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1. Introduction

Let {Pt: 0 < t < o} be a strongly continuous one-parameter semigroup of
transition operators on the Banach space ti of absolutely convergent series,
reducing to the identity at t = 0, with matrix representation

(1) (Ptx)j= xipij(t), (j = 1, 2, *--),

so that in {pij(-): i, j = 1, 2, * * } we have a standard family of Markov transi-
tion functions on [0, oo) in the terminology of K. L. Chung [1]. In this and in
the succeeding papers [5], [6] we shall be interested in three loosely related ques-
tions:

(i) the analyticity or otherwise of the functions pi,(&);
(ii) the identification of quasi-analytic classes of such functions;

(iii) the possibility of extending the Markov semigroup (Pt: 0 < t < 00 } to a
strongly continuous group {Pt: -00 < t <0 } of bounded linear operators on t1.
The present paper is concerned with the last of these three topics, and consists

largely of conjectures and scraps of evidence about them. Some further evidence
will be found in the accompanying paper by Miss J. M. 0. Speakman [7]. If
our remarks lead others to solve the problems posed, we shall be delighted.

2. Property (U) and property (G)
It will be helpful to make the following definitions.
DEFINITION 1. A Markov semigroup (Pt: 0 < t < oo } will be said to have

property (U) when any one of the following equivalent conditions is satisfied:

(U1): pii(t) -- 1 as t -O 0, uniformly with regard to i;
(U2): IlPt- III as t ;
(U3): Pt = exp (At), where A is a bounded operator;
(U4): sup qi < 0, where qi = -pti(O).
The equivalence of (U1) and (U2) is due to the fact that

(2) jjPt- III = 2 sup (1 -pii(t)).

The equivalence of (U2) and (U3) is a standard result in the theory of such
semigroups ([4], theorem 9.6.1). The equivalence of (U123) and (U4) follows
from the fact that
(3) 1 - pii(t) < 1 - exp (-qit) < qit,
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and from the consequence qi = -Aii of (U3). Property (U) is so named because
it is plainly a 'uniformity' property; Markov semigroups with property (U)
are sometimes called 'q-bounded.'
We note in passing that the qi's always exist and can have values between 0

and +co inclusive. The off-diagonal derivatives qij = ptj(0) (i $6 j) also exist and
satisfy 0 < qij < o. In the q-bounded case infinite values for the qi's are of
course excluded, and the matrix Q = (qij), with qii =-qi, can then be identified
with A at (U3).

It is clear that q-bounded Markov semigroups can always be extended to
uniformly continuous groups {Pt: -X < t < } by taking the equation at
(U3) to be the definition of Pt when t < 0, and in particular this is true when
the number of states is finite.

It is worth remarking that the adjoined operators Pt with t < 0 will never
(save in a trivial case) be transition operators. This follows from the fact (which
I owe to P. Whittle) that ifP and Q are transition operators and if PQ = QP = I,
then both P and Q must be permutations. Thus if P, is a transition operator for
some positive T, then P, must be a permutation. However it has a strictly posi-
tive diagonal, so it must be I. From this it follows that Pn, = I for all integers n,
and then it becomes evident that the whole semigroup must reduce to the iden-
tity.

Whittle's lemma can be proved as follows. Let j be any state; then (QP)jj =
aj, > 0, and hence Pij > 0 for at least one state i. For such an i we must have
(PQ)ik = bik = 0, save when k = i, so that Qjk = 0, except when k = i. From
this it is clear that Pij > 0 for exactly one i. Thus each row of Q and each col-
umn of P contains exactly one nonzero element. The result now follows from
the symmetry of the data.

It is important to notice that (U) is a property of the system as a whole,
and that it cannot be defined in terms of the irreducible classes of states, if such
exist. This is obvious from (U4).
We now make a second definition.
DEFINITION 2. A Markov semigroup will be said to have property (G) when

it is possible to define bounded linear operators Pt for all t < 0 such that
{Pt: -oo < t < oo} is a strongly continuous group.
Obviously (U) implies (G); the converse might be conjectured to be true, but

whether this is so or not appears to be an open question.
Like (U), (G) is not a class property. This will be made clear in the following

section of the paper, where we shall exhibit some direct sums of finite-state
Markov semigroups which, in contrast to their summands, have neither the
property (U) nor (G).

3. Remarks about the relation between (U) and (G), and some examples

To illustrate one important feature of the problem, it is useful to consider
the simple birth process with unit birth rate. For this, pij(t) = 0 when 1 < j < i,
and
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(4) Pi1(t) = _ e-it(1 - e-t)i-i when 1 < i < j.

The matrix Q is given here by qii = -i, qi,i+l = +i, qij = 0 otherwise, so that
the system is certainly not q-bounded. If (G) is to hold, then Pt for t = -T < 0
must be PI-', and the upper triangular character of P, ensures that the elements
of Pt are uniquely determined by the finite linear equations expressing the fact
that PtP, = I. It follows in this way that the components of Pt are given by
the same analytical formulae when t < 0 as when t > 0.
But now we observe that

(5) E_ jpj(t)| = (2e - 1)-i when 0 < T < log 2,

and that the series diverges when r > log 2. Thus
(6) liPtil = sup E 1pij(t) =X for all t < 0,

i i

and so the operators Pt(t < 0) are not bounded. Thus (G) does not hold.
An elementary theorem about semigroups shows that in testing for (G),

only one value of t < 0 need be examined.
THEOREM 1. Property (G) holds if and only if Pt has a bounded inverse for

some one (and then for all) t > 0.
This is theorem 16.3.6 of [4]; for completeness we sketch a proof. In any

Banach algebra, if T is boundedly invertible, then so is any R for which RA =
I = BR; thus, if Pr is invertible for some one r > 0, then so is Pt for 0 < t < r
and therefore so is Pnt for all positive integers n, so that Pt is invertible for all
t > 0. Putting P-t = (Pt)-' for t > 0 yields a group {P: -oo < t < m}, and
strong continuity then follows from the inequalities

(7) IIP-_tx - xll = IIPa-t(P_aX - Pt-aX)II
< ||Pa-,11 I!Pt(P_ax) - (P-_aX)1
< I|Pt(P_aX) - (P.-aX)II,

where 0 < t < a (fixed).
It is not difficult to find wide classes of Markov semigroups within which

(U) (G). For example, consider the Cohen semigroup {P?3: 0 < t < 00}
derived from a given Markov semigroup {Pt: 0 < t < oo} by the following
construction [2], [3]:

(8) l X eJ-uuuPuxdu, (O < t < 00)

It is easily verified that each PO is a transition operator, and the new operators
form a semigroup in virtue of Dirichlet's integral formula. It is strongly con-
tinuous because

(9) IIPPx - xll = r(t)-'||f: e-uut-l du f P.Ax dv|| < tIlAxll,
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if t > 0 and if x lies in the domain of the infinitesimal generator A. This shows
that IIPx - xlI -- 0 when t -O0 for all such x, and then for every x by an appeal
to the Banach-Steinhaus theorem.
Now PO = R, = (I - A)-', where {RA: 0 < X < oo} is the family of

resolvent operators for the original semigroup. From this point of view,
{PQ: 0 < t < °° } is a semigroup of fractional powers of Rl. In view of theorem 1,
we know that the derived semigroup will have property (G) if and only if RI
has a bounded inverse. This, however, is equivalent to requiring the original
semigroup to have a bounded infinitesimal generator A, when by (U3) it
will be q-bounded. We should then have

(10) IIPO - III < r(t)-' fo e-uutlIIPu - II du = o(1), (t - 0),

and hence, arrive at proposition 1.
PROPOSITION 1. A Cohen semigroup {PP0: 0 < t <o } has property (G) if

and only if it has property (U).
We have remarked that (U) is not a class property, and that the same is

true of (G). Thus, it is reasonable to look at Markov semigroups which are built
up out of simpler ones by a direct sum construction. Let us write

(11)'fp = a+ae-It a(1 e-Pt)),
((l- e-Pt) a+1e-t

where a, 13, and p are nonnegative and a + d = 1. These matrices represent the
most general two-state Markov semigroup, which of course has both properties
(U) and (G), and
(12) IiPa$PPl = 1 + 2 max (a, 3) (eP- 1), (T 2 0).

If we now form the direct sum of a sequence of such semigroups with parame-
ters (ak, (k, Pk) (k = 1, 2, * * ,) it will be seen that the semigroup thus constructed
will in any case be strongly continuous, and that it will have property (U) if
and only if
(13) sup max (ak, 13k)pk < Co,

k

whereas it will have property (G) if and only if

(14) sup max (ak, 0k)(ePk- 1) < oo.
k

Now < max (ak, 1k) < 1 hence the two boundedness conditions are equiv-
alent. Thus we have proposition 2.

PROPOSITION 2. A direct sum of two-state Markov semigroups has property (G)
if and only if it has property (U).

It would be desirable to extend this result to cover the direct sums of arbitrary
finite-state semigroups, or more generally to direct sums of q-bounded semi-
groups. For a contribution to this problem see section 2 of [7].
The following two observations (which I owe to D. Williams) deny the

property (G)-but-not-(U) to still further classes of Markov semigroups. First,
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suppose that {Pt: 0 < t < oo} is measurable in the uniform sense. This re-
quires that there be a sequence of measurable countably-valued operator func-
tions of t which converge in the uniform sense to Pt for almost all t. From the-
orem 9.3.1 of [4], it then follows that Pt depends continuously on t, in the uni-
form sense, for t > 0. If (G) holds, the inequalities
(15) IlPA - III < lIP-_1l jPt+h - Ptl1 = o(1) as h -O 0

(for fixed t > 0), then imply that (U) holds. We therefore have the next proposi-
tion.
PROPOSITION 3 (Williams). A uniformly measurable Markov semigroup has

property (G) if and only if it has property (U). In particular this is true of Markov
semigroups uniformly continuous for t > 0.

It will be noticed that uniform continuity at any one t > 0 is enough to force
the conclusion. Uniform continuity often arises as a result of compactness, but
the following result is best established directly, although it could be exhibited
as a corollary to proposition 3.

PROPOSITION 4 (Williams). If the Markov semigroup {Pt: 0 < t < 00 } has a
resolvent operator Rx which is compact for some one, and then for all, X > 0,
then it has property (G) if and only if it has property (U), and the state space must
then be finite.

This depends on a surprising theorem [8] of Williams according to which the
compactness of Rx implies that of Pt for every t > 0. If (G) holds, therefore, we
shall have a compact identity I = P_tPt, and so the state space must be finite
and (U) must hold.

These propositions help to delimit the region within which one should look
for counter examples to the conjecture that (U) (G).

4. The (r, )diagram
Theorem 1 shows that a Markov semigroup will have the property (G) if it

has the property defined below.
DEFINITION 3. A Markov semigroup will be said to have property (F) when

there is a positive value of t for which f(t) _ IlPt - III < 1.
Thus (U) =* (F) =X (G). Let class A consist of those Markov semigroups which

have property (F) but not property (U), and let class B consist of those Markov
semigroups which have property (G) but not property (F). If it is true that
(U) (G), then the classes A and B will both be vacuous.

It is useful to write

(16) g(t) _ inf psi(t), (O < t < 00),
because we have

(17) f(t) = 2(1 - g(t)), g(t) = 1 - f(t)/2.
Thus the (F) semigroups are those for which g(t) > I for some t > 0. (We must
exclude t = 0 because in all cases g(O) = 1.) Miss Speakman [7] has shown that
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a direct sum of (U) semigroups which does not itself have property (U) must
be such that g(t) < 2 for all t > 0. Thus, if class B could be shown to be empty,
we could strengthen proposition 2 to include all direct sums of (U) semigroups.

Let us put

(18) r lim sup g(t), -y _ lim inf g(t).
t-4o t 0

Then the (U) semigroups are precisely those for which (r, y) = (1, 1). For the
direct sum of two-state Markov semigroups considered in proposition 2, with
ak = a, fk = 3, and pk = k (an example suggested by J. F. C. Kingman), we
have r = = min (a, ,B), and so we can have (r, e) = (c, c) where c has any~~~~I

FIGURE 1

The (r, y) diagram
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value in the closed interval [0, ]. When r = y there are no other possibilities.
This is a consequence of the following unpublished result of G. E. H. Reuter.
THEOREM 2 (Reuter). If y> , then property (U) holds.
Instead of giving Reuter's proof of theorem 2, we shall modify it slightly so

as to give rather more information. We shall prove the following theorem.
THEOREM 3. For every Markov semigroup, the pair (r, y) must be (1, 1), or

must correspond to a point lying in the closed shaded region in figure 1; that is, the
only possibilities are

(a) r = y = 1;
(b) r > 2 and 0 < y < {1-V(2-)}/2;
(c) 0 < r < and O <0 <F.
We do not assert that all such pairs (r, y) can in fact be realized, although we

have seen that this is true so far as pairs of the form (r, y) = (c, c) are concerned.
In an early stage of this investigation it seemed possible that r and ry would
always be equal, but Miss Speakman [7] has shown that this is not so; in fact,
it is now clear from her work that the region actually occupied by the pairs
(r, y) is two-dimensional, and is definitely smaller than that permitted by
theorem 3. In an attempt to delimit it more exactly we have called in automatic
computing aids, and a provisional account of this work will be found in [6]
and [7].

It will be noticed that Reuter's theorem follows from theorem 3 by projection
onto the 7-axis. Although the maximum allowable region in the (r, y)-plane
projects onto the whole interval [0, 1] on the r-axis, we do not know whether
all of this is actually attained; in fact, we know of no example with a < r < 1.
(After this was written, Miss Speakman [7] proved that parts of the interval
[0, 1] are inaccessible to r.) If such an example could be found, then we should
have discovered a class A semigroup, and we should know that property (F),
and so also property (G), was not equivalent to (U).
PROOF OF THEOREM 3. Let {Pt: 0 < t < oo} be any Markov semigroup.

From the identities
(19) P,+,-I = P8(P -I) + (P,-I)
and
(20) 2(Pt- I) = (P2k - I) - (P -I)2,
we find that

(21) f(t + s) < f(t) + f(s)
and
(22) 2f(t) < f(2t) + {f(t)}2,
so that
(23) g(t) + g(s) < 1 + g(t + s)
and
(24) g(2t) < 1 - 2g(t) + 2{g(t)}2.



172 FIFTH BERKELEY SYMPOSIUM: KENDALL

Note that the first g-inequality also gives g(2t) > 2g(t) - 1. We must have
O < g(t) < 1 for all t. Suppose that g(T) = c > 2 for some T > 0. Put t,, = r/2n.
From (24) we find that either

(25) g(t,) > (1 + V(2c- ,

or

(26) g(ti) < {1 - N/(2c -1)}/2.
If the first alternative holds, then g(t1) > 2 and we can continue the argument.
Thus either

(27) g(t.) > {1 + (2c - 1)2j/2 for all n = 1, 2,
or

(28) g(tn) < {1 - (2c - 1)2-1}/2 for some n > 1.

Suppose the first alternative holds. Then if we put

(29) a = (2r)-1 log 2c-1

so that a > 0, and is finite, we shall have g(tn) > 1 -atn for all n = 1, 2, * - *
hence, f(tn) < 2atn for all n. But f( * ) is subadditive; therefore, f(t) < 2at when-
ever t = pT where p is a rational with binary denominator. For such values of t
we therefore must have g(t) 2 1 - at, and pii(t) > 1 - at for all states i. But
pii(*) is continuous for each i, and so the last inequality must hold for all t> 0,
whence every qi < a <0, and the semigroup is q-bounded. Thus the first
alternative holds only if the semigroup has property (U).

If the second alternative holds, then we cannot identify the value of n for
which (28) is true, but at least for that value of n we must have

(30) 9(tn) < {1 - V/(2c - 1)}/2;
hence, we arrive at the following lemma.
LEMMA. If a Markov semigroup does not have property (U), and if g(T) > 2

for some r > 0, then

(31) g(t) < {1 - A/(2g(T) - lj/2
for some t = T/2n, (n = 1, 2, . . . ).
We can now prove theorem 3. We simply have to show that, if 2 < r < 1 for

some non-(U) semigroup, then -y cannot exceed the upper bound stated at (b).
In these circumstances we can find a sequence Tk l0 at which g(rk) = Ck -+ r,
with every Ck > 2. We can therefore, by the lemma, find another sequence
tk -> 0 such that

(32) g(tk) < {1 - v/'(2ck - 1)}/2 - {1 - /(2 - /2,
and so -y cannot exceed the limit on the right-hand side.
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