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1. Introduction and preliminaries

This article is concerned with two problems on resolvents defined over locally
compact separable Hausdorff spaces; the generation of a strong Markov process
from the given substochastic resolvent (sections 3 and 4) and the representation
of excessive measures by means of minimal (or extreme) excessive measures
(sections 5 to 11). These problems are closely connected, and our approach to
them is based on the results of D. Ray [19] concerning resolvents over compact
metric spaces (see section 2) and the metric completion of the original locally
compact space with respect to the uniformity generated by a certain family of
bounded continuous functions. Two types of the metric completion will be intro-
duced; the completion of F. Knight [14] (in a specific way) in section 3 and the
completion of R. S. Martin in section 6.

In the rest of this section we will give some basic definitions as well as a brief
description of the first problem. Let (E, (6) be a measurable space and et, the
o--field formed by all universally measurable sets, tnat is, sets which, for each
finite measure ,uover 6, differ by at most a set of (,A) measure zero from a set of 63.
A (nonnegative) real-valued function R,a(x, A) defined for a > 0, x e E and
A E (B is said to be a resolvent if the following conditions are satisfied. (R1) For
each a > 0 and x E E, Rca(x, *) is a measure over (E, 63). (R2) For each a > 0
and A e 63, R.(., A) is measurable (et). (R3) The resolvent equation

(1.1) Ra(x, A) - R#(x, A) + (a -A) f R.(x, dy)RJ(y, A) = 0, a, 1 > 0

is satisfied. The unspecified integral always means the integral over the whole
space E. (R4) The substochastic condition

(1.2) aJ?&(x, E) < 1 for every a > 0 and x E E
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is satisfied. In particular, if the equality holds in (1.2) for every a > 0 and
x e E, the resolvent is said to be stochastic. Later (section 5), when E is locally
compact and (6 is the a-field of all Borel sets, the notion of a generalized resolvent
is introduced by replacing the substochastic condition (R4) by a more general
condition. For this reason the above defined "proper" resolvent is sometimes
called a substochastic resolvent. The measure Ra(x, *) is extended naturally to the
sets of (t. It is easy to show that, for each A of 2X, Ra(*, A) is measurable (21).
A function P,(x, A) defined for t > 0, x E E and A E 63 is said to be a

(measurable) transition function if the following conditions are satisfied. (PI) For
each fixed t and x, P(x, -) is a measure over (E, (B) such that Pt(x, E) < 1.
(P2) P.(., A) is jointly measurable for each A. (P3) The Chapman-Kolmogorov
equation

(1.3) P,+.(x, A) = J Pt(x, dy)P8(y, A), t, s >O

is satisfied. The Laplace transform of a transition function

(1.4) Ra(x, A) = fo, e-atP(x, A) dt, >0

is always a resolvent. In this case Ra(x, A) is stochastic if and only if Pt(x, A) is
so, that is, Pt(x, E) = 1 for every t and x.

Let (E, (3) be a measurable space for which each one-point set is measurable.
By a stochastic process (xt, ¢, P) over E we mean the following. The variable
t(w) is called the terminal time of the process. It is a nonnegative random
variable (allowing the value infinity) defined over a probability space (Q, a, P).
The variable xt(w) is defined for all 0 < t < t(w) and takes values in E for such t.
(If t(w) = 0, xt(co) is just an empty path.) Every set of the form {w; xt(w) e A},
A E 63, is in W.

Consider a family of a-fields {i,, t > 0} such that f( C 5) is a v-field over
Q, = {f(w) > t} including all the sets of the form {x, E A}, A E (63, and such
that at is relatively increasing with respect to t, that is, % nf . C at whenever
s < t. The process (xt, r, P) is said to be a Markov process with Pt(x, A) as its
transition function, if there is a family {§t, t > 0} (as above) such that, for each
s, t> OandA E 63,
(1.5) P{x.+, E A J.} = Pt(x., A)
a.e. (= almost everywhere) on the set Q,, {x, E E}. Usually the Markov
process is determined by its transition function and its initial distribution. In
the present definition, however, the value of xt at t = 0 is not defined, so that
one can say nothing about its initial distribution.

If there is a substochastic measure ,u over E such that

(1.6) P{x, E A} = f ,A(dx)P,(x, A), t > 0, A e 63,

such ,u may be considered as the initial distribution of the process. But such ,
does not exist in general. As a simple example, consider a uniform motion defined
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over (0, oo), starting at the origin and proceeding to the right. Moreover, even if
the measure ,u as above does exist, it may fail to be an "appropriate" initial
distribution. Such circumstances will be made clear in the following two sections
in a certain general setting.
We will say that a system of substochastic measures {QK(A), t > 0 is a system

of absolute laws of the transition function Ps(x, A), if the equation

(1.7) Qt+.(A) = f Q,(dx)P8(x, A), s, t > 0, A E (

is satisfied. If the process (xt, ¢, P) is a Markov process with Pt(x, A) as its
transition function, the system of absolute distributions

(1.8) Q,(A) = P{*xeeA}
satisfies (1.7).
The strong Markov property is, roughly speaking, that the equation (1.5) is

still valid when s is a particular kind of random time called a "stopping time."
A natural question arises: when does there exist a strong Markov standard
modification of the given Markov process? This problem has been studied by
many authors in various settings [1], [2], [8], [19], [23]. We will mention some
of them. Ray [19] gave the most general solution when E is compact. Chung ([2]
and earlier papers) and Yushkevich [23] solved the problem for Markov chains
(namely, when E is a denumerable space). Yushkevich was the first who ex-
plicitly indicated that for a reasonable wide definition of strong Markov processes
one must allow those processes whose sample paths may take values outside of
the original state space (or equivalently, may disappear) for t of a random subset
of (0, t). This idea was developed by Ray [19] who stated that the theorem of
Chung and Yushkevich for Markov chains can be reduced to the theorem of Ray
for the compact case by using a completion of the original denumerable space.

Actually Ray's proof was insufficient. The authors [unpublished] were able to
revise the proof by generalizing Ray's results for compact spaces. That proof is
applicable to the case of arbitrary locally compact spaces and theorem 1 of the
present paper was obtained. Later the paper of F. Knight [14] came out and we
found that, as will be given in section 3, theorem 1 can be proved with a slight
modification of Knight's completion within the framework of Ray's original
results for compact spaces. Recently, Ray informed us that he had found out the
slip of his proof and succeeded in revising it by another method.
Knight [12], [13], [14] has studied in the most general setting the same kind

of problem, that is, what he calls "the regularization of Markov processes." His
final result [14] tells us that if xt is a Markov process over a measurable space
(E, (B) with (B a o-field generated by countably many sets, and if the transition
function of xi separates points in E, there is a strong Markov process xT over
certain metric completion E7 of E such that xt = xt, a.e. (P) at each t, except for
at most countably many t. Moreover, XT has some other nice properties, like the
right continuity of sample paths. Unfortunately, E may not be measurable in
the extended space E. Knight (private communication) informed us of such an
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example. Therefore, what is really done by constructing xt is not necessarily
evident. But if E is a locally compact separable Hausdorff space and if the transi-
tion function (or rather its associated resolvent) satisfies certain conditions, E is
measurable in E and xt = xt a.e. (P) for each t (with no exceptional set). From
this it follows that the process xt, when it is only observed over E, is strongly
Markov over E with the original transition function (theorem 1).

Finally let us state the strict definition of a strong Markov process. Let (P, &)
be a measurable space with respect to which each single point is measurable, E
a measurable subset of E, and (B the induced a-field E n . Let (xt, p, P) be a
stochastic process over Eand {5Yg; t > O}, a family of u-fields related to xt in the
previous sense. We assume that the process is measurable, namely, that every
(t, wo) set of the form {(t, w); t < s, Xt(w) E A}, A E C, is in the product u-field
of 5, with the u-field of linear Borel sets over (0, s] for every s > 0. (This kind of
measurability, which is stronger than the usual one [4], is called progressively
Borel measurable in [3].) A nonnegative random variable T is said to be a stopping
time (relative to {5YJ) if {T < t < p} E 5; up to a set of (P) measure zero for
each t > 0. The a-field 0r+ is defined by the collection of subsets A of Q, =
{O < r < t} such that thesetAAn { < t < t} is in S;t up to a set of (P) measure
zero for each t > 0. Let Pt(x, A) be a transition function defined over E. The
process xt is said to be strongly Markov over E with Pt(x, A) as its transition
function if, for each stopping time r, t >O and A e (B,

(1.9) P{xr+t e A15.+} = Pt(xT, A)

almost everywhere over the set {Xr X E}. This definition is equivalent to
Yushkevich's of the almost strong Markov property [23].
The notions of measurability, stopping time, and strong Markov property

depend on the family {ft}. Indeed {f5t} must be properly chosen in each case.
However, this is a routine matter, at least in those cases we will encounter in
later discussions. From now on we will use terminologies such as "strongly
Markov," and so on, without indicating the family {f5%}.

2. Ray's results concerning resolvents over compact spaces

In this section we will summarize, and give some comments on, Ray's results
[19] concerning resolvents over compact spaces, their associated transition func-
tions, and strong Markov processes (confining ourselves to the separable case).

Let E be a compact separable Hausdorff space and (B the u-field of all Borel
subsets of E. Let Ra(x, A) be a resolvent defined over E. For a function f over E
we will write Raf(x) for f f (y)R&(x, dy) if the integral is well defined. Denote
by C (resp. C+) the collection of all real (resp. nonnegative) bounded continuous
functions over E. Ray introduced the following hypothesis.
HYPOTHESIS (A). (1) For every a > 0, Raf(x, A) maps C into itself as an

integral operator. In other words, R,If e C wheneverf e C. (2) There is a countable
subcollection C1 of C+, separating points in E and satisfying
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(2.1) cRa+if < f, a>O, fE C1.
This hypothesis is assumed throughout this section. We also assume that Cl

includes a positive constant function, say 1 (= the function equal to 1 every-
where), with no loss of generality. In principle it is enough to consider the
stochastic case, for the substochastic case can be reduced to a stochastic case
without destroying hypothesis (A) by adjoining an absorption point to E as an
isolated point. But to avoid irrelevant complication in later discussions, it will be
useful to formulate the results for substochastic resolvents.
The first conclusion is this.
(a) For each x of E, the measures aRa(x, *) converge weakly to a substochastic

measure I.(x, *) when a - oo. Iff e C and if g = ff(y)/(-, dy), then

(2.2) f f(y) - g(y) 11(x, dy) = 0 for every x.

For every bounded measurable function f,

(2.3) Raf (x) = f Raf (y)/u(x, dy), a > 0, x E E.

If ,u(x, *) is not the unit distribution at x, the point x is called a branching point.
(b) The following three conditions are equivalent to each other. (i) The point x

is a branching point. (ii) There is a substochastic measure ,u, either,(E) = 0 or
,4({x}) < A(E), such that
(2.4) f(x) > ff(y)p.(dy), f E C1,
and such that
(2.5) Rif (x) = f Rif(y)A(dy), f e C.
(iii) There is a function g of the form

(2.6) g = fA c = min (f(-),c)
with f e C1 and a rational number c such that

(2.7) g(x) > f g(y),u(x, dy).

Since the proof in [19] that (ii) implies (iii) looks somewhat insufficient (even
in the stochastic case), we will here supplement it. Suppose ,u satisfies the con-
dition (ii). If ,(E) = 0, (iii) is evident because of 1 E C1. Assume ,u(E) > 0. It
is enough to show that there is a function g of the form g(*) = min {f (.), f (x)},
f e C1, satisfying (2.7). From the assumption there is a point yo(F6x) whose
arbitrary neighborhood has positive (ju) measure. Let f be a function of C1 sepa-
rating the points x and yo. The case off (x) > f (yo) is proved in [19]. Now assume
f (x) < f (yo). Then f [f (y) - g(y)]A,(dy) = a > 0. Since afRa+ig < g, and since
(2.5) implies that
(2.8) Raf (x) = f Raf (y)(dy), a > 0, f e C,
one has

(2.9) aRa+lg(x) = f atRa+1g(y)1(dy) < f g(y)1,(dy) < f (x) -
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so that

(2.10) f g(y),u(dy) = lim aRa+ig(x) < f (x) = g(x).
a--.

If R,,(x, A) is stochastic and if u is assumed to be a probability measure, (2.5)
follows from the following weaker condition,

(2.11) Rif (x) f Rif (y)s,(dy), f E C+.

Then the statement (ii) is nothing but the definition of a branching point in [19].
The counterpart of the above condition for substochastic resolvents is this: for
any f of C and any constant c > 0,

(2.12) RJ(x) - cR1(x, E) 2 f Rif(y),u(dy) -c f R(y, E)A.(dy).
Let Eb denote the set of all branching points.
(c) The set Eb is a K0-set (= countable union of compact sets) and

(2.13) A (x, Eb) = 0 for every x.

The first conclusion of the above was not stated explicitly in [19]. The proof
follows from (iii) of the proposition (b). Take a function g of the form (2.6). Then
it is easily shown from aR,,a+lg < g that aRa+ig increases with a. Since aRf+Ig is
continuous, the function

(2.14) f g(y)ii(., dy) = lim aRa+ig
a-40

is lower semicontinuous. Therefore, the set

(2.15) E -= {x; g(x) > f g(y)g(x, dy)}

is a K,-set. Since Eb is the union of E, over all such g, it is also a Kg-set.
The next group of conclusions are concerned with the transition function in-

duced by Ra(x, A).
(d) There is a unique transition function P,(x, A) such that the function of t

defined Ly
(2.16) Ptf(x) = ff(y)Pt(x,dy), x eE, feC

is right continuous and such that

(2.17) Ra(x, A) = f0o e-atP,(x, A) dt, a > 0.

(e) If t -O 0, then Pt(x, *) converges weakly to ,us(x, *).
(f) For every t > 0 and for x e E, one has Pt(x, Eb) = 0.
Let Qj(A) be a system of absolute laws of P,(x, A), and let (£, ¢, P) be their

associated Markov process. It follows that there is a well defined -limit
(2.18) Xt(W) = lim*s (w) (r rationals)

r4 t

for eve:y 0 < t < t(ow) almost e-verywhere (P).
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Almost all sample paths of the new process xt have the following properties:
(i) the process xt(w), 0 < t < -, is right continuous; (ii) right and left limits
exist at every 0 < t < -; and (iii) if t(cw) < o, there is a left-hand limit at
t = p(w). We will write xo+ for limt oxt and x¢_ for limttrxt if they are well
defined.

(g) The process xt is a standard modification of zT and strongly Markov over E
with Pi(x, A) as its transition function.
When f is a function over E, we will set f(xt) = 0 if t = 0 or t > ¢ conven-

tionally.
Take a function f of C. From the strong Markov property we-have for t > 0

and A E 5r+,
(2.19) E{f (x,+t); A} = E{Ptf(xr); A}.
Letting t -* 0, it follows that

(2.20) E{f (XT); A} = E{f p(x,, dy)f (y); A}.

Since (2.20) is true for every f of C, it is also true for every measurable function.
From (g) it follows that the distribution of xo+ has no mass on the set Eb and

it is the unique solution ,i of the equation

(2.21) Qt(A) = fE-E (dx)P,(x, A).
Moreover if v is an initial measure of Qt(A), that is, if v is a solution of the
equation

(2.22) Qt(A) fE v(dx)Pt(x, A),
the above u is given by

(2.23) A1(A) = E (dx)M(x, A)

These facts may be expressed as follows.
(h) For any system of absolute laws of Pt(x, A), there is the unique "appropriate"

initial measure.
(i) Let rn be a sequence of stopping times increasing to the limit r, and let xT- be

the left-hand limits of x,. for almost all sample paths of the set {O < Tr < }. Then
XT = xT almost everywhere over the set {O < r < r, xT- E - Eb}.

This property, which is nothing but the property of Blumenthal [1] when there
is no branching point, was not proved in [19].

It is enough to prove it when r is finite a.e. (P). In the same way as f (xt), we
will set f(xt-) = 0 if xt- is undefined, that is, if t = 0, +oo or t > P. (Notice that
xt- exists when t = v < +oo.) Take a function f of C. From (g), for A E 5,.+
and n > m,
(2.24) E {Raf (xn); A} = E {ff e-a'f (x7n+t) dt; A}

= E { e-a(t-)f (x,) dt; A}-
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Since r is finite a.e., when n -X o one gets

(2.25) E{Raf (xT-); A} = E {j e-c(t-')f (xt) dt; A}
= E{{Rf (x,); }.

Multiplying a on both sides and letting a -X

(2.26) E {f A(xr_ dy)f (y); A} = E {f A(x, dy)f (y); A}-
From (2.20) the right side equals E{f (xr); Al. Therefore, for any set A of the
v-field generated by U 9,n+, we have proved

(2.27) E {f (xr,- dy)f (y); A} = E{f (x,); A}.
Let Ao denote the set {x,. E E - Eb). Then

(2.28) E{f (x,_); A, Ao} = E {f 4u(xT,- dy)f (y); A, Ao}
= E{f(xZ);A, Ao),

from which (i) can be obtained by the same argument as in ([18], pp. 5-08 to
5-09).

(j) Almost all sample paths Xt(w), 0 < t < r, never reach the set Eb.
Since the proof in [19] is very difficult we will present a more understandable

proof which is based on the following general lemma.
LEMMA. Let E be a metric space, and let (Xt, ¢, f5I, P) be a stochastic process over

E, almost all sample paths of which are right continuous. If a subset A ofE is open
or closed, then the hitting time to the set A defined by
(2.29) TA = inf {t,x, (E A} if xt E A for some 0 < t <

v otherwise
is a stopping time relative to {it}.

First assuming the lemma we prove (j). Since Eb is a K0-set, there is a count-
able family of compact sets Kn such that Eb = U K,n. Let T be the hitting time
for Eb, and rn the hitting time for Kn. Evidently,
(2.30) {xt e Eb for some 0 < t < ={r <T }=U{r <n }.
By the lemma, rT is a stopping time, and it is enough to show that the set
{Tr. < t} has (P) measure zero. Since xo+ E E - Eb almost everywhere (P), the
sets {fT. < t} and {0 < rT < } have the same probability. By (2.20) and (e),
(2.31) P{0 < rn <0° = P{fx,. e Eb, 0 < rn < t}

= E{f(x,r, Eb); 0 < rn <} = 0,
so that (j) was proved.
To prove the lemma we will introduce a notation. Let F(w) be a real-valued

function of sample paths, say, G(x,(c,); 0 < t < r). (Actually the range of F(cw)
may be an arbitrary space.) Then the value of the function for the path shifted
by s > 0 is denoted by F(08w); that is,
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(2.32) F(O.w) = G(xt+.(w); 0 < t < t + s <
(For a more sophisticated definition, see [6].)

It is well known (and easily proved) that TA is a stopping time if A is open.
Let A be a closed subset of E, and An a sequence of open sets decreasing to A,
and 7,, the hitting time for the set A.n. Since 7,, is increasing, the limit Tr of 7, is a
stopping time as well as Tn. For every countable ordinal a, we define a stopping
time ra(<TA) by transfinite induction as follows: if a is an isolated ordinal, then
Ta(,) = Ta-'(w) + T1(O,4-1w), and if a is a limit ordinal, TGa(,) = sUpb<a Tb(W).
Since A is closed, one can see that Ta is strictly increasing until it becomes equal
to TA. From this observation one can conclude that there is some countable
ordinal a (independent of co) such that Ta = Ta+', a.e. (P), and that for such a,
Ta = TA a.e. (P). This completes the proof of the lemma.

(k) For any Borel (or, more generally, analytic) set A, TA is a stopping time of
the process xt.

If A is a subset of E - Eb, TA is a stopping time by (i): the same argument as
in [9] holds. If A is not contained in E - Eb, TA = TAn (E -Eb) almost everywhere
(P) because of (j).
REMARK. The most general result on the measurability of hitting times,

including the above lemma and proposition (k), is found in P. A. Meyer's book
([24], p. 71).

3. The completion of F. Knight

Let E be a locally compact separable Hausdorff space, 63 the a-field of all
Borel subsets of E, and Ra(x, A) a resolvent over E. (Actually all the results of
this section hold when E is a a-compact Hausdorff space.) As in section 2, the
collection of all real (positive) bounded continuous functions is denoted by C
(C+). Throughout this section we assume that Ra,(x, A) satisfies hypothesis (A)
of section 2. We will derive a natural extension of RJ?(x, A) to certain enlarged
compact space and then apply it to the problem of finding a strong Markov
standard modification of the given Markov process over E.

First of all, we will state certain general facts on a completion of E based on a
family of continuous functions. Let D be a subfamily of C which separates points
in E and contains a countable dense subfamily, for the uniform norm. Consider
the uniformity ct [11] generated by the family of pseudo-metrics If(x) - f(y) 1,
f e D and let P be the completion of E with respect to 'U. It follows from the
condition on D that this is a metric completion. Let 5 be the uniform topology
of E and 3, the topology of the original space E. Since D is a subfamily of C, the
identity mapping (E, a) -* (E, 3) is continuous. From these observations it is
easy to prove the following lemma.
LEMMA 3.1. (i) The space :D is compact metric. (ii) If A is a a-compact subset

of E, it is U-compact. (iii) If afunctionf defined over E is :-continuous, the restrict-
ion f of f to E is 5-continuous. (iv) IfA (C E) is a 3-Borel set, it is --Borel. (v) If
T(C P) is 3-Borel, then A = nf E is a-Borel.
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Let B be the closed (in uniform norm) algebra of functions generated by D and
the constant function 1. Clearly, each function f of B can be extended to a con-
tinuous function f over E. Conversely, if f over E is 3-continuous, its restriction
f to E is a function of B. This follows from the Stone-Weierstrass theorem.

Turning to the resolvent we now state the fundamental lemma.
LEMMA 3.2 (Knight [14]). There is a closed subalgebra A of C which is invari-

ant under the operator R,, and includes C1, and whose range R(A) by R,a (independent
of a) includes a countable subcollection dense in uniform norm.
One such family A can be constructed by the same procedure as in ([14],

lemma 1), starting with C1 for S0 there. In general there are many possibilities of
A. From now on we will fix one of them arbitrarily.
Take the family R(A) U C, for D at the paragraph preceding lemma 3.1 and

consider the corresponding completion E and closed algebra B. Since A D B,
and since Ra; A -* B, Ra,; B -* B. Therefore, if f is a continuous function over B,
and if f is its restriction to E, Raf is extended to a continuous function RI,f over B.
Let T,(X, ), x E B, X E Z, be the measure over E determined by

(3.1) Xaf (x) = R,f(x).
This T,(x, A), x e E, A E Z, defines a resolvent over E which maps C (= the
space of bounded continuous functions over E) into itself. Also R,.(x, T) is an
extension of the original resolvent Ra(X, A) in the following sense: if x E E, then
TF(x, E- E) = 0 and Ta(x, A) = Ra(x, A) for every Borel set A of E. To see
this, first note that, by definition
(3.2) RJ (X) = Raf (x), x E E, f E C.

Since the equation is closed under monotone convergence, it remains true when
f is bounded and 5-Borel. But then, since f is also 3-Borel by lemma 3.1 (with
f = 0 over E- E conventionally),
(3.3) 7.f(x) = Raf (x) = Rf (x),
which implies our assertion.
Next consider a countable dense subfamily Ao+ of positive functions of A and

define C1 by the collection of extensions f of f e C, U R1(A+), where R1(Ao+)
means the range of AL by the operator R1. Then, by definition of the completion,
C, separates points in E and aRT,,+f < f over E for every function f E C1. Hence,
the extended resolvent Tha(x, A), x e B, A E 7S, satisfies hypothesis (A) over
F, so that it determines its associated transition function P,(x, A) and strong
Markov process xt.
When x E E, R,,(x, F - E) = 0 implies that Pt(x, E - E) = 0 almost all

t (with respect to the Lebesgue measure over (0, oo)). But in general one cannot
assert that Pt(x, F - E) = 0 for every t > 0. In other words, the original
resolvent Ra(x, A) cannot be necessarily expressed as the Laplace transform of
certain transition function over E. Such an example is obtained easily by restrict-
ing the uniform motion (mod 1) over [0, 1) to (0, 1).
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In particular, we will consider the case when there is a transition function
Pt(x, A) over E whose Laplace transform is Ra(x, A). Moreover, we assume that
Ptf (x) is right continuous in t > 0 for each x of E and for each f of C (or more
generally, the range of C by Ra). Then if x e E and f E C,

(3.4) Jo,* e-a'Pf(x) dt = Trf(x) = Rf (x) = fo e-tPtf (x) dt.

Notice thatf is in the range of C by Ra. Therefore, both Ptf(x) and Ptf (x) are
right continuous in t > 0, so that PT (x) = Ptf (x) for every t > 0. By an argu-
ment similar to Ra, Pt(x, A4) is shown to be an extension of Pj(x, A) in the sense
that if x e E, Pt(x, E- E) = 0 and Pt(x, A) = Pt(x, A) for A E M.

Consider a Markov process (t, r, P) over E with Pt(x, A) as its transition
function. By lemma 3.1 and the above result, xt may be considered a Markov
process over E with Pt(x, 7) as its transition function. Hence, by the proposition
(g) of section 2, there is a strong Markov standard modification xt (of x,) over
X with P,(x, 7A) as its transition function. Again, from the fact that Pt coincides
with Pt over E, xt is strongly Markov over E with P,(x, A) as its transition
function.
Thus we have proved the following theorem.
THEOREM 1. Let Pj(x, A) be a transition function over E a locally compact

separable Hausdorff space, satisfying thefollowing conditions: (1) the Laplace trans-
form of P,(x, A),
(3.5) R. (x, A) = fg e-atP,(x, A) dt

is a resolvent satisfying hypothesis (A) in section 2. (2) For each x ofE and eachf of
C, Ptf(x) is right continuous in t > 0. Let Q,(A) be a system of absolute laws of
P,(x, A), and let (£, ¢, P) be the Markov process over E with P,(x, A) as its
transition function and Q,(A) = P{fx e A}. Then there is a strong Markov
standard modification Xt (of xt) with Pj(x, A) as its transition function which takes
values in a "natural" enlarged state space E. For any analytic set A, the hitting time
TA is a stopping time of the process xt. Moreover, Pt(x, A) can be extended naturally to
a transition function Pg(x, 74) over E, and the system of absolute laws Qt(A) can be
written in the form
(3.6) Qt(A) = fE A(dx)Pg(x, A),
using a unique "appropriate" initial measure , over E.
The last assertion is evident, for Qt(A) is also a system of absolute laws of

P,(x, A7) (with Qt(E - E) = 0 conventionally).
Let A be the point at infinity of E. Define yt = xt if xt e E and y, = a if

Xt E - E. Since this change has no effect on the behavior of xt inside E, yt is
another strong Markov standard modification of xt. One may ask if yt is "sepa-
rable" over E + {A} (= the minimal compactified state space). The separability
is taken with respect to the family of compact sets of E + {J} in the same way
as in the real case [4]. Following [2], "well separable" means that any dense
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subset in (0, Xo) is a separability set, and "a standard transition function" means
that Pt(x, *) converges weakly to the unit distribution at x as t -O0 for each
x of E. The answer to the above question is negative in general. Indeed, if A
is compact in E the separability condition holds for any dense subset in (0, co),
because A is also compact in E and xt is well-separable over W!. But if A is a
compact set including A, it creates a problem.
We can give an example of a nonstandard transition function for which Yt is

not separable over E + {A}. However, it seems very difficult to find a standard
transition function to which corresponds a nonseparable yt. It is known [2] that
if E is denumerable, and if Pt(x, A) is standard (with respect to the discrete
topology of E), there is always a well-separable, strong Markov standard modi-
fication of x-£. It remains open even in this simple case whether or not yt is well-
separable.
We now consider the problem of how to characterize the measure , in the

representation (3.6). More precisely, we want to find when and only when a
measure ,u over E7 is an initial distribution of the particular kind of system of
absolute laws Qt(J) of Pt(x, Z) which has no mass over - E for every t > 0.
Following the notation of [19], we will denote by ER the set of points x of E such
that Th(x, E - E) = 0. Evidently ER D E. By the resolvent equation it follows
that R,(x,7x - E) = 0 for every a > 0. Suppose Qt(E - E) = 0 for every t > 0
and

(3.7) ft() = JEL(dX)PT(X, ).
Then
(3.8) f0 e-'a(t ) dt = f| A(dx)Ra(X A),
so that
(3.9) fE (dx)Ra(x E-E) = 0.

Hence, the total mass of ui must be concentrated on ER. Conversely, assume
that Q,(J) is represented in the form (3.7) by a measure it over ER. From (3.8)
it follows that Q(T - E) = 0 almost all t. For any t > 0, take s such that
Qt_8( - E) = 0. Then

(3.10) -(E-E) = f Qe8(dy)P (y, E - E)

- f,,te(dy)P (y,E-E) = 0,
so that Qt( - E) = 0 for every t > 0. Hence, we obtained the characterization
of uz in (3.6). Incidentally, if x c ER, Pt(x, E - E) = 0 for every t > 0.
Next we prove that almost all sample paths xt(wo), 0 < t < r, of the process of

theorem 1 never reach the set P - PR. To the contrary of the conclusion, assume
that P{Tz,-r < t} > 0. Then, by a theorem of Hunt [9], there is a compact
set K such that K C E - ER and P{O < Tre < } > 0 for some e > 0, where
re is the first hitting time of the set K after e. This leads to a contradiction as
follows:
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(3.11) 0 = E {f e-'IR_u(x,) dt} > E {f| e 'I -R (X) dt}

= E{e' Ri(X7e, X - ER)} > 0,
where Ip,.R is the indicator function of the set X- ER.

Let us denote by Eb the set of all branching points in W. The results of the pre-
ceding two paragraphs can be summarized in the following: the set ER n (E - Eb)
is the "real" entrance boundary as well as the "essential" range of sample paths of
the process xi in theorem 1.

4. An extension of theorem 1

Let CO be the collection of real continuous functions with compact support,
where a "function with compact support" means a function which vanishes
outside of a compact subset of E. We will introduce a hypothesis on resolvents
which is slightly weaker than hypothesis (A):
HYPOTHESIS (AO). (1) If f E CO, then Raf E C. (2) The same condition as

(2) of hypothesis (A).
THEOREM 2. The conclusions of theorem 1 are still valid when Pt(x, A) is a

transition function over E a locally compact separable Hausdorff space, satisfying
the following conditions: (1) the Laplace transform Ra(X, A) of Pt(x, A) is a re-
solvent satisfying hypothesis (Ao); (2) the same condition as (2) of theorem 1; and
(3) for each x, Pt(x, E) -- 1 (t -O 0), or equivalently, aRRa(x, E) 1 (a -+ Co).
From the argument preceding theorem 1, it is enough to prove the following

theorem.
THEOREM 2'. Under the conditions of theorem 2 there is a space E with its sub-

space Eb satisfying the following conditions: (i) the space E is the completion of E
based on a certain family D of section 3; (ii) there is an extension P,(x, ;) over E7
of P,(x, A); (iii) for each x of Ei and any continuous function f over X, Pj (x) is
right continuous in t > 0; (iv) Eb is a measurable subset of E, and if xe E - Eb,
P,(x, *) converges weakly to the unit distribution at x as t -O 0; and (v) for any
Markov process (Tt, r, P) over E with Pt(x, X) its transition function there is a
standard modification Xt satisfying (g) to (k) in section 2 with Eb in place of Eb there.

In the present case lemma 3.2, which theorem 1 is based on, does not hold in
general, because it depends on the fact that C is invariant under the iteration
of Ra. For the proof we will reduce our case to the case of hypothesis (A), using
certain transformations of Markov processes [7], [15].
Take a number ao > 0.
LEMMA 4.1. There is a positive function 0 such that Rak is strictly positive

everywhere and bounded continuous for every a >a0o.
Consider a function of the form

(4.1) E fn, fn, E C+0
n=1

and assume 0 is strictly positive everywhere. Then it follows from condition (3)
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that Rae/i is strictly positive everywhere for every a > 0. Choose fn so that
Rafn(x) < 2-n for every x. Then Rafn e C, and when a > ao, E,= 1 RaJn is con-
vergent uniformly and belongs to C+.

Define

(4.2) Va(x, A) = R.+a(x, A), a > 0,
(4.3) Vj(x, A) = [Vo0(x)]-1 IA Va(x, dy)Voo(y), a > 0,

where 0 is the function obtained in lemma 4.1. These VG(x, A) and V+(x, A) are
resolvents as is easily shown.
LEMMA 4.2. The resolvent VO(x, A) satisfies hypothesis (A).
It is evident that V!(x, A) maps Co into C, so that when f is in C+, Vgf is lower

semicontinuous. We now calculate Vl1;
(4.4) VMl(x) = [Vo0(x)]71VatVoe/(x)

= [aVo0(x)]'-{Vo0(x) - Va(X)}
= [aRo4(x)]1 {R.o0(x) -R.+.,0(x)j,

which proves Val E C+. Take a function f of C+ which is dominated by 1. Then
both V+f and V:(l- f) are lower semicontinuous with their sum V!1 being
continuous. Therefore Vaff must be continuous.
Next if f E Cl, it satisfies

(4.5) aVa+if < aRao+a+if < (ao + a)R.+a+lf < f,
so that the function (f/Voo), as well as the function (f/VoO) A n, for each
positive integer n satisfies the equation aV, +lg < g. The Ct denote the sub-
collection of C+ of the form (f/lVoO) A n, f E Cl, n = 1, 2, * * * with the constant
function 1 added. This collection separates points in E, because C1 includes 1
and separates points. Now the lemma is proved.
We apply the results of the preceding section to the resolvents V,O(x, A). Its

associated system of the completion space, the extension of V!(x, A), and the
transition function is denoted by {E, T(x, A), Tt(x, %)}, x E E, X e ?g. The
set of branching points is denoted by RbO. Let (7) be a system of absolute laws
of Tt(x, 7) and yt the process of (g) of section 2 determined by Tt(x, A) and
UO(N). The latter UC(X) has the form f vO(dx) Tt(x, 7) by means of a (unique)
measure Pv over E-Et, which is the distribution of yt+.

In the following we will use the results on excessive functions [9], [16] and
their associated transformation [7], [15], [17]. For the moment, let Ra(x, A) be
a resolvent over a measurable space (E, (i). A nonnegative and (a) measurable
function f, allowing the value +00, is said to be excessive relative to Ra(x, A) if
aRRaf < f, a > 0, and if lima-. aRjf = f. If the resolvent Ra(x, A) is the
Laplace transform of a transition function Pt(x, A), the above definition is
equivalent to the condition that Ptf < f and limt,o Ptf = f. If only the condition
aRJf < f, a > 0, is assumed, the function f is said to be quasi-excessive.
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We now evaluate V(1/Voo) (x);

(4.6) (ao + a) f V.(x, dy) [Vof (y)]-' = [Vo,0(x)]-1(ao + a) V(x, E)
= [Vo4(x)]-1(ao + a)R.+.(x, E)
< [VoO(x)1-'.

Since (ao + a)Re]go+a(x, E) -->1 as a o-* o by the condition (3) of theorem 2,
u = (1/Voo) is excessive relative to Vj(x, A) and satisfies (ao + a) Vlu < u. This
relation is stricter than that in the definition of an excessive function. Such u may
be considered an excessive function of negative exponent -ao.
LEMMA 4.3. There is an excessive function u relative to Va(x, 74) such that
= (1/Voo) over E, and such that

(4.7) (ao + a)7V+f < u over
Set u = (1/Vo) and u. = u A n. Both un and V!un can be extended continu-

ously to E by the definition of the completion. We will write U,, for the increasing
limit of the extension Un of un. As is easily verified, if a is such that aoVgl <
(m - n)/n, then
(4.8) (ao + a) V!Un < Ur over E.
Hence, by continuity,

(4.9) (ao + a) Va,n = (ao + a) V8U < V. over E.
Letting m xo, one has for every a> 0,
(4.10) (ao + a) .< over 77.
Letting n oo, it follows that u., satisfies (4.7). From this, by an argument
similar to that in ([16], proposition 4.1), it follows that (ao + a) Vauj' increases
to a limit -uas a - oo and V+UOO= V-ufor every a > 0. This proves lemma 4.3.
Next define

(4.11) Va(x, if) = [;u(x)]' fA V!(x, dy)u(y) if 0 <Zu(x) <ce,
= 0 if u(x) = 0 or oo,

(4.12) Tt(x, 74) = [u(x)]-' fA Tt(x, dy)u-(y) if 0 < -u(x) < x,
= 0 if u(x) = 0 or xo,

(4.13) U,(74) = [f ;U(x)v¢(dx)]1 IA Ut(dy)U(y)
if 0 < f U(x)v"(dx) <00,

=0 if f T(x)vO(dx) = 0 or co.

It is easily verified that Tt(x, 7) is a transition function over X' and VaZ(x, 7)
and Ut(74) are its associated resolvent and system of absolute laws. Also, any
system of absolute laws of Tt(x, 74) can be obtained in the above way up to some
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constant multiple. (This is not evident. It follows, however, that [U(x)]-1 is
bounded on E- t, which implies our assertion.)

Let yt be a Markov process corresponding to T,(x, A) and Ut(T). The terminal
time of y, is denoted by i7. (In general, the basic probability space of gt is different
from that of yt. But yt and yt can be always redefined to have the same proba-
bility space by taking the product probability space.) Then there is well-defined
yg(w) = limr Æt ?jr(w) (with r rationals) simultaneously for every 0 < t < v for
almost all w (P). This process yt has the properties (i) and (ii) of the paragraph
preceding the proposition (g) of section 2. (The property (iii) might be lost.
That is, one cannot assert the existence y,, on the set {, < mo}. This, however, is
not important in the present discussion.) The distribution of yo+ is given by

(4.14) [f ;9(x)v)^(dx)] JAf -(x)vF (dx).

In particular, it follows that aVa(x, *) converges weakly to a limit measure
as a -X o for every x. If one defines branching points of Va(x, -) in terms of
those limit measures in the same manner as in section 2, it follows that the set
R'b of all branching points of VT(x, q) is Et U {x; -u(x) = 0 or mo}. With this
definition the process yt satisfies (g) to (k) in section 2. (For the proof of these
results, see [15] and [17], proposition 2.3.) Actually, in [15], the above results
are stated in a little weaker version. But they can be restated in the present form,
using the proposition of "Supplement" of [15].
LEMMA 4.4. The inequality Tt(x, T) < e--t holds for all x of P. Also Ut(E) <

e-^t for any system of absolute laws of Tt(x, IT).
For the first statement, noting that T,(x, E) is right continuous in t > 0, it is

enough to show that

(4.15) (-1)n-V.(X,T7) < (-1)nn ( +) n = O, 1,

by the Bernstein theorem in Laplace transform. By a well-known formula on
resolvents, this is equivalent to

(4.16) Vn+1(x, Ei) < (ao + a)n1
which follows from

(4.17) Va(x h = [u(x)] 1V9(x) < (ao + a)1-.
Therefore,

(4.18) U+8(h7) = f U.(dx) Tt(x, 7) < e

When s -*0, one gets U,(hE) < e-at.
PROOF OF THEOREM 2'. We set

(4.19) PT(x, I) = eatT,(x, I),
(4.20) Qt(.q) = e0otUg(I).
Then it is evident that P,(x, I) is a transition function overh, and Qt(J) a

system of absolute laws of P,(x, A). Any system of absolute laws of Pt(x, I) can
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be obtained in the above way up to a constant multiple. Let (4T, ¢, P) be a
Markov process over E with P,(x, AT) its transition function and Qt(T) =

Pfxt e ;}. Apparently the functional e-t, defined for 0 < t <nJ(,w), is a right
continuous multiplicative functional of the process yg and satisfies

(4.21) E{e1t; I > t} = Q(AT) < 1.

Hence the results of [15] apply also to the transformation by e-t, 0 < t <n,
and an argument similar to that for the transformation by u9 leads us to the
conclusion that there is a standard modification xi of xt satisfying (g) to (k) in
section 2 with Eb the set of branching points of Va,(x, IT). The assertions (iii)
and (iv) on Pi(x, AT) of theorem 2' are implied in the construction of the process
Xw.

It remains to prove that Pt(x, AT) is an extension of the original transition
function Pj(x, A) over E. Define Tt(x, A) = e--t Pt(x, A). It is enough to show
that Tt(x, AT) is an extension of Tt(x, A). To see this, first note that Vj(x, IT) is
an extension of V!(x, A). Then since:u = (l/Voo) over E, it is also easy to see
that V,T(x, IT) is an extension of Va (x, A). Let x be a point of E, andfa continuous
function over E and f, the restriction of f to E. Since both Ttf (x) and Tf (x) are
right continuous in t > 0, and since their Laplace transforms Vaj (x) and Vaf (x)
coincide, we have Ttf(x) = Ttf (x) for every t > 0, which proves that T,(x, IT)
is an extension of Tt(x, A) by the same argument as in section 3. Hence theorem
2' is proved.

Let Tha(x, IT) be the Laplace transform of Ft(x, IT). With no help of Pt(x, A),
we can easily prove that R,a(x, IT) is an extension of Ra(x, A). Therefore the con-
struction given in this section applies to any resolvent Ra(x, A) satisfying hy-
pothesis (Ao) and aRfa(x, E) -).1 as a -oo (without the assumption that R,?(x, A)
is the Laplace transform of a transition function over E). This fact will be used
in later sections.

5. Generalized resolvents and excessive measures

Throughout the rest of the paper, we will be interested in the second problem,
the representation of excessive measures. The main results are stated in the next
section and their proofs are given in the later sections. In the present section we
will give some basic definitions as well as a preliminary theorem due to Hunt [9].

Let E be a locally compact separable Hausdorff space, and C3 the a-field of all
Borel sets. The a-field a of all universally Borel sets is defined as before. A
nonnegative function R,(x, A) defined for a > 0, x E E, and A (13 is said to
be a generalized resolvent if it satisfies (R1) to (R3) in section 1 and, in place of (R4),
the following condition: (GR4) [if A is compact, Ra¢(*, A) is bounded on every com-
pact set for each a> 0 and Ra(x, A) -O0 as a - oo for each x].

In particular, this condition implies that the measure Rat(x, -) is finite on
every compact set for each a > 0 and x e E. From now on, to avoid confusion, a
resolvent in the proper sense is called a substochastic resolvent. From the resolvent
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equation there is always well defined the increasing limit R(x, A) of Ra(x, A)
as a -+0. Evidently R(x, -) is a measure over E, but in general, does not satisfy
any finiteness condition. If, for each compact set A, R(-, A) is bounded on every
compact set, the generalized resolvent RI?(x, A) is said to be integrable. Let f be a
function over E and X, a measure over E. We will use the following notations;

(5.1) Raf = f Ra(., dy)f (y),

(5.2) XR1 = f X(dx)Ra(x, *).

A o-finite measure v is said to be excessive relative to R,(x, A) if v(A) >
a(vRa) (A) for every a > 0 and if v(A) = lim a a(vRa) (A) for every Borel set A.
The first assumption implies that a(vRa)(-) increases with a. Therefore, when v
is finite over every compact set, the second condition is equivalent to the weak
convergence of measures a (vRa) to P. If only the first condition P > a (vRa), a > 0,
is assumed, then v is said to be quasi-excessive relative to Ra(x, A). When no con-
fusion is expected, the phrase "relative to R,(x, A)" may be dropped. For the
moment, suppose that aRaf -*f as a -Xoo for each f of CO. Then every quasi-
excessive measure which is finite on every compact set is excessive. In other
words, the second condition in the definition follows from the first condition.
Next consider the case in which Ra(X, A) is the Laplace transform of a transi-

tion function Pt(x, A). In such a case, in order that a or-finite measure v is exces-
sive, it is necessary and sufficient that v(A) > vPt(A) = f v(dx)Pt(x, A) for
every t > 0 and v(A) = limt,ovPt(A) for every Borel set A. Therefore, if
Pjf - f as t -O0 for each f of CO, and if v is finite on every compact set, then v

is excessive if and only if it satisfies v > vPt. This turns out to be the original
definition of Hunt [9].
THEOREM 5.1. Suppose the generalized resolvent RJa(x, A) is integrable. Then,

for any excessive measure v', there is a sequence of measures Xn such that Xn < nv' and
such that XnR increases to P as n - oo.

The proof is similar to that of ([9], part I, p. 86). However, some additional
consideration is required, for R(x, A) is not necessarily a bounded operator.
Hence we will give a complete proof.
LEMMA. There is a sequence of quasi-excessive measures P. such that Pn increases

to v and such that, for each n, a (vnRa) (A) -O 0 as a -O 0 for every compact set A.
Take f > 0 and set /An = n(P -nvRn+e). Then for a set A such that v(A) < 00,

it is easy to see that

(5.3) .snR.(A) = n(vRn+f)(A) < v(A).
Since v is o-finite, (5.3) remains valid for every Borel set A. Consequently, AnR.
increases to v as n -m 00. Let {An} be a sequence of Borel sets with compact
closure increasing to E and satisfying v(An) < 00. Let tn be a finite measure over
(E, 63) majorized by An, having no mass outside a compact set and satisfying

(5.4) {nR.(An) > IA.R.(An) - n-.
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Then the sequence of measures v,, = min (v, Fk= I {kR) is what is wanted, because

(5.5) a(4nRRa) (A) = {.R(A) -nRa(A) -O0, c,
for each compact set A.

Proceeding to the proof of theorem 5.1 we will show that the measure X,, =
n(vn- nvnRn) satisfies the conditions of the theorem. It is enough to prove that
X,,R(A) increases to v(A) as n -* oo for any Borel set A with compact closure
such that v(A) < m. From the resolvent equation it is apparent "formally"
that
(5.6) X.R(A) = (vnRn) ()
But since vnR(A) may be infinite, a more careful evaluation is needed to verify
(5.6). By taking a > 0, then
(5.7) v.R.(A) < a-lv(A) < o
(5.8) PnRaRn(A) = (n - a)-{vnRfa(A)-VnRn WI

< (n - a)-v.Ra(A) for n > a > 0,
(5.9) (vn-,nVnRn)Ra(A) = {vn- (n- a)VnRnj}Ra(A) - a(VnRnR,Ra)(A)

= vnRn(A) - a(mnRnRJa)(A).
However, by the preceding lemma,
(5.10) a(VnRnRa)(A) < (n - a)->'a(vRa)(A) -O0, a 0.
Also (vn- nvnRn) is a positive measure. Hence, letting a -* 0 in (5.9), one gets
(5.6) up to the constant multiple n. By (5.6),
(5.11) X,+1R(A) = (n + 1)(vn+lRn+l)(A) > n(vn+,Rn)(A)

> n(VnRn))(A) = XnR(A).
Obviously,
(5.12) lim n(vnRn)(A) < lim n(vRn)(A) = v(A).

On the other hand, for any fixed integer k and m
(5.13) lim n(vnRn) (A) > m(vkRm) (A).

n-

Letting k -> oo first, and m -X next, one gets
(5.14) lim n(vnRn)(A) > v(A),

n -x
which proves limn,, X,nR(A) = v(A).

6. The completion of R. S. Martin

Throughout this section and the next two sections, we will assume that the
generalized resolvent R,,(x, A) satisfies the following hypothesis.
HYPOTHESIS (B). (1) The generalized resolvent Ra(x, A) is integrable. (2) For

every x, R(x, *) is a nontrivial measure, that is, 0 < R(x, E) < oo. (3) If x Fd x'
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the measures R(x, *) and R(x', *) are not proportional. (4) Iff E Co, Rf is contin-
uous. (5) Iff E Co, Raf is continuous for each a > 0.

Similarly to condition (2) of hypothesis (A) or (Ao), condition (3) in the above
can be replaced by a little weaker condition: (3)' there is a countable collection
of nonnegative continuousfunctions such that each functionf of the collection satisfies
al4f < f, a > 0, and such that, whenever x --- x', there are certain functions f and
g of the collection, and its ratio (f/g) separates x and x'. For the simplicity we will
only discuss the case of condition (3).
A nonnegative function 0 is said to be a reference function if R4, is continuous

and if 0 < RO(x) < X for every x. That there exist many continuous reference
functions is proved in the same way as in lemma 4.1 (see the proposition (a)
following theorem 3). We fix a reference function 0 and set
(6.1) M(x, A) = R(x, A)/R4,(x).
LEMMA 6.1. When A is compact, M(., A) is bounded.
For the proof we will introduce another kernel;

(6.2) RO(x, A) [R4,(x)]-1 A R(x, dy)RO(y)

=A M(x,dy)RO(y).
Since Rg, is strictly positive and continuous, it is enough to show that R"(., A)
is bounded for each compact set A. It is evident that RO(*, A) is bounded over A.
Next we define

(6.3) R,(x, A) = [RO(x)]-1 JA R.(x, dy)R4(y).

An excessive function relative to a generalized resolvent is defined in the same way
as in the case of a substochastic resolvent (section 4). It is easily verified that
Rk is an excessive function relative to Ra,(x, A) and that R+(x, A) is a sub-
stochastic resolvent satisfying aRJ?(x, E) --*1 as a -* oo for each x. Evidently
R,(x, A), a > 0, maps Co into C. Finally we will show that R+(x, A) satisfies
condition (2) of hypothesis (Ao). Let {ffj be a countable subcollection of C+0
dense in uniform norm. Then the collection of functions {Rlifn} separates points
in E, for RI'(x, *) and R+(x', *) defines different measures for x wd x' by condition
(3) of hypothesis (B).

Therefore, by the remark at the final paragraph of section 4, one can apply
the results of section 4 to this substochastic resolvent R,(x, A). Let Ef be it as-
sociated completion of E. In particular, for each x of E, there is a right continuous
strong Markov process (x(Z), t (z), P) defined over Ef such that

(6.4) R"(x, A) = E{ff e-atIA(x(x)) dt}
a
> 0,

where IA is the indicator function of the set A. Letting a -O 0, one has

(6.5) RO(x, A) = E {ff IA (x(x)) dt}
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Let A be a compact set of E, and r the hitting time of A. By the strong Markov
property,
(6.6) R0 (x, A) = E{R(x$x), A)}.

Since A is also compact in E+, x'zx is in A almost everywhere (P). Therefore,
the right side of the above equation is dominated (independently of x) by
sup RI(y, A), y E A, which is known to be finite.
By condition (3), the measures M(x, *) and M(x', *) are different whenever

x $d x'. Hence the family of functions, M(Co) = {Mf; f e Co}, separates points
in E. By the preceding lemma, every function of M(Co) is bounded and con-
tinuous. We take M(Co) for D in section 3. The associated completion of E is
denoted by E and called the Martin completion. For each x of hS, Mf(x) defines
a linear functional over Co, so that there is a unique measure M(x, A) over 63
satisfying

(6.7) Mf (x) = (x, dy)f (y), f E Co.

The measure Mi(x, A) is an extension of M(x, A) from E X (6 to E X (6, that
is, M1(x, *) = M(x, *) when x e E.
An excessive measure v is said to be minimal (or extreme) if v cannot be ex-

pressed as the sum of two excessive measures which are not proportional to v.
Our main representation theorem is this.
THEOREM 3. Under hypothesis (B) the following conclusions are true. (i) For

each x of E, M(x, *) is excessive relative to RIa(x, A). (ii) Let E1 be the set of points
x of E such that M(x, -) is minimal and satisfies f M(x, dy)4O(y) < oo and such
that, if there is some other point x' for which M(x', *) is proportional to I(x, *),
then M(x, *) 2 «l?(x', *). Then, such 2i eXists uniquely. (iii) The set E1 is a meas-
urable subset ofX and

(6.8) f M(x, dy)r/(y) 2 1 for each x of VX.

(iv) Any excessive measure v such that f r(x)v(dx) < oo is represented uniquely in
the form
(6.9) v(A) = Ls(dx)M(x,A), A EG(,

using a finite measure I over W1.
The proof will be given in the next two sections.
In the rest of this section, assuming theorem 3, we will discuss several results

obtained from, or related to, the theorem.
(a) Let v be an excessive measure. Then the following three conditions are equiva-

lent. (i) The measure v is finite over every compact set. (ii) There is a continuous
reference function 8such that f O(x)v(dx) < o. (iii) There is a reference function
*0 such that f O(x)v(dx) < oo.

Suppose (i) holds. Let An be a sequence of open sets with compact closure
increasing to E. Choose fn of CO so that 0 < fn over An, fn < 2-n over E,
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Rfn < 2-n over A., and f fn(x)v(dx) < 2-n. Then the function 0 = E_ f,n satisfies
(ii). Evidently (ii) implies (iii). It follows from (6.9) that (iii) implies (i).

(b) If the reference function q5 is continuous (or more generally, lower semi-
continuous), then the point x is in E1 if and only if 217(x, *) is minimal and
f M(x, dy)ck(y) = 1. In this case, for any finite measure u over X, the measure
defined by
(6.10) v(A) f,i(dx)M1(x, A),

is an excessive measure satisfying f O(x)v(dx) < o.
It is enough to show that Mr,6(x) < 1 for every x of 7'; then (b) follows im-

mediately from theorem 3. If 0 is lower semicontinuous, Mo is lower semi-
continuous over W. Since o7+ = 1 over E, HO < 1 over P.
Theorem 3 can be restated in terms of the weak (or weak*) topology of

measures. We will just give the version of the conclusion (iv) for a continuous
reference function. Let 8V be the space of minimal excessive measures e such that
f 0(x)e(dx) = 1 provided the weak topology. By (b), & is homeomorphic to Th
(corresponding to the same o). Hence we have that

(c) if 0 is a continuous reference function and if v is excessive and satisfies
f k(x)i(dx) < oo, then v can be written uniquely in the form

(6.11) v fj,/.(de)e
using a finite measure u over E*. In particular, if there is a reference function 0o
belonging to C+, the above conclusion holds for any excessive measure finite over
every compact set.
By (a), if f i(dx)dI(x) < o for some reference function o, then f P(dx)0o(x) <

X . In this sense +0 may be considered as a universal one of all reference functions.

7. Proof of theorem 3: a special case

In this section we will prove theorem 3 for a very special case, where the
generalized resolvent RQ(X, A) and its associated reference function 4 satisfy the
following conditions (S1). Conditions (1) to (4) of hypothesis (B) are satisfied. (S2)
The resolvent RJ?(x, A) is substochastic. (S3) If A is compact, R(., A) is bounded.
(S4) For each E > 0, there is a compact set A such that R(x, E - A) < efor every x.
(S5) For every x of E, one has Rk(x) = 1.
For the convenience of later discussion (sections 8 and 9), condition (5) of

hypothesis (B) is not assumed explicitly. But as will be seen below, it is implied
by (Si) to (S4).
By (S4), any function of R(C) (= the range of C by R(x, A)) can be uniformly

approximated by some function of R(CO). In other words, the uniform enclosures
of R(C) and R(Co) are the same. This implies that R(x, A) maps C into itself.
Hence, from a routine work (for instance, [9], part II, p. 352), it follows that
R,,(x, A) maps C into itself for every a > 0 and R,a(C) = R(C). Therefore, we
can take C for A in lemma 3.2. We will take a countable dense subcollection in
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R(C+) with the constant function 1 added for the corresponding Cl. By (S5),
(7.1) M(x, A) = R(x, A),
so that the Knight completion based on Ra(x, A) is the same as the Martin
completion E based on M(x, A). Notice that R(x, A) can be extended to Rl(x, 7)
over E' in the same way as Ra(x, A) to Ta(x, 74) for a > 0.
LEMMA 7.1. For each x of E, R(x, A) is a trivial extension of M(x, A), that is,

R(, E- E) = Oand R(x, A) = M(x, A) for A E (B.
For each f of C+

(7.2) Mf(x) = Rf(*) for every x of W.
But when fn EF C + increases to f, Mfn increases uniformly over E to Mf, so that
for each x of B,

(7.3) Alf(X) = lim Mfn(x) = lim f M(x, dy)fn(y)
n-- n-4

= Zi(x, dy)f (y).
Let J be a function of C+, and f the restriction off to E. Since f E C+, by (7.2)
and (7.3)
(7.4) Rf(x) = 21f(x), x E,
which proves the lemma. (Use the same argument as in section 3.)

It follows from the lemma that any excessive measure relative to Ra,(x, 7) has
no mass over E- E, and its restriction to E is excessive relative to Ra(x, A).
The converse statement that the trivial extension of any excessive measure
relative to Ra(x, A) is excessive relative to Ta(x, 7) is always true for any Knight
completion. In the rest of this section we will write R(x, A) for M(x, A).
We now proceed to prove theorem 3 in this special case.
PROOF OF (i). R(x, Hi) is excessive relative to Ra(x, A), so that R(x, A) is

excessive relative to R,(x, A).
Let Eb be the set of branching points of Ra(xX, 7) and EV, the set of points x

such that f R(x, dy)ul(y) = oo and set El = E-Eb U Xx.
PROOF OF (iv). Let v be excessive relative to Ra(x, A) and satisfy

f O(x)v(dx) < oo. For the proof of the existence of the representation (6.9), it is
enough to show that v can be expressed as

(7.5) v(A) = f-Ebb(dx)R(x, A), A EG (B.

for then it is evident that ,u has no mass over the set F,r..
Take {X.}, a sequence of measures over E such that X,,R increases to v (theorem

5.1). Then

(7.6) X.(E) = f X,(dx) f R(x, dy)4 (y)

= f (X,R)(dy)0(y) < f v(dy)>(y) <o,
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so that a subsequence {AXn} of {Xj converges weakly over X to a measure X over
X, namely, for each f E C (with f as its restriction to E),

(7.7) X. An(dy)f (Y) IEAyf ()
Since T?f E C,

(7.8) JXn.(dY)Rf(Y) -If (dy)Rf(y)

On the other hand,

(7.9) f Xw(dy)Rf(y) = f (XA,R)(dz)f(z) |f (dz)f(z),

so that

(7.10) f v(dz)f (z) = fEX(dy)Rf (y).

Let p(x, *) be the limit measure of aTQ(x, *) as a -* oo. Letting a 0 in
(2.3), and using the proposition (c) of section 2,
(7.11) Rf (Y) = fE-Rbb(y dx)Rf (x).
Setting

(7.12) fI (d))(y,
one gets

(7.13) f v(dz)f (z) = I| M,(dx)R(x, dz)}f (z),

which proves (7.5).
For the uniqueness, suppose v is written in the form (7.5), using a finite

measure Au over ?- 7b. (One need not assume f v(dx)4(x) < oo.) Recalling that
for each x E - Tb, aRf (x) -f(x) (boundedly) as a oo for every f e C,
and using the resolvent equation of Th,(x, ;), one has for f E C,

(7.14) f ,,l(dx)f (x) lim E M(dx) {aTRf (x)}

= lim a f_ -,(dx) {Rf (x) -aTf (x)}

= lim a {f v(dy)f(y)-a f v(dy)Raf(y)},

so that ,u is uniquely determined by v.
PROOF OF (iii). The first half is evident. For the second half, to the contrary

of the conclusion, assume that f R(x, dy)4(y) < 1 for some point x of X - Eb.
Then, apply the same procedure as in the proof of (iv) to the excessive measure
v = (x, *). The total mass X(X) of the corresponding limit measure X of X,'
must equal TR +(x) < 1. Hence, by (7.12), j&(E) < 1, which is impossible, be-
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cause u must be the unit distribution at x according to the uniqueness of the
representation (7.5).
PROOF OF (ii). For the moment let us denote by P2 the set of points x of X

satisfying the conditions in (ii). We will prove El = T2. Assume x e Ti. Evi-
dently, f T(x, dy)ck(y) < oo. The minimality of the excessive measure T?(x, *)
follows easily from the uniqueness of the representation (7.5). Suppose there is
some x' E X such that Tl(x, *) = cT(x', *) with a positive constant c. Then, by
the resolvent equation, Rf,,(x, *) = cTRh(x', -) for every a > 0. Consequently,

(7.15) 1 = lim aRT,(x, 7) = c lim aTh,(x', h) > c,
ax ~~~~~a-*e

so that x E E72.
Conversely, assume x e E2. By the first two conditions and the conclusion

(iv), there is a (unique) point x' of 77, such that R(x, *) = cR(x', *) with a
positive constant c. From the maximal property of both 7(x, *) and R(x', *), it
follows that X(x, *) = T(x', .), which means x = x'.

8. Proof of theorem 3: reduction of the general case to the special case of
section 7

For a nonnegative function a(x) over E, define

(8.1) Ma(x, A) = fA M(x, dy)a(y).

LEMMA 8.1. There is a strictly positive everywhere, bounded and continuousfunc-
tion a(x) such that MG(x, A) satisfies (S4) of section 7.
The proof is similar to that of lemma 4.1. Let {An} be a sequence of open sets

with compact closures increasing to E such that the closure of A. is included in
A,+,. Choosefnso that f > 0 over An, fn = 0 outside A,+,, fn < 2- everywhere
and Mfn < 2-n everywhere. Then the function a(x) = E fn(x) is the desired one.

In the following we will assume that a(x) satisfies the condition a(x) < RO(x)
for every x as well as the conditions in lemma 8.1.
Our reduction is based on the following
LEMMA 8.2. There is a (unique) substochastic resolvent Ma(x, A) which con-

verges to Ma(x, A) as a -- 0.
(Since Ma(x, A) is a bounded operator, the uniqueness is evident.) Consider

RO(x, A) and R+(x, A) defined by (6.2) and (6.3). For a nonnegative function
b(x), define

(8.2) R41.b(x, A) = fA R+(x, dy)b(y).

When b(x) = a(x)/Rk(x) (<1),

(8.3) RX bb(x, A) = Ma(x, A).

We will show that, for any bounded nonnegative function b(x), there is a
substochastic resolvent such that
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(8.4) R,0b(x, A) = lim Rl'b(x, A).

In the proof of lemma 6.1, it was shown that the results of section 4 are appli-
cable to Ra+(x, A). Its associated extended system is denoted by {f77, T(x, T),
Pt(x, A)}, x e E+, X E @,+. For each x of E+, let us denote by (xt(Z), .(x), P) the
right continuous strong Markov process of theorem 2' such that P{x:x) E A} =
Pt(x, AT), A-E 6. Let b(x) be an extension of b(x) to X, bounded and non-
negative. Define

(8.5) A(x)(t, c) = f b(x(x)(w)) ds,

(8.6) T(z)(t, c,) = sup {t'; 0 < t' < .(z), A(x)(t', w) < t},
(8.7) Ytz)(x) x(x)(7(x)(t, w), a,), 0 < t < A(z)(v(x), ,),
(8.8) Pt.b(X, A) = P{yX) e NJ.
(In the definition of ytZ), we used the notation x(x)(t, w) for xt (w).)
Then, by the Volkonsky theorem on random time change ([20], theorem 1.4),

Pt.b(x, A) defines a transition function over E+. Set

(8.9) Ra+b(x I) = fo eatPtb(x, I) dt = E {f 0 etI;(y(xZ)(co)) dt}-

Therefore,

(8.10) limTa-*(xO N) = E { lx(y(w)) dt}

= E {f Ii(x1(z)(w))b(x4')(co)) dt}

= lim R-(V;6)(x).a-*O

In particular, if x e E, setting A = T n E
(8.11) la(Ii6)(x) = R.O(IAb)(x),
so that RO'b(x, ) has no mass over -E, which implies that R+b(x, A), the
restriction of R-b(x, 74) to E, is a substochastic resolvent over E. By (8.10), this
resolvent R"'b(x, A) satisfies (8.4).
LEMMA 8.3. The measure v is excessive relative to R,,(x, A) if and only if tCe

measure va defined by

(8.12) va(A) = JA v(dx)a(x)
is excessive relative to Ma(x, A).

Let v be excessive and {JXR} a sequence of excessive measures increasing to v.
Set X1(dx) = Xn(dx)Rk(x). Then

(8.13) XlMa(A) = f XnO(dx) fA M(x, dy)a(y)

= f Xn(dx) fA R(x, dy)a(y) t IA v(dy)a(y) = va(A)
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so that pa is excessive relative to Ma(x, A). The other half is proved in the same
manner.
PROOF OF THEOREM 3. Set

(8.14) 4,(x) = +(x)/a(x).
It is easily verified that Ma(x, A) and its reference function {(x) of (8.14) satisfy
(S1)-(S5) of section 7. Hence, theorem 3 is valid for {Ma(x, A), t,(x)}. We will
denote by { mEal, a(X, J)} the system in the theorem corresponding to
{Ma(x, A), A(x)}. But, since M(Co) = Ma(Co), a is identical with T (as a
topological space). It is also evident that, for each x of E (= Ea),
(8.15) Va(x, A) = A (x, dy)a(y).
Set El = X. Then all the assertions of theorem 3 are true for {MZ(x, T), ¢(x)},
because they are invariant under transformation from {Mia(x, A), AP(x)} to
{Ml(x, ;), +(x)}. Such invariance follows easily from lemma 8.3 and the formula
(8.15).

9. Other sufficient conditions

We will now give two alternatives for condition (5) of hypothesis (B).
HYPOTHESIS (B'). Conditions (1) to (4) of hypothesis (B) and the following

condition are satisfied. (5') RU(x, A) is the Laplace transform of a transition func-
tion Pt(x, A) over E. Moreover, for each x of E, there is a right continuous and strong
Markov (with Pt(., -) as its transition function) process (x(Z), W(z), P) defined over
E such that P{xlz) e A} = Pt(x, A). Here a "right continuous" process over E
means that almost all sample paths xix) (w), 0 < t < (w), are right continuous in E.
HYPOTHESIS (B"). Conditions (1) to (4) of hypothesis (B) and the following

conditions are satisfied. (5") R(x, A) satisfies the "complete principle of the max-
imum," that is, if f E Co and if Rf < 1 over the set {x; f(x) > O}, then Rf < 1
everywhere (over E).
As is easily seen, the above principle of the maximum is equivalent to either of

the following condition. (i) Letf be a function of Co and c, a nonnegative constant.
If Rf < c over the set {x; f(x) > 0}, then Rf < c everywhere. (ii) Let f, g be func-
tions of Co+ and c, a nonnegative constant. If Rf < Rg + c over {x; f(x) > 0},
then Rf < Rg + c everywhere.
The effect of the complete principle of the maximum in the theory of Markov

processes was discovered by Hunt ([9], part II, section 15). In his paper an
additional (but critical) assumption which is referred to as (-y) is required. How-
ever, we need only a partial result of his, so that we can do without his as-
sumption (y).
THEOREM 3'. Under hypothesis (B') (resp. (B")), lemma 6.1 and theorem 3

are valid for any reference (resp. continuous reference) function.
It is enough to prove lemma 6.1 and lemma 8.2 in both cases; in other parts

we did not use condition (5) of hypothesis (B).
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CASE OF HYPOTHESIS (B'). Set

(9.1) Pt(x, A) = [R4(x)]-' JA Pt(x, dy)RF,(y).
Since this is a transformation by the excessive function R4, Pt0(x, A) is a tran-
sition function and its Laplace transform is RfJ>(x, A). By the theorem of [15],
for each x of E, there is a right continuous strong Markov (with PI(., *) as its
transition function) process (ytZx, q(x), P), defined over E, such that
P{y,Z) e A} = Pt(x, A). Then the proof of lemma 6.1 is carried out in the same
way as in hypothesis (B) by using the strong Markov property and the right
continuity of sample paths of the process (ylZ), 77(4, P). The proof of lemma 8.2 is
also similar to the case of hypothesis (B); to obtain the substochastic resolvent
RZ b(x, A) in (8.4), it is enough to consider the random time change of (y(x), '(Z), P)
by means of the function b(x).
CASE OF HYPOTHESIS (B"). The proofs in this case stand on a different basis

from the previous cases.
To prove lemma 6.1 it is enough to show that the kernel M(x, A) satisfies the

complete principle of the maximum. Take a function f of Co and assume

(9.2) Mf < 1 over the set {x; f(x) > O},
which is equivalent to Rf < R¢ on the same set. Since 0 is assumed to be con-
tinuous, there is a sequence of functions 4), of CO+ increasing to 4. By the Dini
theorem, RO),, converges uniformly to R4) on the set {x; f (x) > 0}. Therefore, for
any e> 0,
(9.3) Rf < R4), + E on {x; f (x) > O},
for sufficiently large n. By the complete principle of the maximum relative to
R(x, A), (9.3) holds everywhere. This proves
(9.4) Rf < R4 + e everywhere.
Since e is arbitrary, Rf < R4) everywhere.
Next we will prove lemma 8.2. It is evident that Ma(x, A) satisfies the com-

plete principle of the maximum. Moreover, since Ma(x, A) satisfies (S4) of section
7, it is easily verified that Ma(x, A) satisfies the complete principle of the maxi-
mum for those functions of C. Noting that Ma(x, E) is bounded in x, we set

(9.5) 0 < ao = [sup Ma(x, E)]-',ZeE
(9.6) M.(x, A) _ (a)k[Ma]k+1(x, A), 0 < a < ao,

k=O

where [Ma]k (x, A) is the k-times convolution of Ma(x, A). As is easily seen,
M,(x, A) is well defined and maps C into itself. We will show that Ma(x, A),
0 < a < ao, has the same properties as a substochastic resolvent. The resolvent
equation follows immediately from the definition. Take a function f of C+. From
the resolvent equation
(9.7) MMa(-f) = Ma(aMaf - f).
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Assume SUPXEE M(-f)(x) = c > 0. Then the complete principle of the maxi-
mum for those functions of C implies that there is a sequence of points x, of E
such that M.(-f)(xn) -f c as n -÷ o and aMgf(x.) - f(xn) > 0 for every n.
This is impossible, so that Mg(x, A) > 0 for every A E (B. To prove aM,(x, E) =
aMl(x) < 1 for every x of E, assume that a-' < C = supxEE Mal(x). Then an
argument similar to the above, applied to the equation
(9.8) Mll = Ma(l - aMa1),
leads to the contradiction that there must be a sequence of points x. of E such
that Mal(xn) -c> a-' as n X-+ o and 1 - aMal(xn) > 0 for every n. The
extension of the above Ma(x, A) to arbitrary a > 0 is carried through by setting
inductively

(9.9) Ma(x, A) = L (,B a)k[M#s]k+1(x, A), 0 < a < 2p.
k=0

REMARK 1. We will note that hypothesis (B') is stronger than hypothesis
(B"). For the proof, take a function f of Co and assume Rf < 1 over the set
{x; f(x) > O}. Set A = the closure of {x; f(x) > 0}. By continuity, Rf < 1
over A. Let x be any point of E and T, the hitting time for the set A of the
process xz'). By the strong Markov property,

(9.10) Rf(x) = E{ff f(xtz)) dt}

- E {f0f (x(x)) dt}+ E{Rf (x(x))}

< E{Rf(x(x)) < 1.
REMARK 2. The use of the complete principle of the maximum gives us

another proof of lemma 8.2 under hypothesis (B). In fact the same argument as
above applied to the process associated with the extended system {E+, RTZ(x, ;),
Pt(x, :1)}, leads us to the conclusion that that RO(x, A) satisfies the complete
principle of the maximum. Then the same proof as in hypothesis (B") is valid.

10. Reference functions allowing the value infinity of Rq

In the definition of a reference function 0 in section 6 we imposed that R4 is
finite everywhere over E. We now remove the restriction, and we will again say
that a nonnegative function , is a reference function if Rc(x) is strictly positive
everywhere and continuous, allowing the value infinity. We will show that
theorem 3 and theorem 3' are still valid with a slight change of the definition of E.

Set
(10.1) E = {x; Rp(x) = a:}, E = E -E
(E0 has no relation with E+, which appeared in the proofs of lemma 6.1 and
lemma 8.2).
LEMMA 10.1. (i) For each x of E+, R(x, E+) = 0. (ii) Any excessive measure

v, such that f +(x) v(dx) < oo, has no mass over E+.
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Fix a > 0 and x e E+. Then

(10.2) ° > Rck(x) > a f Ra(X, dy)RO(y) > a f,E, R.(x, dy)R4(y),

so that Ra(x, E+) = 0. Since R(x, E+) = lima,o R (x, E+), R(x, E+) = 0. To
prove the second assertion, take XAR, a sequence of measures increasing to v.
Then

(10.3) f X,(dx) Rk(x) < f v(dx) +(x) <00,

so that X. has no mass on the set E+. Hence, by (i), XAR(EO) = 0, which proves
v(E ) = 0.

Since El is a closed subset of E, EO is again a locally compact separable
Hausdorff space. By the above lemma the restriction of Ra(x, A) to EO is also an
integrable generalized resolvent over E+. Moreover, a measure v excessive relative
to Ra(x, A) such that f v(dx) ,(x) < X can be identified with its restriction PO
to E+, which is known to be excessive relative to the restriction of R (x, A) to
E+. We can now apply the previous results to the restricted generalized resolvent
R,(x, A), x e E+, A e (BO and obtain the representation of vO (and therefore,
of v).
THEOREM 4. Theorem 3 and 3' are still valid for the reference function allowing

the value infinity of Rb if one considers the Martin completion of EO (based on
M(Ct)) for 7.

11. Examples

Let E be a denumerable space carrying the discrete topology. Then conditions
(4) and (5) of hypothesis (B) are trivially satisfied for any integrable generalized
resolvent. Therefore, theorem 3 applies to any generalized resolvent Ra(X, A)
satisfying (1) to (3) of hypothesis (B). In this special case, theorem 3 gives also
the representation of excessive functions relative to R,(x, A), that is, nonnegative
functions f such that aRaf < f and lima-, aRaf = f. To suggest the extension to
more general cases, we will use a too heavy formulation to dispose of the present
special case.

Let Ra(x, A) be an integrable generalized resolvent. Let m(A) be the uniform
measure over E and let ra(x, y) (resp. r(x, y)), the density of Ra(x, A) (resp.
R(x, A)) relative to m(A); that is, ra(x, y) = Ra(x, {y}) and r(x, y) = R(x, {y}).
Define R*(x, A) = fA ra(y, x)m(dy). The resolvent R,(x, A) is an integrable
generalized resolvent which satisfies

(11.1) R.(x B)m(dx) = BRa(x, A)m(dx).
Let P(A) be a measure such that 0 < f r(x, y)c1(dx) < X for every y. Such

4.(A) is called a reference measure. Set +(x) = (dcL/dm)(x) = b({x}). This be-
comes a reference function for R*(x, A). For an excessive function f such that
f f (x)4)(dx) < 00, define v(A) = fA f (x)m(dx). Then the measure v is excessive
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relative to R*(x, A) and satisfies f v(dx)4(x) < oc. The inverse correspondence
is also valid. Assuming that R*(x, A) satisfies (2) and (3) of hypothesis (B), we
apply theorem 3 to R*(x, A). Its M-kernel is denoted by

(11.2) M*(x, A) = R*(x, A)/R*4,(x) = JA [r(y, x)/f r(z, x)4'(dz)]m(dy),

and its associated system in completion by (M*(x, A), E*, PO.
For each x of P*, set K(y, x) = (dM*(x, *)/dm) (y), which is an excessive func-

tion in y relative to R,(y, A) and, when x e E, coincides with the integrand of
the last side of (11.2). Since 4 is trivially continuous, x is in Tih if and only if
K(., X) is a minimal excessive function and f K(y, x)4(dy) = 1. Thus the unique
representation of f is obtained;

(11.3) f = J* (dX)K(, X).
This generalizes to a considerable extent the result of [21]. Indeed, it is easily

verified that both Ra(x, A) and its generalized co-resolvent R*(x, A) satisfy
hypothesis (B) if Ra(x, A) is the Laplace transform of a transient and standard
transition function Pt(x, A). In [21] we studied the case when Pt(x, A) is a
special type of transient and standard transition function.
The preceding argument to obtain the representation (11.3) of excessive func-

tions applies to more general cases. In those cases we need assume the existence
of the measure m and the generalized co-resolvent R*(x, A) satisfying (11.2).
Moreover, we assume that R*(x, A) satisfies either hypothesis (B), (B'), or (B").
Then the kernels r(x, y) and r,a(x, y) are uniquely determined in a certain way.
If the reference measure 1 is absolutely continuous with respect to m, the class of
excessive functions f relative to Re,(x, A) such that f f (x)4(dx) < co is in one-to-
one correspondence with the class of excessive measures v relative to R*(x, A)
such that f v(dx)(d4/dm)(x) <0o through the relation

(11.4) v(A) = Lf (x)m(dx).

We will note that (11.4) never involves the ambiguity of (m) measure zero on
f (x). This follows from the fact thatf (x) is excessive. (For these discussions refer
to [16] and [17].) Consequently, we can obtain the Martin representation
theorem of excessive functions with respect to a smooth reference measure under
a weaker hypothesis than that in [16] and [17].
The Martin representations of excessive measures and excessive functions of

discrete parameter Markov chains were obtained by Doob [5] and Hunt [10].
It has been known, with no explicit mention in references, that the discrete
parameter case can be reduced, or rather essentially equivalent, to the special
continuous parameter case of [21]. So far, such reduction has not been so
important, for the previous methods [10], [21] can be applied in a parallel
way to both the discrete parameter case and the above-mentioned special con-
tinuous parameter case. However, our present method, involving the transfor-
mation of an unbounded operator to a bounded operator by time change, has no
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counterpart in the discrete parameter case. Hence, it will be useful to give a brief
description of such reduction.

Let P(x, A) be a one-step transition function and 6(x, A), the unit distribution
at the point x. Define q(x) = 1 - P(x, {x}) and II(x, A) = [q(x)]-l P(x, A -
{x}). Then the system (q, fl) satisfies the equation

(11.5) P(x, A) -6(x, A) = q(x) {II(x, A) -(x, A)}.
We will denote by 9 (x, A) the above operator. The system (q, H) is the unique
solution of the equation (11.5), with the additional condition IH(x, {x}) = 0.
Then the equation

(11.6) (a -S)Ra(x, A) = 6(x, A), a > 0

has the unique solution Ra(x, A). This Ra(x, A) satisfies also the adjoint equation

(11.7) R.(a - 9)(x, A) = (x, A), a > 0.

Moreover, Ra(x, A) is a substochastic resolvent satisfying conditions (2), (3) and
(5') of hypothesis (B').
The corresponding continuous parameter transition function is standard. We

will denote by T the hitting time of the set E - {x} of the process (x'Z), P(x), P).
Then [q(x)]-l = E{T} and II(x, A) = P{x'x) Ee A}. A measure v or a non-
negative function f, is excessive relative to Ra(x, A) if and only if it is excessive
relative to P(x, A), namely, if v(A) > f v(dx)P(x, A), or respectively f(x) >
f f (y)P(x, dy). The proofs of all the above results are given in [21]. In particular,
if P(x, A) is transient, then conditions (1) and (4) of hypothesis (B) are also
satisfied and

(11.8) R(x, A) = lim Ra(x, A) = E Pn(x, A).
a-O n=O

Therefore,

(11.9) M(x, A) = Pn(x, A)l pn(x, dy)0(0)]
n=O n=O

which is nothing but the Martin dual kernel corresponding to the transition func-
tion P(x, A) in [5], [10]. Moreover, the integrand of the last side of (11.2) turns
out to be

.0 0

(11.10) E_ P"(y, x)/ Pn(z, x)4(dz),n=O n=Of
which is the Martin kernel of P(x, A).
The above argument applies to discrete parameter Markov processes (that is,

one-step transition functions) over general state spaces. Their corresponding
continuous parameter Markov processes are right continuous and strongly
Markov and proceed with only simple jumps [22]. Eventually we can conclude
that the Martin representation theorem of excessive measures relative to the
discrete parameter transition function P(x, A) over a locally compact separable
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Hausdorff space is valid if P(x, A) is transient and if the kernel En=o P"(x, A)
maps Co into C.

Finally we will consider the case when E is a group. If an integrable generalized
resolvent is invariant under translation, namely, Ra(x, A) = Ra(xy-1, Ay%),
conditions (4) and (5) of hypothesis (B) are always satisfied. In particular, if
Ra(x, A) corresponds to a standard continuous parameter transition function
Pt(x, A), or to a discrete parameter one, P(x, A), conditions (2) and (3) are also
satisfied. Therefore, the Martin representation theorem of excessive measures is
valid for every spatially homogeneous transient Markov process either with
continuous parameter or discrete parameter.
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