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1. Introduction

This paper forms a sequel to one by Professor D. G. Kendall [2]. We shall
use the notation of that paper and assume the results in it. There are two parts:
the first investigates the g-function in more detail and reduces the possible
region for (Qy, r), and the second establishes the existence of points on the (r, y)
diagram with r o Y.
The countable state space will be denoted by I.

2. Some properties of the g-function

We recall from [2] that a Markov semigroup has property (F) if and only if
there is some t > 0 such that g(t) > . We are particularly interested in
whether there are any non-(U)-semigroups with property (F). The following
simple lemma will prove very useful.
LEMMA 1. For all u and t such that 0 < u < t and for all i and k e I, there

exist states j and 1 such that pj,i(u) 2 pk,i(t) and pl,i(u) < pk,i(t).
We have pk,i(t) = hEhI pk,h(t - U)ph,i(U). This is a convex combination of

the Ph,i(U) (h E I), and so there exist states j and 1 as required.
DEFINITION. Let Si(t) = supj pj,i(t) and si(t) = infj pj,i(t).
COROLLARY. For each i, Si(t) is a nonincreasing function of t, and si(t) is

nondecreasing.
THEOREM 1. (a) On the set {t: g(t) 2 2}, g(t) is a nonincreasing function.
(b) A direct sum, P(t), of semigroups, P,(t), each having the property that its

g-function, gr(t), is continuous on the left, has g(t) < a for all t > 0 unless it
enjoys property (U).

(c) If g(t) = m > , then, for each u < t, either g(u) 2 m or g(u) < 1-m.
When g(t) 2 2, pi,i(t) 2 a for all i. Since the row sums of P(t) are 1,

each off-diagonal element is less than or equal to 2, and so, for such values of t,
Si(t) = pi,i(t) for every i. Statement (a) now follows from the above corollary.
To prove (b), first note that g(t) = inf, g,(t). We assume that for some to > 0,

g(to) = m > -. Then g9(to) 2 m for all r. The proof rests on the fact that for
each r, g,(t) is monotone nonincreasing on [0, to]. By (a), it will be sufficient to
show that for t E (0, to), g,(t) is never less than 2. Assume on the contrary that
g,(T) < 2 for some T E (0, to). The semicontinuity of gr(t) implies that the set
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176 FIFTH BERKELEY SYMPOSIUM: SPEAKMAN

S = {t: gr(t) < 2} is open. Now consider the right-hand endpoint, U, of the
connected component of S which contains T. Then U < to and U f S. By (a),
gr(U) 2 m and so the left continuity of gr(t) is contradicted at U. To conclude
the proof we note that g(t) is monotone nonincreasing on [0, to], therefore
limt,o+ g(t) exists and is greater than or equal to m. By Reuter's theorem (2),
this limit is 1; hence (U) holds.

For the proof of (c), suppose that g(u) < m. Then there exists a state i such
that pi,i(u) < m. By lemma 1 there exists a state j such that Pj,i(u) > m. This
state j cannot be i, and so p,j (u) < 1 - pj, i(u) < 1 - m and g(u) < 1 - m.
NOTE: the hypothesis of (b) is satisfied when P(t) is a direct sum of (U)-

semigroups. For each r, gr(t) = infi p( (t) and the functions p" (t) are continuous
uniformly in i. This implies that gr(t) is a continuous function.
Mr. J. F. C. Kingman strengthened the original version of the following

theorem.
THEOREM 2. (a) For each m such that 2 < m < 1, the set {t: g(t) 2 m} is

closed, and it is nowhere dense unless (U) holds.
(b) If there is an instantaneous state, then g(t) < I for all t > 0.
The Chapman-Kolmogorov equation shows that for all t, h > 0,

(1) pi,i(t + h) - pi,i(t) =-(1 - p,(h))pj,j(t) + E2 pjj(h)pj,j(t)
j#i

<- (1 - pi,(h))g(t) + (1 - pi,i(h))(1 -g(t)),
since, if j 5 i, pj,i(t) < 1 - g(t). Thus

(2) pi,i(t + h) - pi,i(t) < _1 - pi,i(h) (2g(t) - 1).h h

If g(t) > 2 and i is not an absorbing state, the right side is negative.
If i is an instantaneous state, then as h -- 0+, the right side of (2) tends to

- o, and so pi,i(t) has an infinite derivative at t. This is impossible ([1], addenda,
theorem 4); hence, (b) is proved.
To prove (a), we first note that {t: g(t) 2 m} = ni {t: pi,i(t) 2 m} and so

is a closed set. It is sufficient then to show that, when (U) does not hold, this
set contains no interval of positive length. Suppose that it does, that is, that
g(t) 2 m > 2 for t E [to, ti] = J, where 0 < to < ti. Then for all i and all t E J,
(3) m < pi,i(t) < 1.

Since (U) does not hold, the semigroup is not q-bounded and there exists i E I
such that qi > (1 - m)/{(ti - to)(2m - 1)}. Now let h-0+ in (2). We
obtain,
(4) p'i(t) < -qi(2g(t) - 1) < -qj(2m - 1) < -(1 -m)/(ti - to).
The function pi,i(t) which we know to have continuous derivatives in J cannot
satisfy both (3) and (4), and so we arrive at a contradiction.
THEOREM 3. When (U) does not hold, then g(t) < 2 for all t > 0.
For the proof we shall require the following lemma.
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LEMMA 2. If g(t) > 2, then for each u < t and for each i e I, there exists at
most one j such that pj,i(u) > 23.

Suppose that there exist j, 1 E I, j ', 1, such that pj,i(u) > 2 and pi,j(u) > 2.
Without loss of generality we may suppose that pj,i(u) < pl i(u). Then

(5) pj,j(t) = pj,i(u)pi,j(t - u) + E pj,k(U)pk,j(t - u)
< pj,i(u)pi,j(t - u) + b,

since £k,i Pj,k(U) = 1 - pj,i(U) < Also, pj,j(t) 2 2; therefore, we have
pji(u)p,j(t- u) > 3.
Again, pi,j(t) 2 pji,(u)p,jj(t - u) 2 pj,i(u)pi,j(t - u) > 3. But 1 0 j and

pi,e(t) 2 3 SO that p1,j(t) < 3. This gives a contradiction and establishes the
lemma.
We now give the proof of theorem 3. Suppose that for some to > 0, g(to) > 23

Since (U) does not hold, Reuter's theorem shows that y < 2. Certainly there
exists a positive u < to such that g(u) < 2, and so there is a state i such that
pi,i(U) < 2. By lemma 1, there exists a state j such that pj,i(U) > 2 and j
cannot be i. Consider t1 = inf {t > 0: pj,i(t) > 2}. Now t1 > 0 since pj,i(O) = 0
and pj,j is continuous. By continuity, pj,i(ti) = 2 and so there exists a state

5$ j such that pli(ti) > 2. By the continuity of pl,i, there is an e > 0 such
that, for t E [t1, t1 + e), pl, (t) > 2. From the definition of t1 we see that there
is a point in this interval for which also pj,j(t) > 2. This contradicts lemma 2
and establishes the theorem.

It follows from this theorem that r < 2 except when y = r 1. The next
theorem further restricts r.
THEOREM 4. When (U) does not hold, then r < (V"5 - 1)/2 = .618 ....
We write a = (V5 - 1)/2. Suppose that r > a. For any number m such

that o- < m < r, the set S = {t: g(t) 2 m} is closed and has a limit point at
the origin.
LEMMA 3. Every point T of S is a limit point of S from the right (unless S is

bounded and T is its largest member).
Since pj,j(s)pj,j(t) < pi,i(s + t) for all s, t > 0 and all i E I, we have g(s)g(t) <

pi,i(s + t) for all s, t > 0 and all i E I and so g(s)g(t) < g(s + t). By letting s
tend to 0 suitably, we obtain rg(t) < lim sup._o+ g(s + t) for all t > 0.

It follows that for each 6 > 0, there exists t,n 4 T such that g(tn) 2 rm - S.
Suppose that there exists a T, in S greater than T. Then for each n such that

t, < T, either g(tn) 2 m or g(tn) < 1 - m (theorem 1(c)). If the first alternative
holds for infinitely many n, the lemma is proved. We show that if a is sufficiently
small, the second alternative is excluded. For we should have m2 - a < mr- s
< 1 - m and if 6 < m2 + m- 1 (which is positive since m > a, the larger
root of the equation x2 + x- 1 = 0) this yields a contradiction.
We conclude the proof of theorem 4. Choose a positive element to of S. Con-

sider (0, to)\S. It is open, and by Reuter's theorem, nonempty. Choose u E
(0, to)\S. The left-hand endpoint U of that connected component of (0, to)\S
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The revised (r, Sy) diagram.

which contains u is in S. Even though U < to, it does not satisfy the conclusion
of lemmna 3. This contradicts the initial assumption and establishes the theorem.
The theorem does not rule out the possibility that, for some t > O, g(t) > a.

But when this is the case we can use it together with theorem 1 (c) to show that
r < 1 -g(t) if the semigroup is non-(U).
The above results place quite severe restrictions on the behavior of g(t) when

it is greater than 2. In particular, if it could be shown that g(t) were continuous
on one side at all points greater than O for which g(t) > 1, then theorem 2(a)
would imply that for a non-(U)-process g(t) is never greater than 12.

3. The construction of some Markov semigroups having y 3F4 r

We start with a (U)-semigroup {P(t): t > O} which has the following property:
(6) m a_ inf g(t) < lim inf g(t) =_ M

t>O t >

(for example, any three-state Markov chain whose Q-matrix has two complex
eigenvalues).
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When (6) holds, M < 4. To see this, first note that there are no inessential
states (in the terminology of Chung [1]). For, if i were an inessential state,
ri = limt, pi,i(t) would be 0, and M, which can be no greater than 7ri, would
be 0, and (6) would be contradicted. Next, if i is in some essential class contain-
ing only one or two elements, then pi,i(t) is nonincreasing. Thus, if (6) is to
hold, there must be an essential class with three or more elements. Let i be an
element of such a class. Then _jEC(i) 7rw = 1 ([1], theorem I.7.1), hence, for
some j e C(i), wj < . Since M < wj, we have M < 4 as required.
We shall construct a semigroup, R(t), which has -y = m and r = K, where K

is an arbitrary number in (m, M].
The function, g(t) being infi pi.i(t) where the pi,i(t) are continuous uniformly

in i, is itself continuous. Because of this and because it is bounded away from
m in some (N, X ), it attains the value m at some point, to, in [0, N]. For the
moment, let us suppose that K is strictly less than M. Then {t: g(t) = K} n
[0, to] is nonempty and closed, and hence, contains its greatest lower bound
which we shall call t1. This is the first value of t for which g(t) = K. Similarly,
g(t) attains the value K for a last time at some point t2 > to. The final semigroup
will be a direct sum of "speeded-up" versions of P(t), which itself forms the first
component. For the second we take P(kt) where k = t2/t1> 1 and for the n-th
P(k-1t). The resulting g-function is infr=0,1,2, .. . g(krt). This has y = m because
it is bounded below by m and attains the value m at the points k-rto(r = 0, 1,
2, .. .). Also r ]FI is at least K because it attains the value K at the points
k-rt2(r = 0,1, 2, .**). To ensure that r is exactly K, we add as a final compo-
nent a semigroup having y = P = K. Section 4 of [2] tells us that such semi-
groups exist as K is certainly less than -. Now y = min (m, K) = m and
r = min (rl, K) = K as required.

If K had been chosen to be M, we should have taken a sequence (K.) which
increases to M and have used Kn to determine the "speeding-up" factor at the
n-th step instead of K itself.
The rest of this section consists of examples employing this construction.
The region that can be obtained in this way when the basic semigroup is a

three-state cyclic Markov chain has been investigated in some detail. The
Q-matrix of such a semigroup has the form

-a a Ob
(7) O -b b

c O _c

and P(t) = eQt. If any of a, b, or c is 0, then the diagonal transition functions
are all monotone and (6) is not satisfied. Since m and M are unchanged when
Q is multiplied by a positive constant we can normalize Q and relabel the states
if necessary to obtain Q in the form

-1 1 0\(8) 2-b b
c O+ c

whereO0 < b, c < 1. Wewrite bc = p, b + c = a-.
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The value 7ri = limt,. pi,i(t) is given by the i-th coordinate of the unique
positive vector y = (yi) satisfying Qy = 0 and Fyi = 1 ([1], theorem 1.7.1).
Clearly, y = (bc, c, b)/(bc + b + c). The smallest coordinate, 7ri, is M and it has
the value p/(a + p). Now let F(x) be the distribution function of the sum of
three independent exponential random variables with expectations 1, l/b, and
1/c. Then

O t
(9) pi,i(t) = e-qit + E f e-qi(t-8) dF(r)(s) (i = 1, 2, 3),

where F(r) is the r-th convolution power of F. Since e-at < e-bt if t> 0 and a> b
we see that, for all t > 0, pl,l(t) < p2,2(t), p3,3(t) and so m, which is inft>o g(t),
is equal to inft>0p1>l(t).
The determinant of XI - Q is X3 + (1 + a)X2 + (v + p)X and so the eigen-

values of Q are 0 and -(1 + a)/2 i \/(1 + a)2/4 - (o- + p). We write s =
2\/' (1 + ar)2/4 - (a + p)1. Zero cannot be a multiple eigenvalue because we
have assumed that both b and c are positive, and so the coefficient of X in the
determinant is positive. There are three possible cases.
CASE I. The last two eigenvalues are real and distinct. It is clear that they

are both negative. Suppose they are -f and -g. Then pi, (t) = h + ke-ft + le-n t
for some constants h, k, 1. Such a function has at most one turning point, and
if t is positive there this point gives the absolute minimum since we know
that p'1,1(0) < 0. The constants h, k, and 1 are determined by the equations
limt, pl,i(t) = p/(a + p), pi,i(°) = 1, p,i(O) =-1. It turns out that there
always is a positive turning point and that

(10) m = p1,l(t) = _ l-i +s (1-a +sy(l+e±8)/2.
c+ p a +

CASE II. The last two eigenvalues coincide and are -f, say. In this case
pl,l(t) = h + (k + lt)e-ft. Again such a function has at most one turning point.
The constants are determined as in I and we obtain a positive turning point.
At this point
(11) m = p,i(t) = p - 2(1 ) e-(+U)/('U)

a+p (1+ o)2

CASE III. The last two eigenvalues form a pair of complex conjugates,
(-(1 + a)/2 i is). In this case pi,l(t) = h + (k sin st + 1 COS st)e-
The constants can be determined as before. Also pi,l(t) may be written in the
form h + Ae-(l+o)t/2 cos (st + B). If u is a minimum turning point for a func-
tion h(t) of this form, then h(u) < f(t) for all t > u. We know also that pl l(0) < 0,
and so the absolute minimum of pi,1(t) for t > 0 is attained at its first positive
turning point. Its value is

(12) m= + - exp 1 + tan-'
a h i s a +tp be 1t

where the inverse tangent is taken to be in the interval (0, 7r).
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The range of values of (p, o-).
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The possible region for (a-, p) is that for which the equation x2 - rx + p = 0
has two real roots in the interval (0, 1]. It consists of the points satisfying the
conditions a2 > 4p, p > 0, a < 1 + p, a > 0 and is shown in figure 2. The
condition for equal eigenvalues of Q is that (1 - a-)2 = 4p-the line BC with
the point B excluded. In the region ABC (with the line BC excluded) there
are complex eigenvalues, and in the region OBC, with BC excluded, distinct real
ones. The points on the (r, y)-diagram which can be obtained from semigroups

y

03-

0.2-

r

0-11 1

0 B
9 6 5 4 3

FIGURE 3

The part of the (r, -y)-diagram which can be
obtained by the construction from certain special

semigroups. The shaded area is what can be obtained
by using three-state cyclic semigroups, and the

triangular regions are those that can be obtained as
described in the text when n = 3, 4, ...* 16.
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corresponding to points on the boundary have been plotted. I have been unable
to prove analytically that no point in the interior gives a value of (r, Y) outside
this curve: several such points have been plotted and there has been no indication
that this was the case.

If we have two semigroups with (F, -y) = (rF, yi) and (r2, 72), respectively,
then we can construct a third with r = min (Fl, r2) and y = min (71, 72) by
taking their direct sum. Thus, if we have one with (r, y) = (a, b), then we can
find others with (r, y) = (x, b) where x is any number in the interval
[b, min (2, a)] by using Kingman's examples described in section 4 of [2]. The
region obtainable in this way by direct sums of three-state cyclic semigroups
is (at least) that shaded in figure 2.
Looking for further examples, I considered the n-state semigroups with

Q-matrices of the form
-1 1 0 ... 0\

(13)
i 0 0 ... i/

The matrix Q + I is a permutation matrix and so

(14) [(Q + I)-"] {1 if n divides m.
t0 otherwise.

Thus,

(15) pi,i(t) = (exp (Qt))i,i = (exp (-It) exp {(Q + I)t})i,i
= e-t{l + t-/n! + t2n/(2n)! + ..

for all i. We shall assume for the moment that for n > 3 the first turning point
of pljl(t) g(t) exists, and that at that point g attains its absolute minimum

TABLE I

N r

3 .33333 .32447
4 .25000 .21860
5 .20000 .14791
6 .16667 .10025
7 .14286 .06805
8 .12500 .04626
9 .11111 .03150
10 .10000 .02147
11 .09091 .01466
12 .08333 .01001
13 .07692 .00685
14 .07143 .00469
15 .06667 .00321
16 .06250 .00220
17 .05882 .00151
18 .05556 .00103
19 .05263 .00071
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for the only time. Then at this point p1,1(t) < limt,. pj,j(t) = 1/n. The case
where n = 3 has been dealt with above. For n, from 5 to 19 inclusive, the series
could be truncated after three terms, and the value at the first minimum was
computed on TITAN to four significant figures. (For n > 10, two terms would
have been sufficient for this accuracy.) I am grateful to Mr. J. G. Basterfield
for assistance in preparing the program. It was found that for n = 4 the con-
tribution from the higher order terms was not negligible and the exact formula
g(t) = 4 + e-t cos t + e-2t was preferred. The figures obtained are shown in
table I.

In the case of this type of Q-matrix with (F, -y) = (a, b), we can also obtain
semigroups having (r, -y) = (a, x) where x is any number in the interval [b, a).
We do this by combining P(t) in a certain sense with the semigroup R(t) which
has Q-matrix

-1 1/(n -1) ... 1/(n -1)\
(16) S = 1/(n -1) -1 .. l/(n -1) 1

1/(n -1) 1/(n -1) ... -1 /
and monotone transition functions;

(17) ri,i(t) = (1 + (n -)e-nt/(n- ))/n
ri,j(t) = (1 - e-nt/(n-1))/n, (i F# j).

The matrices Q and S commute, since S can be expressed as a polynomial in
I + Q, and so xP(t) = exp {XQ + (1 - X)St} = P(Xt)R((l - X)t) and xP(t)
gives a Markov semigroup when X G [0, 1]. Now

(18) xpl ,,(t) =Epl ,j(1Xt)rj,,((l - )t)
j

= pj,1(Xt)(1 + (n- )e- (-X)nt/(n-- Vn
+ (1 - p1,1(Xt))(j e-(1-X)nt/(n-1))/n
= 1/n + (p1,1(Xt) -/n)e- (1-X)nt/(n- )

Suppose now that X $4 0. Then xpl,i(t) = 0 where

(19) -(1 - X)(p1,1(Xt) - 1/n)n/(n - 1) + Xp,1(Xt) = 0.

Let the first point for which p1,1(t) = 1/n be to and its first minimum turning
point be t1. Then 0 < to < ti. Both terms on the left of (19) increase for t E
[0, t1/X]. The expression is negative for t = to/X and nonnegative for t = t1/X
and so there is a unique turning point, which we shall call t2(x), for Xp,ll(t) in
the interval (to/X, t1/X] and this is the first turning point of xp1 j. We show that
)Xpl,l attains its absolute minimum at t2(X). According to (18),

(20a) 1/n - pX1,1(t2(X)) = (1/n -p1,1(Xt2(X))e-(1-X)nt2(X))/(n-1)
and since there is no other turning point in [t2, t1/X], this is not less than
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(20b) (1/n - p1i,(t1))e- (1-X)nti/(n- )X
> (1/n - pj,i(sX))e-(1-X)n8/(n-1) for all s > t1/X
= I/n - xpli,(s) for all s > t1/X.

This is also true (with a weak inequality) for s E [0, t1/X] since we have shown
that there is only one turning point in that interval.

If X E (0, 1], the point at which (19) is satisfied varies continuously with X
and tends to infinity as X -- 0+ since it is greater than to/X. The value of
xpi,1(t) = g(t) at its absolute minimum varies continuously taking all values in
the interval [pi,1(t1), 1/n). Therefore, all these values are possible for y when
r = 1/n.
By the construction discussed before we can now obtain (r, y) anywhere

within the triangular regions of figure 3. It is also clear that by this construction
based on a genuinely n-state semigroup we could not hope to obtain points with
r > 1/n, and certainly not points with F> 2.

In conclusion, I sketch a proof of the fact that pi,,(t) attains its absolute
minimum for the only time at its first turning point:

(21) pn~ =p li=e-t((jt-1)! +(n + j-;1)!+(2n + j-)! + ,

(j = 1, * , n) and pi,j(0) = bi,. There is some T > 0 such that, in (0, T),
P1,n(t) < p1,n-i(t) < ... < p1,l(t). To see this consider the derivatives at the
origin. On (0, T], s(t) 81(t) = p1,n(t). The corollary to lemma 1 shows that
s(t) is monotone increasing. We shall need a lemma to show that p',n intersects
p,1i before it intersects any other pi,j after t = 0. Then it will follow that there
exist numbers Ti, T2 such that 0 < T1 < T2 and s(t) = pi,.(t) for t E [0, Ti]
and s(t) = p1,1(t) for t[T1, T2]. The differential equations of the semigroup
state that pij = pi,j-1 - pi, (addition of suffixes being modulo n) and so, in
particular, piji has its first turning point at T1. Also pi j is analytic and not
constant, and so s(t) is strictly increasing in [T1, T2]. Thus for all u > T1,
p1,1(u) > s(T1). This is also true for u e [0, Ti) because T1 is the first turning
point.
LEMMA 4. If n > 3, pi,. intersects pi,i before it intersects any other pi,j after

t = 0.
We assume this is not true and that pi,n intersects pi,j at T before it intersects

p1jl Then there exists h, j S h < n such that pl,h intersects pl,h+, before pi,
meets pi,.. Choose k to be the largest integer with this property and to the
smallest t > 0 for which pi,k(t) = po,k+l(t). None of the functions pi,l(l > k)
has intersected any other function in the interval (0, to). The differential equa-
tions show that at to, Pl,k+l has its first turning point. To the left of to, Pl,k >
pl,k+l and so P'Lk(to) < 0. This implies that at some point in (0, to], pl,k has had
a turning point. Let ti be the smallest such turning point. We can work back-
wards in this way until we reach tk-1 where pi,2 has its first turning point.
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Now pi,1 is decreasing throughout [0, T] because it has never intersected pi,n
and its derivative has always been negative. At tk-l, P1,2 = P1,1 and P1,2 is greater
than p1,1 in (tk-1, T] because otherwise it would have cut pi,i again with zero
gradient and this is impossible. Similarly, pi,,r > pi,r-, in the interval (tk1-+l, T],
(r = 3, * * *, k), and thus p1,j > pii in (tk.j+1, T]. This contradicts the initial
assumption.
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