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1. Introduction

The thing that motivated the present paper was a curious observation by
Blackwell and Freedman [1]. Let X1, X2, *.. , be independent +1 with prob-
ability 2, Sn = X1+ + Xn, and Tc= min {n; Sn > c/n, c\ > 1}. Then
for all c < 1, ET, < oo, but c > 1 implies ET, = oo. In order to understand
this better, I wanted to calculate the asymptotic form of P(TC > n) for large n.
It was reasonable to conjecture that P(Tc> n) - an-f, not only for coin-
tossing random variables but for a large class. The first step in the proof of this
was to verify the result for Brownian motion. This is done in the second para-
graph and follows easily from known results.
To go anywhere from there, one would like to invoke an invariance principle.

But the difficulty is clear-for general identically distributed, independent r.v.
X1, X2, *-- with EX1 = 0, EX', = 1, the most one could hope for is that
P(TC > n) - an-0 where ,3 is the same for all distributions, but a depends
intimately on the structure of the process. Hence, this is not a situation in
which the usual invariance principle is applicable. But the result does hold
for all distributions such that EIX113 < c, and it is proved by using results
of Prohorov [2] which give estimates of the rate of convergence of the relevant
invariance theorem. This proof is carried out in the third paragraph.
A dividend of the preceding proof is collected. The conclusion is that

(1.1) P(Sn < v'I Ski <cVk, k = 1* *, n) - G(e)
where G(Q) is the corresponding distribution for Brownian motion.
The related works that I know of are the interesting results given by Strassen

at this symposium [3], and by Darling and Erd6s [4]. There is also a very
recent article by Chow, Robbins, and Teicher [5] which generalizes the result
of Blackwell and Freedman.

2. First exit distribution for Brownian motion

Take t(t) to be Brownian motion with Et(t) = 0, Et2(t) = t. Define Tc =
inf {t; t(t) 2 cV't, t > 1}, that is, T* is the first exit time past t = 1.
Preparation of this paper was sponsored in part by National Science Foundation Grant

GP-1606.
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THEOREM 1. With the above definition, P(T* > tIt(1) = 0) at-$(C) where

(i) lim ,8(c) = 0,

(ii) limr (c) = ,

(iii) if c2 is the smallest positive root of

. (-2C2)- m!
n=O (2n)! (m -n!

then ,8(c) = m. In particular i3(1) = 1, o(NT- x/6) = 2.

PROOF. Consider the process Y(u) = u(e2u)/eu. This is the Uhlenbeck process.
The problem now is to find the distribution of the first exit time Ty for Y(u)
from the boundaries Lc, given Y(O) = 0. This distribution is well known, and
its Laplace transform has been given by Bellman and Harris [6] and Darling
and Siegert [7]. To wit;

(2.2) b(X) = e-AvdP (Ty > V) = e-c2/4 -D 0) +DI(0)
Jo ~~~~~~D.),(c) + D-x(-c)

1 2A/2r(X/2) RtX>0,
2 e (1/2)t2tA-1 cosh ct dt

where the Dx(z) are parabolic cylinder functions. Now D_x(c) is an entire function
of X (see Erd6lyi et al. [8], pp. 117 f.f.), so 4)(X) is entire except for poles on the
nonpositive axis. Since D_x(z) + D_x(-z) satisfies the self-adjoint Sturm-
Liouville equation

(2.3) f"~~~~01 + (2- X2) +=+(2.3)2 4

it follows, under the supplementary condition +(a) = 0(-a), that the charac-
teristic values of this system coincide with the zeroes of D_x(a) + D-((-a).
Therefore, the poles of 4k(X) are simple and real. Let -2,(c) be the position of
the largest pole. Then

(2.4) P(Ty > V) = ae-20V + O(e-(2#+o)V a > 0.

For the Brownian motion, this translates as

(2.5) P(T* > t) = at-(c) + 0(t-P-(8/2)).

Now to verify (i), (ii), and (iii) by locating the largest zero of

21-X./2 F
(2.6) @(X) = r(X/2) e-t2/2tX-1 cosh ct dt.

To continue the integral into RIX < 0, write



SQUARE ROOT BOUNDARY 11

le6-/2t1-1 cosh ct dt = e-t'/2tX- coshct (ct)] dt
, ~~~~~E(2n)

(2.7) + 1 2/-1
N C2n r(n + (X/2))
n0(2n)! r(X/2)

21-A/2 IN(X, C) + N c2. r(n + (X/2))

P(x/) n= (2n)! r(X/2)
The function IN(X, c) is analytic for RtX > -2N - 2, real and positive for
real X in this range. For X = -2m, the finite sum becomes

(2.8) P(c) = YE c)n m
n=O (2n)! (m -n)!

and the first term in (2.7) vanishes. This gives (iii). As c -O 0, @(X) -+ 1 for all X,
so for any number M, and for c sufficiently small, @(X) can have no zeroes in
IXI<M.
For (i), use N = 0 in (2.3) to get

(2.9) r o)@(X) = 21-X/2Ij,(X) + r (2)' RX > -2.

Since Io(X) -O 0 as c - oo, the root must move toward a pole of r(X/2). But
this can only be at X = 0.

3. First exit distribution for sums of independent r.v.

Let Xi, X2, * - - be independent, identically distributed r.v. with EX1 = 0,
EX2 = 1, EjXi,3 <0. Define T, = min {n, Sn > cV'n}, Sn = X1 + + Xn.
THEOREM 2. Either there exists an integer n such that P(Tc > n) = 0, or

P(TC > n) - c'n-an(c), where ,8(c) is the same function appearing in theorem 1, but
a > 0 will not, in general, be the same.

PROOF. The proof is constructed around the use of the identity

(3.1) Pn('Y) = f Qn,r(^Y, t1)Pm(d17), m < n,

where

(3.2) P(,Y) = P S- < y, Tc > n)

(3.3) QP S.(<Y)p(S<, Sk < c, k = m, * , n S.m= r).

Take m = [e2u] (the largest integer < e2u) and n = [e2(u+-o)], then the invar-
iance principle results in
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(3.4) lim P7) = P(Y(uo) < IY(V)I < c, 0 < V < uolY(O) = t)

= Q(-, '7)

(see [7]). However, what is needed is a uniform error bound.
PROPOSITION 1. There is a constant D such that

(3.5) sup IQ,n(,y,1) - Q(-y, q)1 < De-u/l6, n > 0.
7,1

PROOF. Write

(3.6)

P (8n <y,1|k < c, k = m, n*,f7==1)

P(Sj,,Vrkn n. _
=P (SN + q7-/m < y) s5 + 7.\/-| < c, k = O, *- * N nn-mSo = O)

= P < N, Sk +lI\XN<< +XN, k = 0,* , NISo =0),
where X,1 = N/m, aN = yv1+ XN - N. Let {N(t) be the process obtained
by interpolating linearly with {N(k/N) = Sk/\N, and {N(O) = 0. Therefore,

(3.7) Qn.m(,yv ,) = P(QN(1) < oN, JtN(t) + qvXNI < cVt , 0 < t < 1).
Now, we use an estimate due to Prohorov [2], that is, consider the set of all

continuous functions on [0, 1] as a metric space with the sup norm topology.
For any closed set S, let S. be the open set consisting of all points whose distance
to S is less than e. If

(3.8) 31 = inf {E; P( N e S) < P(, e SE) + e, all closed S},

(3.9) 52 = inf {E; P(t e S) < P(.N E Se) + e, all closed S},

then max (5k, 52) < kN-118(log N)2 = PN, where k is a constant not depending
on N. For I'i <c -PN,

(3.10) P(Q(1) < aN - PN, 1t(t) + 71\4|N < C'Vt + AN - PN, O <_ t <1) -PN
< Qn,rn(Y, ii) _

< P((1) < aN + PN, !t(t) + 1\XNi < cVt + XN + PN, 0 < t < 1) + PN-
The difference between the right- and left-hand sides above is dominated by

(3.11) P(jt(l) -aNI < 2pN) + P(It(t) + V-XNl < cx/t + XN + PN)
- P(OW(t) + 7?V\XNI < cV\t + XN - PN) + 2PN.

At this point, we need another result from Prohorov [2]; that is, if functions
ai(t), a2(t) satisfy a1(0) < 0 < a2(0), a1(t) < a2(t), 0 < t < 1, and la(t") - a(t')l <
Kit" - t'l, then there is a constant J depending only on K, and sup iai(t)j,
sup Ia2(t)j, 0 S t < 1, such that for all e > 0 small enough
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(3.12) P(a,(t) < (t) < a2(t), 0 < t < 1)
> P(ai(t) - E<. (t) < a2(t) + e, 0 < t < 1) - JE.

Applying this to (3.11), the difference is dominated by (3 + J)PN. Since

(3.13) A-N1 = [e2(U+UO)] = e2uo + O(e-2u),

by a similar argument we can replace XN by X =e2- ° aN = a = yV/l + A-n7A/
and conclude that for 177I < c -PN,

(3.14) jQ.,m(y, 7i) - P((t) < a, !t(t) + 7NVXI . cv/t + A, 0 < t < 1)1 < HpN,
where H does not depend on y or 7. If 71 = c -SPN, 0 < s < 1, then

(3.15) Qn,m(,y, 1) < P(QN(t) < C((/7VX - \XV) + PNVXN, 0 < t < 1)

Ct
< P((N(t) < 2v§- + PN\XN, 0 +< t <1 +

<P((t) < 2 A- + PN.\IN + PN, 0
)+P

< P( (t) < CNPN, 0 < t < PN) + PN,

where CN -* c/2/'x + V/\ + 1. As is well known,

(3.16) P(Q(t) < CNPN, 0 < t < pN) = 1 - 2P(t(pN) > CNPN)
=2P(O < X <cNVPN) < H'/pN

where X is normal N(O, 1). This completes the proof.
To complete the proof of theorem 2, write

(3.17) P(-Y, U) = P[e2g(TQ), Q(y, 17, U, Uo) = Q[e2u+2-o],[e2'u('Y, 17)

and (2.8) as

(3.18) P('Y, u + uO) = f Q(y, il, u, uo)P(dr,7 u)

or

(3.19) P(y, u + uo) = f Q((7, 7q)P(d7, u) + f A y, i7, u, uo)P(d7, u).

Take Laplace transforms of both sides with

P(, s) = fo e-uP(y, u) du,

(3.20) eU°84P(y, S) = f Q(y, r)P(dq, s) + eua f|u e-u8P(y, u) du

+ J0 J A(-I, 7, u, uo)e-uaP(d7, u) du.

The second term on the right in (3.20) is entire in s. Put I, = [-c, +c]; if
Rs> so is the maximal half-plane of analyticity for P(I,, s), then the third
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term is analytic in the plane Rts > so - I . The function e(-'2/2)(a/a'y)Q(7, q
satisfies the equation
(3.21) O~~f Of Of(3.21) u = vy - 8 of f(c) = f(-c) = o

for y either variable -y or q. For uo -+ 0, f h(,y)Q(d-y, ) -* h(ry) for reasonable
h(Qy), hence

(3.22) Q,,(y, 7) =-
k=O

where 4k(Y), Xk satisfy the eigenvalue equation,

(3.23) y =

Write (f, g) = f+Ce-(y1/2)f(y)g(y) dy; then (44, 4's) = k,j. In (3.20) write
I(7y, s) for the second and third terms. Therefore,

(3.24) e-'8 f 46k(Y)P(dY, s) = eXlk- f 44k(Y)P(dy, s) + f Ok(y)I(dy, s),

and for a sufficiently smooth function h(-y) = Ek (h, #k)#k(y),

(3.25) jf(y)P(dy, s) =E fk k-dI.
Now, integrating by parts, using (3.20),

(3.26) f 41kI(dy, s) < c f e- (,2/2)(44(-y))2 dy - sup I(y, s) = C|Xk| sup I (Y, s).

Take f so that the sum of (f, 4'k)XkI is absolutely convergent. In particular, this
will be true if f _ 1. Thus, (3.25) becomes

(3.27) P(I", s) = E 1 exku (1, 4'k) f 4k dI-

From the foregoing, for real s, £ 44k dI -+ djXkIP(IC, s-()). The point is that
if so > -o, then so must be one of the values Xo, Xi, * , say Xj, P(I¢, s) has a
single pole at s = so, and is otherwise regular in the half-plane R2s > so- 5,
S > 0. (The poles at so 4 2n 7r i/uo, n F 0, are ruled out because P(I,, s) does
not depend on uo.) The statement is also true for f f(-y)P(dy, s) for any smooth f
such that (f, #j) # 0. For such smooth f, one can write

(3.28) f fQ(y)P(dy, u) = L(f)e'Y, + 0(e(x-5)u).

Letting P*(dy, u) = e-X1uP(dy, u), one obtains

(3.29) f f(-y)P*(dy, u) = L(f) + O(e-5).

The measures P*(doy, u) converge weakly to P*(d-y), where (4k, dP*) = 0,
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k z j. The latter implies P*(dy) = e- (7y/2)pj(y) dy. However, P*(dy) is a non-
negative measure. The only nonnegative 46j(-y) is 4to(oy); thus j = 0.

Finally, the transformation +(x) = e- (x'/4)4i(X) changes (3.23) into the system
(2.3) so that Xo = -2,B(c). The only thing remaining is to verify that so > -,
if there is no n such that P(TC > n) = 0.

For any uo, take I such that for u > ul,
(3.30) inf Q(I, 7, u, uo) > 6 > 0.

7EI

From (3.18), P(I, u + uo) > 6P(I, u), u > ul. This will imply that either there
is an M > 0 such that P(I, u) > e-MU, all u > 0, or that there is a u2 such that
P(I, u) = 0, U > U2. The first alternative is impossible because of the assumed
analyticity of P(I,, s). Put another way, there is an interval J and an m such
that P(Sm e J, T7 > m) = 0. Then argue that J can certainly be taken large
enough such that P(X1 E J - x) > 0, all x e J. Therefore,

(3.31) P(Sme J, Tc> m) = 0X P(Smi,EJ, Tc> m- 1) = 0.

By reduction, an n is arrived at with P(T. > n) = 0. Note that n is not neces-
sarily one by considering X1 to take on the two values 1/31l and M2, for M large.
The smallest n satisfying P(TC > n) = 0 is the largest n satisfying n/Ml < c\/n.

In the course of this proof we have incidentally proven the following theorem.
THEOREM 3. If there exists no n such that P(T, > n) = 0, then

(3.32) P(Sn <-y\/nlT, > n) -4 f e- /2\Vo(t) dt,
where 0 is a normalizing constant.

4. Remarks

Some unresolved problems that are left in this area are concerned with what
happens to the tail of the T, distribution as the boundaries are moved out.
More specifically, let T,(r) = min {n; Sn > cV/n + r}. By invoking the usual
invariance principle, it is easy to show that

(4.1) lim P(TC(r) > rt) = P(T*, > tIt(1) = 0)
T~ 00

where T* is the first exit time for Brownian motion past t = 1. This is not as
interesting as asking the following questions.

(i) By theorem 2, P(T,(T) > rt) - a((r)t-#(c). As r °° show that a(r) con-

verges to the corresponding constant for Brownian motion.
(ii) A bit more strongly, is it true that P(TC(r) > rt)/P(T*(T) > rt) -* 1

uniformly as T, t -oo ?
The condition E1X1j3 < oo can be easily weakened down to EIX112+5 < 0o and

the same methods will work. I suspect that theorem 2 may even be true under
only E1X112 < oo, but that would require better tools.
What happens with more general boundaries, for instance, t'3, or <Vit(t),
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where +(t) does not increase too fast? The results for the clit boundaries rely
very heavily on the fact that these transform into constant boundaries for the
Uhlenbach process. Hence the simple methods used here do not generalize.
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