assume cn = bn.
PROOF. If (4.1) holds, bn can be replaced by any sequence asymptotic to it

without changing the limit; in particular, the sequence cn/d can be used. But
then replacing x by x/d yields an equation like (4.1) in which bn = Cn.
We now derive the first of the functional equations which will determine

y!t(X). It will be assumed hereafter that bn = Cn unless something else is explicitly
asserted.
LEMMA 4.3. If (4.1) holds (and bn = cO), then for all X > 0

(4.15) #g+.(X) =4tN(.
PROOF. If p(x) = E pixi is the generating function of the basic distribution

of descendants, then it is well known that
(4.16) E(xzl.Zo = k) = p.(x)k,
where pn(x) is the n-th functional iterate of p. It follows that
(4.17) exp {-,t'(X)} = lim E{exp [-X(Znt/cn)]IZO = cn} = lim p[ntj(e-X/Cn)cn,

n-,o nf-
which is equivalent to

(4.18) #6(X) = -lim cn log P[nti (e )/cn)
n-. -

Writing (4.18) with t + s in place of t, and doing the functional iteration in
two stages, we have

(4.19) t+a(X) = -lim cn log p[Mm]{p[n.](e1Cn)},
or, which is the same thing,

(4.20) 4'1+.(X) = -lim cn log P[nt] Xexp c [-cn log p[..](e-11c-)]
n--+-o~ 1~ Cn

But the quantity in square brackets tends to 4,.(X) for each X > 0. Combining
this with (4.18), where the convergence is uniform, shows that the limit in
(4.20) must be 4t{',.(X)} and proves the lemma.
REMARK. Relation (4.15) is related to the assertion that there is a limiting

transition probability function such that pt(l, [0, x]) = Gt(x) which satisfies
the Chapman-Kolmogorov equation.
COROLLARY. If (4.1) holds, then there exists a > 0 such that

(4.21) f x dG,(x) = e-al for all t > 0.
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PROOF. Because of lemma 4.2, Gt is the limit of distributions with mean 1
(we are again assuming bn = cn). It follows that the left side of (4.21) exists
and is <1 for each t; call it m(t). But from (4.10)

(4.22) xxdGt(x) =
Jo X =0

and so (4.15) yields
(4.23) m(t + s) = m(t)m(s).
Since m is not identically zero (Gt is not degenerate), this equation implies that
m(t) = e-at for some a, and a > 0 is necessary since m(t) < 1.
The next three lemmas will prove (4.9). The first is a kind of substitute for

the weak law of large numbers. If at this point we knew that a = 0 in (4.21),
as will eventually appear, then a form of the w.l.l.n. itself could be used instead.
LEMMA 4.4. For each n, let Xt, i = 1, * * * , m(n), be nonnegative, independent

random variables with distribution F,,. Assume that Fn=,> F (weak convergence),
where F is nondegenerate, and that E(X?) < 1 for each n. Let v = f x dF; nec-
essarily v < 1. Assume also that m(n) -+ oo and that

(4.24) lim p{xi + * * + X,(,) < = H(x)

exists. Then H(v-) = 0.
PROOF. Suppose the random variables Xi are truncated at A:

(4.25) Xn = Yn +Zn, 1,,X if Xt < A,
0 otherwise.

Then since Zn > 0, we have

(4.26) H(x) < lim P m+n)
n- o m(n)

But the convergence Fn =X F implies that the distribution of Yin converges to
F truncated at A in the same manner-at least if we take A to be a continuity
point of F. Moreover, because of the uniform bounds 0 < Y? < A, it is clear
that
(4.27) lim E(Yn) = lim JA x dFn(x) = fA x dF(x).
It follows that the ordinary weak law of large numbers applies to {YJ7}, and
so that the right-hand side of (4.26) is a degenerate distribution with its mass
at rO x dF. Since A can be chosen to make this arbitrarily close to v, (4.26)
yields the desired conclusion.
REMARK. If any additional positive random variables, independent of

Xt or not, are added to the sum in (4.24), and the limit H(x) still exists, the
conclusion H(v-) = 0 remains true a fortiori. We will use the lemma in this
modified form below.
LEMMA 4.5. If (4.1) holds, then {c(tn)/c(n)} is bounded as n -- oo both from Xo

and from Ofor each t > 0.
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(It is convenient, here and below, to write c(u) instead of c[u].)
PROOF. Choose any t > 0 for which the boundedness from above fails; then

for some subsequence k(n) we can write
(4.28) c(tk(n)) = m(n)c(k(n)) + r(n),
where m(n) is an integer, m(n) oo, and 0 < r(n) < c(k(n)). Now for each n,
let Zo = c(tk(n)); we have by (4.1)

(4.29) li P{t-)) < xlZo = c(tk(n))} = Gi(x).

But by the independence property of branching processes, the quantity Ztk(n) in
(4.29) can be considered as the sum of m(n) + 1 independent random variables,
which are respectively the descendants of m(n) + 1 disjoint sets of "original
ancestors"; the first m(n) sets contain c(k(n)) members and the last r(n) by
(4.28). Let us denote the first m(n) of these random variables, divided by
c(k(n)), by Xn, * n(n) and the last one (also so divided) by Rn. Then
clearly
(4.30) Ztk(n) m(n)c(k(n)) + .. + Xn(n) + Rn

c(tk(n)) c(tk(n)) C m(n) m(n)J

Finally, note that by (4.1)

(4.31) P{Xf < X} = {cpk(,n) < xlZo = c(k(n))}= G,(x).

We are now ready to apply lemma 4.4. The limit F of the distributions of
X? is Gt from (4.31); that the means of Xn are <1 was shown in lemma 4.1.
The mean of Gt-the v of the lemma-is e-at. From (4.29) and (4.30) we obtain
(4.24), since the factor multiplying the sum in braces tends to 1. Moreover,
we have G1(x) playing the role of H in (4.24). The conclusion is that
(4.32) Gl(e-a,-) = 0

for each t > 0 such that c(tn)/c(n) is not bounded above. But it is clear that
such unboundedness must occur for t arbitrarily close to 1 if it occurs at all,
and so Gi(e-a-) = 0. Since e-a is the mean of G1 this implies that G6 is degen-
erate contrary to hypothesis; the contradiction proves that c(tn)/c(n) is bounded
above for each t > 0. The fact that no subsequence can tend to zero follows
too, since replacing tn by m and n by m/t in such a subsequence leads to a
contradiction with what has just been proved.
LEMMA 4.6. If (4.1) holds, then

(4.33) c(n) = naL(n),
where a > 0 and L is a slowly varying function.
PROOF. It is enough to show that limn-- c(tn)/c(n) exists for every t > 0.

Since we have established above that this ratio is bounded from X and 0, we
can select a subsequence n' for which there is a finite limit r > 0. Now from
(4.1) in its equivalent Laplace-transformed version we have
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(4.34) exp {-5,6-1(X)} = lim E {exp [-X c(n' Zo = c(tn')}
cC(tnljI )

n'-{ P[c(n') c(tn') I°(
where in the last step we use the fact that the value Zo appears as an exponent
(see (4.17)). But carrying out the last limit, we obtain

(4.35) exp {-sbt-l(X)} = lim E {exp [ rc(n')JZo = c(n')}

= exp -r,Q1 )}

Now if convergence fails, there must be subsequences tending to distinct
limits ri 5 r2, 0 < ri, r2 < o. In this event (4.35) holds for both ri and r2, and
equating the right-hand sides yields

(4.36) { exp - x] dGi(x)} { exp [r x] dG(x)}-

Putting X = r1, this equation asserts that the function e-x has the same L1 and
Lp (p = ri/r2) norms with respect to the measure dGi. It follows that e-x is
constant a.e. (dGi), so that G6 is a degenerate law. This contradiction proves
the lemma.
We can now easily obtain the second functional equation for the Laplace

transform of the limiting distribution:
LEMMA 4.7. If (4.1) holds, then for every T > 0

(4.37) 6t(x) = Tt/tT(XT a)

where a is the constant in (4.33).
PROOF. Consider equation (4.18) which defines 6t(X), and replace n by mr.

From (4.33) we have c(mr) rac(m) as m -* o for any T > 0; using this fact
(4.18) becomes

(4.38) it',(X) = -lim c(mnT) log p[tmT](eIc/(mc))
m-oo

= -lim TaC(m) log p[tnm] (e-x/T"c(m))
m-co

= Ta4 tT(XrT ) .

REMARK. It is apparent from (4.37) that )41(0) is a constant, and so that
a = 0 in (4.21).
PROOF OF THEOREM 4.1. It is not difficult to solve the simultaneous equations

(4.15) and (4.37). We first remark that the case a = 0 cannot occur, for in this
case (4.37) asserts that 4t',(X) is independent of t. From (4.15) it then follows
that 4,(X) = ,(,(X)), or, since V6 is monotonic and continuous, P(X) X, and
this is the degenerate case. Next, define

(4.39) h(t) = P, (1), t > 0.



238 FIFTH BERKELEY SYMPOSIUM: LAMPERTI

Putting T = XI/a in (4.37) then yields

(4.40) 0t(X) = Xh(tXl/a),
and the branching property (4.15) becomes
(4.41) h(t + s) = h(s)h(th(s)lla).
Now h(t) is continuously differentiable-in fact analytic-for t > 0, as can be
seen from (4.40) and the fact that e-0,01) is the Laplace transform of a non-
negative random variable. Differentiating (4.41) with respect to t, we can let
t-0+ (provided s > 0) to get h'(s) = D[h(s)]l+(l/a) where D = h'(0+) is a
constant. This differential equation can be very easily solved:

(4.42) h(s) = (-D s + E) for s > 0,

where E is an arbitrary constant. Substituting in (4.40) we obtain

(4.43) #6(X) = D

[DI tXla + E]
From our assumptions (including bn = c") it follows that 4,t(X) is continuous

at t = 0+, and #o(X) = X; thus E = 1. If we then write c-(l/a) in place of -D/a,
(4.43) (together with (4.10)) reduces formally to (4.8). [Actually (4.43) reduces
to (4.8) with d = 1, since we have let cn = bn. It is clear from, for instance,
(4.17), that taking Z0 - dcn has the effect of multiplying 4't(X) by d, which
yields the general form of (4.8).] Thus it only remains to show that -D > 0
and a> 1. Suppose first that -D < 0. Then there exists a X0 > 0 for which
the denominator in (4.43) vanishes, and so 46t(Xo) = oc, which can occur only
if all the mass of Gt is concentrated at +X0. The case D = 0 is also degenerate
at 1 this time-which establishes -D > 0 and the legitimacy of the substitu-
tion used above. As for the possibility that a < 1, it is easy to check by dif-
ferentiating that in this case the second moment of Gt is 1. Since the mean is
also 1, this again leads to a contradiction; the proof is at last complete.

5. Centered limit processes

In this section it is assumed that there are sequences an, bn > 0, cn = positive
integer, such that

(5.1) lim p {Z[ntn- an < xnZo= C} Ht(x)

exists and is a probability distribution function for each t > 0, and is non-
degenerate for t > 0. The difference between this situation and that of sec-
tion 4 lies in the possibility of centering with the constants an; to insure that
there is an essential difference we will suppose that an/bn -4 +00. As before,
p = 1 is necessary for (5.1).
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Putting t = 0 in (5.1), it becomes evident that

(5.2) r = li. Ccl -a,
n- bn

must exist. Since replacing a. by an + rbn does not affect the existence of the
limit in (5.1) but merely replaces x by x - r, we can and will assume that r = 0
so that Ho(x) is degenerate at x = 0. It is then straightforward to establish the
following theorem.
THEOREM 5.1. If the above assumptions hold, Ht(x) is the distribution at time

t of a process with stationary independent increments and initial state 0.
PROOF. By (5.2) with r = 0, necessarily an = Cn + o(bn); it is clear from

(5.1) that the centering sequence an = cn will give the same result, and we will
use it instead. In terms of characteristic functions, (5.1) becomes with these
specializations

(5.3) lim E exp [i Znfl Cn] Z = | ill dH,(x) = p,

and the conclusion of the theorem is equivalent to the assertion that

(5.4) (Xt+8) = '(A)(A).
The proof is based on the expression for pit(X) in terms of the basic generating

function p(x); in the same way as in (4.17) we have

(5.5) .Ps(A) = lim exp [-b] P[nt](exP[ex])p'

where the subscript on p refers to functional iteration. From (5.5) and basic
branching property we can then write

(5.6) (Pt+8(X) = lim exp Pb p[ns] p[nt] [exp[b])}

But (5.5) can be rewritten in the form

(5.7) P[nt] (exp [b]) = [ot(X) + o(l)]1/cn- exp [bi'

which we can substitute in (5.6). (Since spt(X) must be infinitely divisible, its
roots and logarithm are unambiguously defined.) It remains to study how PMma]
of this quantity behaves as n -* oo.
To accomplish this, we will use a slight generalization of (5.3). Let (n be any

sequence of numbers tending to a limit t; then

(5.8) lim E (exp [iA [] - Cn + (n [n]|Zo = cn} = eso(X)-
The proof of (5.8) is simple: replace the second Z[n.] by Zo + (Z[n,]- ZO).
The ZO (= C,,) gives rise in the limit to the factor et, whereas the remainder has
no effect. The reason for this is that by hypothesis (Z[,,,] - Zo)/bn has a limiting
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distribution, and bn/cnc- 0, so that {n(Z[n,] - Zo)/cn - 0 in probability. In
terms of the function p, (5.8) becomes

(5.9) lim exp [bn (exp [bn+ = eC8(X)
which in turn can be written in the form

(5.10) P[n8] (exp [ +± = exp iA + t + log 1(X) + o(l)].
It is very easy to complete the proof. To apply the function Pins] to the

right-hand side of (5.7), we let tn = log [kt(A) + o(1)] (the o(1) depends on n)
so that t = log <pt(X). From (5.9), then,

(5.11) P[n.] {P[nt] (exp [b])} = exp [iA + log (pt(X) + log so(X) + o(l)]
and substituting this in (5.6) yields the desired conclusion (5.4).

It is natural to ask next which additive processes will in fact arise. This
problem is in a state comparable to the question about limiting distributions,
which was discussed in sections 2 and 3. When the variance is finite we can
immediately deduce the answer from theorem 2.3. Suppose that {pi} has mean 1
and variance a2 < oo, and that n-1cn -* oo. Then if an = Cn and bn = o\/nCn,
(5.1) and its related conditions hold, and Ht(x) is the distribution at time t of a
Brownian motion process. Furthermore, it is possible to see that stable processes
of index 1 < a < 2 which attract nonnegative random variables can occur as limits.
The proof of this fact consists of combining the possibility of limit laws satis-
fying (4.8) (which are attracted to a stable law) with an argument similar to
that used to prove theorem 3.1. The question of whether these are the only
possibilities has not been answered.

6. Final remarks

This paper is intended as much to raise questions as to present answers. It
is clear that even within the scope of the problems defined in the introduction
the results obtained here are far from complete. Both sections 3 and 5 are very
sketchy and end with conjectures, while the problem studied in section 3 is
not attacked at all for ,u < 1. (The method used for A > 1 could be repeated
for ,u < 1, but would not seem to lead very far toward a complete solution in
those cases either.) Above all, except when a2 < 00 nothing has been done to
determine the class of {ptJ for which a particular limit law or process actually
can occur. This problem of "domains of attraction" is certainly of considerable
interest.

Despite these gaps in the solution of our simple problem, we will mention
two more general ones. The first is to discuss such extensions as the multi-
dimensional case, and age-dependent processes. The second generalization applies
even in the one-dimensional Markov case. In many investigations of limit
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properties of branchiing processes, it is important to make the probabilities {pi},
as well as the initial state, functions of n; essentially new phenomena arise in
this way. In [1], for instance, W. Feller finds a class of diffusions with drift as
limiting processes, in contrast to the essentially unique diffusion (without drift)
we obtained in section 4. Other results where the transition probabilities change
during the passage to the limit may be found in [4]. Again, with this more
general procedure, the questions of determining all possible limits and the
conditions under which they occur can be raised. It appears that a complete
discussion will be both interesting and difficult.
Remark added in proof. Considerable progress has now been made toward a

solution of the last problem above. I hope to publish these results in the near
future.
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