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The starting point of this paper is the question, what happens to the distribu-
tion of the sum of a large number of independent, identically distributed,
integer valued, random variables or equivalently, what happens to a measure
on the group of integers when convoluted by itself a large number of times? It
is known that the probability of being at a fixed integer tends to a limit and
that this limit is 0. Therefore, the finer information about what the distribution
looks like is obtained by looking at the ratio of the probability of being at one
fixed integer to the probability of being at another fixed integer. Such a theorem
was proved by Chung and Erdos in [1].
There are two natural directions for generalizing this theorem. One generalizes

to a Markov process and the other to convoluting measures on a more general
group.
A generalization to Markov chains is given by Kingman and Orey in [3].

Another generalization is given by Jain in [2] for a fairly general Markov process,
but the price for the generality is that the theorem is about the ratio of the
expected number of visits to a set up to time n instead of the probability of
being there at time n.

In this paper we generalize to convoluting on more general groups and prove
a theorem in the case where the group is the line. The method used is a modifica-
tion of the one used by Chung and Erdos. This method gives the same theorem
for Euclidean space, and if we analyze the proof, we see that we use very little
that is specific to the line, and hence we could get a theorem for a general
locally compact abelian group. (Our assumption of mean 0 is used only in obtain-
ing lemma 1, and hence in all cases when we have lemma 1, we have a general
theorem.) We could do the same for the time ratio, thus generalizing theorem
4 of [1].

Charles Stone recently gave another proof of the main theorem of this paper
in [4]. His method seems to give more information in the case of Euclidean
space but does not seem to go over to more general groups.
THEOREM. Let X. be a sequence of independent, identically distributed, real-

valued random variables with either mean 0 or with the integral of the positive and
negative parts both infinite. Assume also that the values X takes are not all part of
an arithmetic progression. Let S. = Et=1 Xi. Let J1 and J2 be two intervals of
the same length. Then
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(1) urn~~~ii Pr {S. CJ1}l-
( Pr {S. C J2}

The abbreviation Pr stands for probability of the event which follows in
braces.
LEMMA 1. Given e and an interval J, Pr {S. C J} > (1 -e)n for all sufficiently

large n.
PROOF. The proof is similar to the proof of theorem 2.2 in Erdos and Chung

and will therefore be omitted.
LEMMA 2. There are arbitrarily small numbers a such that there is an integer k

and arbitrarily small pairs of intervals I and I' where Pr {Sk C I} ' 0 and
Pr {Sk C I'} i 0 and I and I' are a apart in the sense that there is a point in I
that is at distance a from some point in I'.
PROOF. This is straightforward and easy and will therefore be omitted.
DEFINITION. Let I be an interval. We shall call the interval obtained by extending

I in both directions by e, Ie and the one obtained by contracting by f, I-".
LEMMA 3. Let J1 and J2 be disjoint intervals of the same length whose centers

are a apart, and lemma 2 applies to a. Then given E > 0 and y > 0, there is a K
such that

(2) Pr {SnC J2} > 1-7 for all n >K.

PROOF. By lemma 2 there are intervals I and I' and an integer k such that
there is a point in I and a point in I' a apart, the lengths of I and I' are both
< f, and Pr {Sk C I} = p 0 0 and Pr {Sk C I'} = p' 0 0 [to fix ideas, assume
J2 is to the right of J1 and that I' is to the right of I and that E is small com-
pared to a so that I and I' are disjoint. Take all intervals from now on to be
half open].
To simplify notation, we will prove lemma 3 only for n of the form mk + r

(O < r < k) (O < m < Xo) for just one r so we can keep r fixed throughout the
proof. Call the random variable Sr, Xo and let X; = E=t+l+k(i-1) Xi. Let
Ti,m(w) be the number of X,(w) that are in the interval I(1 < i < m). It is
well known that given 'y (choose yi so that (1 - yl)2/(1 + 271) > 1 - y, where y
is the y in lemma 3), there is a 5 < 1 such that Pr {I(T.m)/(pm) -1 | > 'yJ} < am
for all m. Hence, using lemma 1, we get

(3) Pr T|Im _ 1 > 71} < 7y Pr {Smk+, C J I2e} for all m large enough,

(4) Pr p-m 1 > -y} < p'-y Pr {Smk+r C J2} for all m large enough.

Let m' be an m for which (3) and (4) work, and let n' = m'k + r. We will prove
lemma 3 for n'.
Break up the real numbers into half open intervals, each of which has length

< e 1/n' and lies either entirely inside or outside I and I', and I and I' are
broken up into the same number t of intervals. Denote those intervals in I by
9ts * - - X g,, those in I' by g9, * - - , g, and the rest by hi, * , he, * - -
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For each w we get a sequence v of m intervals, the i-th interval being the
interval that Xi-1(w) is in. Let QV be the set of w with the sequence v.

Let B be the union of all those Q, that contain a w for which Sw(w) C Ji,
and B' the union of the Q, that contain a w for which S,'(w) C J2+2E.

Define a new measure space A as follows: for each Q, in B take as many
copies as there are g (that is, subintervals of I) in the second through last terms
of the sequence v (that is, we will take Ti,m(w) copies of QV where w C Q.).
Let Qf(1 < i < TI,m'(W)) be the copies of QV- Let

/TI,m'(w)\
I(WCQ,)

(5) u= U( U V.
Q.CB i= 1

The measure of a set in A will be the sum of the measure of the set intersected
with each of the Qf. Call the measure A (u(03) is much larger than the measure
of B, for example).

Define A' in a similar way; namely,
Ti=Ts,m(W)\
(wCQ,)

(6) '=U A\Y v

Q,CB' i= 1

(we will call the measure on A' u and also the measure on our original probability
space u).
To each Qf in B there corresponds a Q,, in B' as follows: the index v' will be

obtained by changing the i-th g in the second through last terms of v, call it
gj into g9 and leaving the rest of the sequence alone. It is easy to check that Qv,
is in B'.
Each QV' in B' has at most TI,m'(w), (w C Q,') inverse images (this is easy

to check). Hence, we can get a one-to-one mapping A into A' such that if
Q- QJ, then v' will be obtained from v by the process described in the previous
paragraph.

Partition A into disjoint pieces Dj in the following way: the set Qf will be
in the same group as QJ if i = j and v and v- differ in only one coordinate, the
i-th g of the second through last terms of v (or equivalently vT). Call Dj full if
it contains a Qf for every possible choice of g for the i-th g (that is, if there
are t, Qf in Di). (The set Di may not be full because some of the necessary Q,
may not be in B.)

It is easy to see that every Qf such that there is a w in Q, with Sn'(w) c Ji2"
is in a full Dj. Call the union of the Q, that contain a w with S.'(w) c Ji", B2,.

If Dj is full and D} is its image, then

(7) u(Dj) = P- u(Dj).p
This comes from the independence of the Xi.
By (3) the measure of the part of B-2E for which TI,m' > pm'(1 - -y') is

greater than (1 - y1)u(B_2.). Hence, the measure of the full Dj in A is greater
than
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(8) pm'(1 - yi)(1 -1)u(B-2,)
Combining (7) and (8) we get

(9) u(f) > Pp - pm'(1 - -y)(1 -yi)u(B-2e)
p

By (4), the measure of the part of B' for which Ti',m' > p'm'(1 + yl) is less
than p',yiu(B'). Hence, u(') < u(B')p'm'(1 + -yi) + m'p'y1u(B'), and

(10) u(B') < u(B')p'm'(1 + 2,yi).
Putting (9) and (10) together we get u(B')p'm'(1 + 2-yi) > p'm'(1 - -y)(1 - -y)
X u(B-2,) and

(11) u(B') > (1 - yl)2 u(B-2f),(1 + 2-yi)
(12) Pr {S", C JS 3.} > u(B'),
and

(13) u(B-2,) > Pr {SI'c Jl 2e} > Pr {S 1C Jj3'}.
Inequality (11) together with (12) and (13) proves the lemma for 3e, and hence
for E.
LEMMA 4. Let I and I be intervals such that the length of I is greater than k

times the length of I (let e = ' length of I). Then Pr {S,, C I-e} > 6k Pr {Sn C I-e}
for all sufficiently large n.

PROOF. We can fit more than 'k intervals, Ij, of length 4E into I-e such
that If is disjoint from If if i $ j. Now apply lemma 3 (Qk times) with -Y <

= J1 and Ij = J2-
We get our theorem by combining lemmas 3 and 4.
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